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What are debris disks?

Planetesimals and dust found around
~15% of main sequence stars

The planetesimals are confined to
narrow(ish) belts, even if the dust
distribution is broad

Forgetting detailed structure there are two
main observables:

e Radius, r

e Mass, M, or luminosity, f=L; /L.

e Eridani

Greaves et al. (2005)
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How do debris disks evolve?

Why do we care?

Debris disk evolution tells us about
planetary system formation and
evolution

How do we measure it?
e Detailed structure of individual
objects
e Observing thermal emission from
dust of stars of different ages

e Mass higher when younger

e Range of radii at all ages

Najita & Williams (2005)
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Models for debris
disk evolution

e Steady-state
(A) Classical steady-state
(B) Delayed stirring

e Stochastic
(C) collisions
(D) dynamical instability
(E) supercomet
(F) passing star

Dust in inner solar system

Spikes from
large collisions

Cioty AU

ol

2x10° 3x10° 4x10°
Time, yrs

Grogan et al. (2001); Dermott et al. (2003);
Nesvorny et al. (2003); Farley et al. (2006)

Late Heavy Bombardment Model
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Gomes et al. (2005)



Constraints from statistics

Survey of 266 A stars for dust emission at 24um (Rieke et al. 2005):
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« fall off in upper envelope ~150Myr/t
e large excess declines rapidly, but intermediate excess peaks at 150Myr
e large range of dust masses at any given age implies stochastic evolution?
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Steady-state planetesimal belt evolution

The size distribution in a collisional Dust luminosity falls off as largest

cascade is to first order described by objects (D,,,,) are depleted in

a power law collisions on a timescale t_,, which
depends on planetesimal strength
(Qp™) and eccentricity (e)
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This simple model provides a reasonable description of more detailed models



Model for debris disk populations

Model population of 10,000 A stars for which:

e Random spectral types A9-B8, and ages 0-800Myr

e All have a planetesimal belt, all of which have the same
e largest planetesimal size, D
 planetesimal strength, Qy”
e eccentricity, e

max

e |nitial mass of belts taken from the distribution observed In
protoplanetary disks (Andrews & williams 2005)

e Radius distribution, n(r) o« r7, fitted to observations



Steady-state evolution explains 24um stats

This model accurately reproduces the fraction of stars in different age
bins with small, medium and large 24 um excesses
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Wyatt et al. (2007a)

24um statistics can be explained by steady-state evolution, and
there is no need to invoke stochastic evolution



It also explains 70um statistics

Survey of ~160 A stars for 70um dust emission found different results to
24um, notably a longer decay time and higher excess ratio (su et al. 2006):
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Wyatt et al. (2007a)

70um statistics are reproduced by the same steady-state
evolution model



As well as the trends seen In survey data
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For example, the evolution of
luminosities of disks detectable at
24 and 70 um shows two orders of
magnitude spread at each age, and

S
a fall-off in the mean oc t0-46+0.14 m
1072 |
m_; T . 10”?800»@.""
. 10°-*E-—-2- it Mg iy 10 100
< . Radius, AU
10 Y. 7+ Noting that detectability is a strong
. ’ | function of planetesimal belt radius
107 .
| - (must lie above f,, and below f_,),
1077l N e more unusual trends are also explained,
10 100 such as that disks detected at 24um but

not 70um are all <400Myr



Caveats (1): B Pictoris and Vega

e Mid-IR images of 10-20Myr 3 Pic
show a clump of dust at 52 AU
which in in the process of radiation
pressure blow-out on 100 year
timescale (Telesco et al. 2005)

Problem: what produced these transient grains?
Solution: recent collision?

Problem: need MASSIVE collision (>100km objects) to produce

observable dust signature and such collisions are infrequent (wyatt & Dent 2002)
Solution: (i) dust is not lost
(i1) collisions really are frequent



Caveats (2): Hot dust around sun-like stars

Just 7 sun-like stars (2%) have hot dust emitting at 25um (e.g., Bryden et al. 2006)

One of the stars is 2Gyr old KOV star
HD69830 whose mid-IR spectrum is
similar to Hale-Bopp indicating dust at
~1AU (Beichman et al. 2005)
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Recently found to have 3 Neptune
mass planets orbiting at 0.08, 0.16
and 0.63 AU on nearly circular

20 25 orbits (Lovis et al. 2006)
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Are these massive asteroid belts?

No: this dust cannot be produced in a planetesimal belt coincident with the
dust, rather it must be transient (wyatt et al. 2007b)

Why: there is a maximum
luminosity (and mass) that a

belt can have: D
:= i xl;ﬂ"‘hﬂhh
f . =0.16x103r/3¢t, .1 J eI
max age J_I \H
. -
4/7 hot dust sources exceed - ’\
this by >1000 \
o 10 100 1000
What are they then: Time, Myr

e recent collision very unlikely
e in situ planetesimal belt no
e scattered in from more distant planetesimal belt possibly



Kuiper belt of n Corvi

For 2/4 of the hot transient dust sources, including n Corvi, an outer
planetesimal belt is known to exist which could be feeding the hot dust
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Conclusions =~~~ - . .

(B) Delayed stirring
‘e Stochastic \
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