TOPICS IN ASTROPHYSICS

Much astrophysical research is interdisciplinary, requiring a mix of methods, e.g. observational and theoretical,

to solve questions about the Universe

Often need to think “simply” to know how to approach a problem, using order of magnitude estimates of different

processes to identify the relevant physics

This course aims to provide a training in how to approach astrophysical problems by exploring two

complementary aspects

Hence it is a course of two halves



Lectures 1 - 12 : Timescales, Distributions and Tides (Mark Wyatt)

Shows how specific physical concepts can be applied to a wide diversity of astrophysical phenomena

You will learn about the physics of tides, and how simple concepts can be applied to quasars, black holes,

stellar clusters, planets and moons

You will also learn how to identify the relevant physics in a problem through timescales, and the importance

of considering populations of astrophysical objects as distributions



Lectures 13 - 24 : Planet Formation and Evolution (Oli Shorttle)

Shows how to apply diverse physical concepts to the specific research theme of planet formation

You will learn about some key results from planetary and exoplanet are science and outstanding challenges

You will also learn about the process of planet accretion within protoplanetary disks



The Point of the Lectures

The lectures will convey information, but will focus on how to approach problems, and will contain

many worked examples

Guest lectures will build on the content to show how it is used in cutting-edge research (not examinable)

When Solving Problems

Remember: think “simply”, make order of magnitude estimates, and be scrupulous about units and dimensions
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1.1 Numbers Sheet M= —2L5G \@Q, ”j—\r o€ = —2.5 \%*:/%

In addition to the formula booklet, here are some \
Definition of apparent and absolute magnitude (m and M):

measure of flux at earth (W m~2); M is measure of intrinsic luminosity

useful scales and scalings to have at your fingertips oi source (W)

m — M = 5log,,D — 5 where D is measured in parsecs
(i.e. absolute magnitude = apparent magnitude if object at distance of 10 pc)

Angular distances: M = —2.5log,,L+ constant (where L is luminosity) such that absolute visual
magnitude of Sun is 4.83.

1" = 1/60 degrees

Colour is defined by ratio of fluxes at different wavelengths, i.e. in terms of
= (1/60)2 degrees differences in magnitude e.g. B-V. Redder colours have larger colour indic

1 AU subtends an angle of 17 at a distance of 1 parsec Iidicative siseand Tiase scales:

Distances between galaxies ~ Mpc
Sizes of galaxies ~ 10s of kpc

Formulae involving velocities/time:

Doppler shift (for v << ¢): Sizes of clusters ~ pc
Avjv =v/e Sizes of (extra-) solar systems ~ AU (for planets) to 10" AU (comet cloud)
An object traveling at 1 km/s covers 1 parsec in 1 Myr. Size of stars: 10° — 10> m

\ i 5 s wp e 100 i
Number of seconds in a day ~ 10 Masses of galaxies: 107 — 102 M.

Numl ¢ s 3 % 107 Masses of central black holes: 10°~*M,
umber of seconds in a year ~

Masses of globular clusters: 10°Mc
Age of Universe ~ 1.5 x 10'° years. ) o
Masses of other clusters: 10273M

A5 Bvasss
Age of Sun 4.5 x 10? years Typical mass of a star:

For problems involving circular motion it can be useful to scale period of orbit Mass of a brown dwarf: 102 — 10-1)M,.
and orbital velocity to the orbital properties of the earth, i.e.

T =1 year (R%, /M,
= 30km/s (M;/Rap)"®

Mass of a giant planet: 107 — 1072,

Mass of a terrestrial planet: 107°M,

Typical densities:
Formulae involving radiation: Number density of stars in solar neighbourhood ~ 0.1pc™*

5 _ = P | Pl I ~ 105m—3 s g
Bolometric flux from black body of temperature T = oT* (Wm 2) Mean muuluil density of interstellar medium ~ 10°m™>(1 per em?®, but very
large dynamic range)

ati £ - rQ -
Location of Wien peak for black body spectrum Mean density of Sun, density of rock and of water are all of similar order of

A~ 3pum (T/l()()(]l{)’1 magnitude (1000s kg/m?).



1.2 Timescales and Length-scales

For any quantity @ we can define:

a timescale T = Q /\%

derermive) i~ o (RS cQ&(v\v:ai,EK
duda oz w e%wl(bm?
It © s hoeseale. & vere¥t | T<KEE  — Guklbryatin
Tt = hordly ordiny

48
and a length-scale = Q/m\
wsed to atcess "box e’ foc simulaboes

ad  resduhion RO RmedS



1.3 Exponentials vs Power Laws

Many astrophysical variables have an exponential or power law dependence on time or length

Consider exponentials, su/cilh_as
-t
&= Q. <
 AQ[dk =— Q/T
S, T =TT

— there is gn whnad Heogrode
g adio ackwe d\&f_@j

Q 2 Qo Q—’L/L -2 iminQic \Qr\g\Jw—SmD&
e srdlar d{{;\s&y " Moy ﬂaja}d&!
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Note that exponentials are straight lines on

log-linear plots, e.g., In(Q) vs x

[10° M, yr ' kpe ™)

<
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Consider power laws
Q = Q. ([
el = nQf
. T =tln = dumeerdr, sk o doage. ~ age <o«\q\ [ ~-)
=1 mmnsic e o logB-scale.
S "sple- bre” o el ~Gimlor’

E.g., supernova blast waves, star clusters and accretion disks all evolve in a self-similar fashion
L. sﬂ«\\ﬁS\CaJ vosialdes, dfa/\gz, . SUdn a L0 N o nstartanemin
%(‘U\/S?‘\ v s A e QZTQSQJTB' %(Y\.Q,

Note that power laws are straight lines on log-log plots, e.g., In(Q) vs In(t)



1.4 Some Important Timescales and How to Calculate Them

1.4.1 Dynamical Timescale, taon

Consider an object a distance K from a mass |\/\

There are several ways to get dynamical times:

(i) Radial infall from stationary onto point mass
R = — Gm[e>
LQQ\ — GMA [
#LER - amfe] - o
b = —Jam (€ -e5'
SO\VQ \@ S@MQ R =2
T = L= [REfam



(ii) Radial infall assuming mass uniformly distributed inside R
M LRX MRy
B = )({
> S W eend 2T (RS (0

(iii) Escape velocity
“Vew = G/,
Nece = \N20M [

T 2 /e = % (&0



(iv) Dimensional analysis

Vorces : G LMW' 750 MM, & 01
> T ~ J/wm

(v) Circular orbit
To mondzin. W Rs = QM (@3

LT = 2wfw = 2mE fam

2
To order unity all methods give /_Edﬂ“ i W




1.4.2 Sound Crossing Time | “Ces

This is the timescale on which pressure disturbances are conveyed (in the absence of supersonic bulk transport),

and is the communication time for gaseous systems

For a region of size 1) Te =D /C5 Where Cs = M
numeer o mAzz
For an ideal gas PV =t Rgr\%%? Jensl [
P = oR¥T )\ dxe R = 1ooo R = &3 T/'k/%
M = adne. mdecsdar m,@xﬁ?
= 2235 G \sSM
- (P =D \[/\A/R%T



1.4.3 Alfven Wave Crossing Time , Ta

Magnetic fields resist being bent or squashed B
e S

and so have an associated pressure and tension 4
m K
M

This results in waves analogous to sound Alfvén Magnetasonic

Magnetohydrodynamic Waves

waves in magnetised media

The effective magnetic pressure is of magnitude I; 7’/ Mo
S Na == [Pl = E”[ﬂm\,
' Th= D/Na = Diom|g
Can propoopte infomadin. fosker Dvon @ond Raved



1.4.4 Light Crossing Time "

—

l/\p’“’@/o

—

dkzdwd?. Mminimuae  envuucehe~ g

Tirvegeale 6« enesgy %rz\/\s(:;r - op%éﬁlb G medion

1.4.4.1 Example 1 - Proof that Quasars Host Black Holes

Quasars outshine entire galaxies, yet they are variable on timescales Ab S \/\cuu’s
Thus maximum sizeis —~- < AN <= 1O QU

1)
But a galaxy with all stars touching has asize = N ™ K}q L |O-10gu

— U\U\O@NS wONe Bock \/Ié\éA
Since event horizon-crossing time (2&(\’\3“ / C,q/> / C < AE

Mg, €10 Mg



1.4.4.2 Example 2 - Weighing Quasar Black Holes Using the “Light Echo” Technique

Emission lines in quasar spectra are from

[ Lyaxki21e =
circum-black hole material, and are broadened

NVi2e

Si IV L1400

1y s due to orbital velocity

— | V(R) = Ve [R.

(O 111] 234959, 5007

Mg 1122798
[Ne V] A3426

Hy 430

AF, (arbitrary units)

HE A4101 ‘

While the emission is spatially unresolved, different

He 1111640 Ccmazse |

| oviaes (0133727

wavelengths (i.e., different projected velocities V\,S, )
[Ne 111] 23869 HJ 24861 -
ol I I I I I I L 1 probe different bits of circum-black hole material

2000 4000 6000
Rest wavelength A)

and so have a different time-lag |,



Consider a ring of line-emitting circum-black hole material

™ Vi = V(R SNG
= L Hroned) ditonge, = A+ R~ cos®)

.. T &%(Pcmse}

Time lag vs line-of-sight velocity for a ring: And for a disk:

/ K\OJH-QI‘ =

T UM /CVleZ_

Svallel” 128

> \}\os



Different lines probe different parts of the disk

Upper envelope constrains MQ,H

S&\eﬂm} lm@:&)\.
Circum-black hole disk

Ar R T<E(-uss)

U rodoad ek ak V(R
Vi 2\16% @SS T4000-2000 0 2000 4000
.- T = % L‘ = Vi /\)((’Q ¥ (B




1.4.5 Thermal Timescale ;@

Thermal equilibrium means that heating rate is equal to the cooling rate
But this doesn’t mean that Ui =
Father Gz O/l = Of Q| e el i ore. e FF
See ) = Hnemva) contert /] watt rags
=CuT

For an ideal gas, thermal energy / mass v Q*T //1/\

and thermal energy / volume NS P

For a photon gas, thermal energy / volume A/ ‘ “

R
redibdo. Cargheat



1.4.6 Collision Timescale/ el

“Particle in a box” collision rate:  Consider an object moving at velocity V'
through a sea of (| impactors per unit volume

with an impact cross-section of 5

Nolume grept ok /e = SV
Collgen vabe. = No&V

Collijon fima, Ty = \/Cf\UV>



Gravitational focussing means that the collision cross-section may be larger than the physical size

Consider an object approaching another of mass M and radius (Z at velocity Voo with impact parameter b

Angular momentum: ‘D\/Db = rﬁ; \/p
2= \
Energy: ’-\i Vi, = 2Vo5 — GM / P

Bevake Vv, 2 B = 7 L+ syl

For a collision: o = (2N . 5 = T = ‘T\'R [\ +



1.4.7 Diffusion Timescale/”C,u{f

Objects undergoing a random walk with step length >\ would have travelled a mean distance after N steps of \N >\

2
Thus, the number of steps required to traverse a distance K is: QR/ >\>

— 2
And the time required to traverse this distance at speed \/ is: tﬂ,’d—: CQ/AX . L >\/V>
= /)

ne dffusve grocesses hag o quadsehe deperdoe € v o0 dudaa,



1.4.7.1 Example 1 - Diffusion of Photons out of the Sun

Mean free path >\ = ne
A
= S Wier. M= mo 66 Poyhicke
|
= ke K= cpo\di:\j = (Tss ~ eehsn /W\OLSS’
So the diffusion time to reach the surface at a radius (remembering that C&ﬂ- = /O\v)

Ty= RS k@ [c
And for P - Mo{Qé : —G,{(' M@S(

If free electrons are scattering (valid at high temperatures) then K=l —> ‘q,H:“— \OA\‘Mr

At lower temperatures where electrons are bound to protons oPac;k\j ~ \DD imeg \r\\c\a\/\@/



7
Use ’Q;@;s Ro 53 /c/ to get the Sun’s luminosity from first principles:

—_ Ll—. 2
Energy in the Sun’s radiation field Noo Q@

L Lo aTl Ry (T = acT Ry /(kp)

Compare with the radiative diffusion of energy through a sphere of radius f{ :

G = 2l / Cloract 2] v /R > sm_

Compare with the timescale for the Sun to cool in the absence of nuclear reactions
“Ceoy, = ’\"O\a}m%\nguﬂ/l,_@ = ‘\’M—cc)\o\s@\l\ S/m/({(% w adihidn /_CL\,{[_\
As‘ chn > Pmcl’nk&,, . %ou, 'af\enwﬂ rene)@ P> mdxoghﬂaﬁ 0\0@
— Teed > Cufe



1.4.7.2 Example 2 - Two Body Relaxation in Stellar Clusters

Consider a star of mass M orbiting at speed \/ in a cluster
Encounters with other stars (gravitational scattering) impart kicks to the velocity

This acquisition of A\/ is very important for cluster evolution as it provides a mechanism for transferring

energy between stellar orbits

This is called two body relaxation



What is the two body relaxation timescale —Cn,, ?

Assume the average kick perpendicular to a star’s orbit is A\/ per encounter

T

Direction of A\/ is randomly oriented in the plane perpendicular to its velocity \_

~ roadon Walke w vd&%@ A

Define \—% as the timescale for a star to acquire aA Qmw(q*r\le/ A\]_b, i \/ ?



(v &)™
Random walk means this requires a number of encounters T\\ & \ A\/

which takes a time of N / ke & LNCMRS
db

For an accurate calculation you would consider impact parameters in the range b—'ﬂ b%-db

which would all result in the same A\/_h,

For a quick estimate of the rate of encounters: ~ AWML O\U\ \"V\@OCJK <b cdPIVD ak b
| rade of encmundex A nbTV

For the magnitude of the kick: Ay < accelerpdron o b « Tene Spec<t ab b
<2 (G\m/L%) : (b/v)



So, what is the timescale for a star to acquire a cumulative k\/_b, Q- \/ ?

2
Remember: number of encounters required N A~ ( V /A\/)
time to achieve this N / ke é. 2NCAS
=
rate of encounters nb

kick per encounter Av < <G\VV\ ,)OL> , (b /V>

—CA‘"“‘ < /\DV) /(v\br’"\/B

= /(QW\(\>

M@Mt"b"dmm >mwp@mm\@@«m§j



1.5 Distributions

A probability density function P(_q} is defined such that the probability that a system has a value
in the range ﬂa (;1—\— do\ is P (CP &X

Sometimes we know PCOD but want the probability in terms of a different parameter (OD
Defining P (%’q 0\1 as the probability that a system has a value intherange % - 2 + de
p (0 du = P Cop d
plx) = plg) Yl

Often we want to know which part of the distribution dominates for which it is helpful to consider Ok PCOP
This is because p COD 69\0\ = 0\ @ Cc@ oy\\r\ﬂ
.- G\P@O s e prﬂ:nkll\éij par \0'3 wherval ?’;f ﬂ



-
For example, consider a power law distribution JFCGD X q that holds between ﬂM;\A and (KW

The probability of being in the range 0\\ > qq_ is S P(QB OQC( ol S
X L q' ™ 1

=K L -0%
And the total number of instances is X [ C{wgo - Ctm\y\, 3

" C\m@o dam'\f\aJSQg r{ X<
G dorvinces o KD



1.5.1 Probability Distribution Example 1 - Initial Mass Function (IMF)

IMF = Initial Mass Function

= prabity dens\ty funchsn or doz ab b, £ (w)
# DM

PDMF = Present Day Mass Function
= digrivdsn € Selar mages o gen sample
Z# e os shllar Wedma,, fue, s o funden o mox

OMF = Observed Mass Function

7‘2 PME as sample. sotechinA Q‘F@cﬁ} mead o & congdered



The IMF is defined by WC(MS é\f\'\ , Which is the fraction of stars formed in the massrange ™M —= ™+ clyv\

(-X
Number of stars in that mass range ol MQ{\@OU(\W\ X ™ O\\Y\ AN
Q-
Total mass of stars in that mass range o ™ { CN\) O\N\ X M : O\\V\ M\
1=K
Total luminosity of stars in that mass range X L(m\{ (m) O\N\ oL O\\\Y\\/V\
— 0K &
So, if 4 (MB 1% and L\(m\ o W
Thus, total mass of stars is dominated by PR S VI 1 - l-( X >7
mash X <2
And the total luminosity of stars is dominated by [—Qaﬂ- Mggs)\,,QJ <z N PD—} )

st X < @+



1.5.1.1 Observations of the IMF in Co-Eval Populations of Nearby Stars
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Note that distributions can be quoted in different ways

Let % L?MB be the fraction of stars with masses larger than A

For a power law distribution % (m) oL ™M

Mvaxe

Then Lom) « - ™M A

oK

\ —
And if most stars are low mass C oL > ]) then )C (>V\'\3 oL

Thus WC <>M3 o X isequivalentto ol = 11"



Replotting the observed IMF as the power law index f" = K= | in the distribution

—
T T[T T T T T T [T T T T T T T[T T T T T T T[T T T T T T T [T TTT

Star-forming
O @ Field
O @ Clusters
O @ Associations
= Salpeter
Kroupa (2002)
s Chabrier (2005)

| L Lol

v b b B b b

L
107 100

Stellar mass (M )

10! 10?2

Hence the IMF is usually parameterised

as a piece wise power law distribution:

= 23 for SMy (Slpeker)
L2 b KiMe

o) mase s doonmoges) %’V\W\D

SIS



1.5.1.2 The IMF in Distant Galaxies

We can’t resolve individual stars, so need to probe this using integrated luminosity or spectroscopy

F-X
Remember: Total luminosity of stars L<M\3€ (MBO\N\ oK W\P O‘\\T\\/\/\

< 3.54]~2.
For 43@‘\)\@ X Mg ] — L—'(‘st‘ L m o ;’Bs\é“(\m \CDY \FBDMO
L4 — K23
oL Ay, fo <M,

>33MD : L A% <. [\/\\HFQIX A\r\rv\ G\f >3DMO

So a distant galaxy’s luminosity is dominated by /V?)OM@ —9@0&3 a2/, %P RC IMF
= don't ke e {ormadon rade of looer o G ‘Yat domrake mass



Cluster Lens Locates
Farthest Known Object

Can use gravitational lending to

detect high redshift galaxies

t ~300 thousand

~750 million

W

t

~13.4 billion
years since Big Bang

T ——————
— Low lon IS Abs
F ——— High Ion IS Abs
1.0 - —— Stellar Abs =

0.8 - u

Then take a spectrum to identify 06 - .

stellar populations, which are 0.4 - WWMMM
0.2 - B
e

dominated by the high mass stars

f, (udy)

00 f-——---mmmm o -l
1 1 L

1 L L L L ' ' L L L 1 L ' L | L
1000 1200 1400 1600 1800
Wavelength (&)




Note a galaxy’s stellar luminosity being dominated by high mass stars doesn’t mean that the observed luminosity is

log vi, (W m=2)

l‘\ N |
1 10
Wavelength (um)

100

Dust is a further complicating
factor which means that energy
output may not be at expected

wavelengths, i.e., far-IR

Some distant galaxies only
become detectable at long

wavelengths



1.5.2 Probability Distribution Example 2 - Stellar Feedback to the ISM

How do previous generations of stars affect their environment?
— QJ\QS‘&QA’\CJ aSurdton
— Stellor WiAdS
- S\A,pQ{‘(\b\/O\Q/

Is this constructive for star formation?

Or destructive?

~S\ﬂw2@su€or\drmw@8@$



Consider energy input from supernovae in a cluster of stars that all formed together
X
Make some assumptions: |IMF Q CMB A ™ wWhese K =235

-b
Time from star birth to SN explosion for 7%% L bﬁ)(p K m wher bf’ s

4
Energy release per SN is independent of 1 o ESN - 10 N}

=\
The mass of stars that are exploding at time ‘b : mqﬁf( ‘t {b
ol B Erde st ogledkg o Hhege i Mag S Megardm
. don = (v, (e ) dee

S e
So the number of stars exploding is ol ?(m}dw\ X ‘g ("Y\) (O\M?ﬂn {&&Bd& ﬁl o
< Map £k b T ok

o —\
ralial —0-46

<X &

And the energy input rate is l_. o t



Simulations of energy input to the ISM following a burst of massive star formation

IMAARAARRANRARARARERS RERRRAREL]

N

LARRRRRRRE RARRRRRRA!

Time (Myr)

F1G. 3.—Rate of mechaical energy input, L (t), for OB stars (dashed line),
Wolf-Rayet stars (solid line) and supernovae (diamonds) in a coeval model of
100 stars (8-80 M ).



1.5.3 Probability Distribution Example 3 - Sub-mm Galaxy Counts
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Background galaxies photobomb images of Kuiper belts of nearby stars

Important to understand how common these are, to assess if these

are galaxies or features of the planetary system

There is a distribution of galaxy brightness, with more faint galaxies

than bright ones, the number detected depending on how deep you look

The sub-mm galaxy distribution is measured by surveys of large areas



(i) A survey at a wavelength A = 1.1 mm covering an area of A = 10square
Exam question from 2022: arcmin has detected a number of galaxies and measured their flux densities S
(in mJy) down to a limit of Sy, = 100 pJy. These detections have been used
to determine the number of galaxies per square degree with flux densities in
the range S to S+dS to be

n(S)dS = No(S/So)*d(S/5So),

where Ny = 2700deg=2, Sy = 2.6mly, and a = 1.81. Estimate how many
galaxies were detected.

Estimate the flux density of the brightest galaxy detected in the survey.

Comment on whether it is the brightest or faintest galaxies that contribute
most to the cosmic infrared background at this wavelength.

Number expected to detect brighter than S\ is f\w(? S\,;v) = g:.; Al (SB”B A
= ANSTSe TS
- ANS ER LT
As w51 v AN (SR T =130



n(S)dS = No(S/So)~d(S/So).

. where Ny = 2700deg=2, S; = 2.6mJy, and a = 1.81. Estimate how many
Exam question from 2022: galaxies were detected.

Estimate the flux density of the brightest galaxy detected in the survey.

Comment on whether it is the brightest or faintest galaxies that contribute
most to the cosmic infrared background at this wavelength.

1- K
Number expected to detect brighter than S\ is Nt (? S\{M) = A. No‘fl(:: (S];‘ /& 3

Estimate brightest galaxy detected in survey by setting 1\ 4ot ( > Sk > v — S, = 4 T\]\;j
Why? “Number expected to detect” is the mean in a Poisson distribution of the number actually observed

—X
For a Poisson distribution with mean >\ , @ number of occurrences K occurs with probability >\k o, /k l

2 ko) e @pect O KER |t 3628% 0 2 : 26:4%

Smobe 0-19 o-19
Total flux per square degree = N . SAS = [ Stwr. = Sents 3
rMin



1.5.4 Probability Distribution Example 4 - Collisional Cascade

Can we predict the size distribution in the asteroid belt, (\(05 , Wwhere (N is the size of the asteroid?

-b
Assume a power law: 1) (_(7&5 oL O > Wagk ' b 9
1 -b
Consider a logarithmic size bin: number of asteroids in bin < N (06 X Qv .
2 -4 & -
mass of asteroids in bin o O . O " ON

Assume that collisions with other asteroids in the bin dominate the mass loss and that collision velocity is independent of &

=L 2 2-b
Rate of mass losing collisions = "\ 0 \/ oL O AN K AN
2-b -b -2b
Mass loss rate from bin ol_ O . 0\4 0< 0\7-



-2
Remember: mass loss from a logarithmic size bin is X O

Given that in steady state mass loss from logarithmic size bins is independent of size:

Coob s T2 peon o MEN and s v astersd ket ond 1M

Proof: Consider bin K in the distribution

Assume the fraction of mass going into bin U is scale independent and so can be written = (\4— L>

This means that the rate of mass gain in bin \, from collisions in other bins is (\'r\.j~ = Ek Mk = C\L~ '\,\
In steady state this is equal to the mass loss from bin = M-L'

All mass must go somewhere and so we know Ek‘:(\g- Q =)

Thus one solution must be that ‘\‘/\: = My
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