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Non-axisymmetric structure
e Clumps and asymmetries

Most can be explained by
perturbations to that
evolution...

... but there are
EXCEPTIONS



(1) Radial structure

The axisymmetric structure of debris disks can be explained as
the consequence of a belt of planetesimals orbiting the star
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e No need to know origin of planetesimals or why they are confined to a ring

e But understanding interplay between collisions and radiation forces is essential



Collisions

Existence of dust implies collisions are destructive and so the planetesimal

belt has been stirred:
e,l > 103 -1072 (e.qg.,

Collisions result In
collisional cascade
with a size
distribution:
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... but stellar wind drag may be
significant for M stars

Stellar wind forces also result in a
pressure and drag component, and
these can be characterised by B,

In the solar system B, /B,.q = 1/3,
but in M stars B,/B,.q >> 1 as low

luminosity and high mass loss rate
(Plavchan et al. 2005, Strubbe & Chiang 2006,
Augereau & Beust 2006).
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Understand this model before considering non-axisymmetric structure

Extended dust distribution does not mean planetesimals are extended



(11) Non-axisymmetric structure

Different types of structures observed in debris disk images

Warps

Spirals All of these structures
can be explained by
dynamical perturbations

Offsets from unseen planets
orbiting the star

Brightness

asymmetries

Clumpy rings



Planetary perturbations

Planetary system dynamics predicts exactly this set of features

Two types of perturbations:

(1) Secular perturbations
e eccentric planet
e young disk = spiral
e old disk = offset = brightness asymmetry
e inclined planet
e young disk = warp
e multiple planets in old disk = warp

(2) Resonant perturbations
e multiple planets = cleared region
e individual planet = clumps
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- Precession rates are slower for planetesimals
- further from planet which means dynamical

structure evolves with time

tsec(3:2) = 0'65lth/(MpI/Mstar)
Wyatt (2005)



Eccentricity, e/ep
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Spiral Structure Iin the HD141569 Disk

e HD141569A is a 5 Myr-old B9.5V star at 99 pc

e Dense rings at 200 and 325 AU with tightly wound spiral structure (clampin et al. 2003)

Observation

Wyatt (2005)

I\/IpI/MJ: Nsec(3:Z)M*O'Sapll'sltage

e Spiral at 325AU explained by 0.2M at 250AU with e=0.05 (wyatt 2005)

Jupiter



This translates into material in a
uniform torus with centre of
symmetry offset from star by ae; in
direction of forced apocentre

Wyatt et al. (1999)




Applications of pericentre glow

First predicted in dust ring of HR4796
(AOV , 10Myr) from 5% brightness
asymmetry, implying a forced
eccentricity of 0.02 (wyatt et al. 1999)

Alcseconds

First detected in Fomalhaut, a 133AU ring

offset by 15AU implying a forced eccentricity
of 0.11 (Kalas et al. 2005)

Acsecohds
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Secular perturbations: warps

Secular perturbations of a planet also affect the inclinations (ie. orbital
plane) of nearby planetesimals

Introducing a planet into the disk on an orbit inclined to the disk
midplane causes a warp to propagate away from the planet

line of nodes of the perturbing planet

Augereau et al. (2001)

This causes disk near planet to become aligned with the planet, but that far
away keeping the initial symmetry plane



Warp in B Pic

The warp in B Pic can be explained in this
way by a 1-2M; ., planet at 10AU
inclined by 3° to the disk mid-plane which
causes at warp at 70AU at 20Myr

HST image of B Pic

Heap et al. (2000)

Model explains all observations by dust
produced by planetesimals, including
effects of radiation pressure Model

Augereau et al. (2001)

Warps can be present in old systems too if there are two planets on different
orbital planes (wyatt et al. 1999)



Geometry of resonance

3:2 Resonance

e Resonances A comet in 3:2 resonance orbits the star twice for
are special every three times that the planet orbits the star

because of the
periodic nature
of the orbits
and the way
that planet and
planetesimal
have
encounters

Inertial frame Rotating frame

@ Planet
@ Cometin 3:2 resonance
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The outward migration of a Neptune mass planet (#) around
Vega sweeps many comets (*) into the planet's resonances
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The trapping of comets in Vega's disk into planetary resonances
causes them to be most densely concentrated in a few clumps

Time: 0.0 Myr




Constraints on Vega’s planetary system

Observation

e This model can explain the clumpy structure of
Vega (350Myr, AQV at 7.8pc) seen in sub-mm
(Holland et al. 1998) and mm (Wilner et al. 2002; Koerner et al. 2002)

e Infers 1M which migrated 40-65AU over

neptune
S56Myr (although 1M, Over 3Myr also possible,
see
e See also for migration of

eccentric planet

The model can be tested, as it predicts that the clumps will
orbit the star with the planat and this motion should ba
detectable within 5 years

Predictions: Date: 1997.0
e orbital motion of

structure (poulton et al.
2006)

e multiwavelength
structure




Particle populations in a resonant disk

Radiation pressure causes dust created from resonant planetesimals to fall
out of resonance; smallest grains are removed on hyperbolic orbits

Grain Size Population Spatial distribution

Large I

Medium 1

Small 11
Il1a
I11b

3:2 2:1

Same clumpy distribution™

as planetesimals

Axisymmetric distribution\
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t o 1 distribution

Spiral structure emanating"\,
from resonant clumps .
Axisymmetric distribution

Wyatt (2006)



so should show
different
structures
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... and comparison with observations

Mid- to far-IR
Images should
exhibit spiral
structure
emanating from
clumps

Not detected at
present, but
resolution of
published Spitzer
observations may
not have had
sufficient
resolution to detect
this (Su et al. 2005)

Meanwhile
350um
Imaging
shows
evidence

M
Q
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e

for 3 clump

structure
(Marsh et al.
2006)

4:3

[arcsec]

Possible
evidence for a
different size
distribution of
material in 4:3
resonance?



Resonance
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Structures of resonant rings

low M, high M,

The structure expected

when dust migrates

Into planetary

resonances depends on low e,
the planet’s mass and

eccentricity (Kuchner &
Holman 2003)

Dermott et al. (1994) Ozernoy et al. (2000)

However...

e P-R drag is not high e,
important in detectable L) "’
debris disks

Quillen & Thorndike (2002)

Wilner et al. (2002)

Will be important when disks in which P-R drag is important can
be detected (e.qg., JWST, ALMA, TPF/Darwin)



tolol emissipn 3 Pop Il Pop I
smsssssas NG contribltion 2

. ght---
e

:

M{smoll+lorge) =2.00=03 Ue ¢
L My{very large) =2.2¢-03 Mg

=
O
@
(&)
©
Y—
| -
)
p)

: 10' :102 165 10 108  10° 17
200 400 600 800 Particle diameter, um
Radius, AU Wyatt (2006)

g

What is the origin of the observed high mass loss rate?




Origin of large mass loss in Vega

(1) Initially a very massive disk
e 2M.,/Myr for 350Myr -> M /M. = 0.1
 Collisional processing in pop | is ~2M_,//Myr
BUT... why so many small grains produced in collisions?

(2) Mass is not being lost
e These are bound grains, e.g., on highly eccentric orbits,
BUT... must reproduce t,, ;o oc 1/r and temperature of 2-18um grains

Perhaps low T, .0 OF Star important (aufdenberg et al. 2006)?

(3) Mass loss is recent/transient
e Recent collision, or recent ignition of collisional cascade
BUT... why so many small grains produced in collisions?



excess ratio (factor over photosphere)

age (MYr) Q 200 400 600 800

. Age, Myr
Rieke et al. (2005) Wyatt et al. (in prep)

Model population of 10,000 debris disks with:

e Initial masses inferred from protoplanetary disk mass distribution
e Initial radii inferred from 70um/24um flux distribution

e Subsequent collisional evolution...

Statistics can be explained by steady-state evolution in collisions
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Vega is exceptional in
A star population in
showing evidence for
transience
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There is a maximum luminosity
(and mass) that a belt can have:
fax = 0.16x103 r’/3 t, 1
HD69830, n Corvi, HD72905,
BD+20307, and HD128400 have
f > 1000f
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Origin of transient event?

ssive asteroid belt
ects remain

(1) Recent collision i
e Too few big en

e Chance of witnessing collision <1:10°
(2) In situ plane al belt
e Mass loss ra gh

~1AU at this age implies duration << 1Myr
raction implies 100Myr duration

e Mass rema
e 200 detecti

(3) Scattered in from outer planetesimal belt

Gomes et al. (2005)



Constraints in 1 Corvi

f=L./L.
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An outer planetesimal
belt is known to exist
around n Corvi and
could be feeding the
hot dust closer in

cold dust

possible parent
planetesimal
belt

mass loss limit
N A A Wyatt et al. (2005)
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Talk by Alibert

“Wyatt et al.

HDB9830 submitted
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70um detection
limit (BB)

¢hot dust
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- Planetary system at
<0.8AU provides potential
for dynamical instability

107
E

107¢ (Lovis et al. 2006)
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The presence of hot dust around Vega (absil et al. 2006; ) could indicate the

system is undergoing a similar transient phase of evolution?



Conclusions
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to collisions and radiation-forces

evolutlon of a plaete3|mal belt d
Must be taken into account whe d pfetin-g observations
Non-axisymmetric stluctures explained as perturbations to this
model, particularly duﬁ to planets -

Late Heavy Bombardment
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