Debris disks at high resolution

Mark Wyatt Rachel Smith Institute of Astronomy, Cambridge

Debris disk overview

Debris disks are remnants of planet formation, planetesimals which failed to grow into planets; that in the Solar System is comprised of the Kuiper and asteroid belts

15% of nearby stars host debris disks detected from an excess of flux at >10μm

The nearest and brightest can be imaged, such as ε Eridani

Debris Disk Image Gallery

1984 β Pictoris 1998 HR4796 1998 Fomalhaut 1998 Vega 1998 ε Eridani 2000 HD141569 2004 τ Ceti 2004 HD107146 2005 *n* Corvi 2005 AU Mic 2005 HD32297 2006 HD53143 2006 HD139664 2006 HD181396 2007 HD15115 2007 HD15745 2007 HD61005 2008 δ Vel 2008 HD92945 2008 HD10647

Extrasolar debris disks are not axisymmetric

The outward migration of a Neptune mass planet () around Vega sweeps many comets (*) into the planet's resonances

The trapping of comets in Vega's disk into planetary resonances causes them to be most densely concentrated in a few clumps

Indirect evidence for planets

Comparison of planets inferred from debris disks with those found from other methods

Debris disk structures reveal planets in a region of parameter space inaccessible to other techniques

Proof 1,2: disk structure varies with time

Just because these are the only models that explain the observed structure does not make them right

Need to confirm one of the predictions of the model:

0) Detect planet!• Hard!

1) High resolution structure

The model can be tested, as it predicts that the clumps will orbit the star with the planet and this motion should be detectable within 5 years Date: 1997.0

- 2) Clumpy resonant structure orbits star with planet
- Tentative detection over 5 years for ε Eri (Poulton et al. 2006)

Simulation of Vega disk (no noise)

Q: What baselines are needed to constrain the models? A: Use CASA with no noise to simulate images of Vega

Fraction of flux retained is just 52% for B_{max} =1.8km and 3% for B_{max} =16.1km

For this over-resolved disk the shortest baselines are required, although higher resolution structure than present in the model is possible

Simulation of Vega disk (with noise)

Q: How long observations are needed to constrain the models? A: Use CASA with noise to simulate images

The clumpy structure is clearly visible even on short integrations

Issue: Including noise in CASA (in this simulation thermal noise was adjusted to achieve appropriate mJy/beam)

Proof 3: disk structure varies with wavelength

Model predicts structure changes with grain size (due to radiation pressure) and so wavelength of observation (Wyatt 2006)

Dust size and wavelength

Observations agree, BUT mass loss is 100 times prediction at $2M_{\oplus}/Myr$

ALMA covers transition at which structure changes setting vital constraints

Sub-mm/far-IR debris disk surveys

Surveys of (unresolved) debris disks show how disk mass evolves, how disk incidence varies with stellar mass, binarity, metallicity, exoplanet parameters

Sub-mm surveys measure

- disk mass
- spectral slope (dust size)
- cold disks

Far-IR surveys measure

- temperature (radius)
- warm disks

 10^{2} 10^{2} 10^{2} 10^{2} 10^{2} 10^{2} 10^{-2} 10^{-2} 10^{-4} 10^{-4} 10^{-4} 10^{-4} 10^{-4} 10^{-4} 10^{-4} KBT KBT KBT Wyatt (2008)

AB 🔷

From 2009:

- SUNS survey with SCUBA2 on JCMT of nearest 500 stars to 2mJy at 850µm (nearest 100 of spectral types A,F,G,K,M)
- DEBRIS survey with PACS on Herschel to 1-2mJy at 105,160 μ m of same

ALMA sensitivity compared to other facilities

Q: How does ALMA's sensitivity to debris disks compare with SCUBA2 and PACS? A: Map out the region of f vs r parameter space detectable by each facility

ALMA will detect all disks detected by SCUBA2 and most by Herschel

ALMA can measure

- dust mass
- temperature (radius)
- spectral slope (dust size)

for all ~200 known disks, and those discovered by SUNS and DEBRIS

Observing strategy: wavelength

Q: What waveband is most sensitive to debris disks? A: Use sensitivity estimate and assumptions about spectral slope ($F_v \sim \lambda^{-3}$)

- Except for largest disks (>100AU), 450µm then 850µm are most sensitive
- NB lower sensitivity if resolved $(r>2.1x10^{-4}\lambda/B_{max})$ so $B_{max}=0.2km$ used

Simulation at limit of detectability

- Q: Can ALMA really detect disks at that limit?
- A: Use CASA to simulate an observation of a faint disk + noise

0.12mJy disk observed for 0.5hr at 850µm with B_{max}=200m (0.04mJy/beam)

The disk is clearly detected with above the noise...

... however, full simulation with thermal and phase noise required

Is ALMA confused?

Q: SCUBA(2) imaging of debris disks is confusion limited, how about ALMA? A: Simulate image of debris disks with model galaxy population

Model background galaxy population: $N(>S) = (10^{5}/1.8) [(S/1.8)+(S/1.8)^{3.3}]^{-1}$ per square deg (S in mJy)

- Depends on B_{max} (longer B_{max} less affected)
- For B_{max}=200m confusion important for >8hr observations (<0.01mJy/beam) with 5% false detection rate for 0.03mJy disks

Sensitivity required to resolve disks

Q: What angular size will ALMA be able to resolve for a given sensitivity? A: Use CASA to simulate a disk with radius close to FWHM

- For B_{max}=16.1km disks with r>11mas (i.e., r>FWHM) are easily resolved
- Also need S/N > 30 for a reliable resolution and radius determination

Parameter space for resolving disks

Q: What parameter space will ALMA be able to resolve disks? A: Same plot of parameter space

Not only will ALMA measure dust mass, temperature (radius), spectral slope (dust size) for hundreds of disks, it will also directly measure most of their radii and search for asymmetries

Resolving known nearby A star disks

Q: How many of known A star disks will ALMA resolve? A: Plot known A stars on F_{disk} vs predicted radius (from temperature)

All known A stars disks are resolvable with ALMA!

Optimal baseline is that which just resolves the disk

But temperature is not always a good predictor for radius

The terrestrial planet region

The majority of sun-like stars have no 24µm excess indicating the inner 30AU are relatively clear of dust

But some, like HD69830 have dust at 1AU (Beichman et al. 2005)

The dust is outside 3 Neptune mass planets discovered in radial velocity studies (Lovis et al. 2006) and appears to be transient (Wyatt et al. 2007)

Resolving terrestrial region of HD69830

Q: Can ALMA resolve the terrestrial regions of HD69830? A: Use CASA to simulate a 1AU (80mas) ring with 0.3mJy at 450 μ m in 12 hour observation and B_{max}=900m

This disk is resolvable, allowing us to

- determine inclination = planet masses
- pinpoint the location of the ring and assess radial extension = test models
- look for non-axisymmetric structure and time dependence = planet interaction

Protoplanetary disk dispersal

Rapid mass loss at 10Myr from protoplanetary disks is inferred

Models for disk evolution due to viscosity and photevaporation predict inside-out dispersal(Alexander et al. 2006)

Need direct evidence for inside-out evolution by resolving inner hole

The birth of debris disks

Debris disks increase in brightness following protoplanetary disks dispersal

Inferred to be caused by ongoing planet formation (of Plutos in outer regions)

To understand transition need to image many young systems (i.e., at 150pc)

Resolving protoplanetary disks

Q: Can ALMA resolve the transition disks?A: Resolvability plot for sun-like stars at 150pc

As protoplanetary disks have f >> 0.01 (by definition), these will be resolvable by ALMA down to smallest scales of around 1AU

Can also look for gaps

carved by planets

Conclusions

Number of sub-mm images of debris disks will increase from 7 now...

... to ~40 after SUNS survey... and several hundred with ALMA

This leads to exciting possibilities of indirectly detecting hundreds of Neptune-like planets, constraining disk mass and radius evolution, exploring link with giant planets, probing terrestrial planet regions

Plus exciting science in protoplanetary disks (disk dispersal; planet detection)