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ABSTRACT
Spatially resolved images of debris disks frequently reveal complex morphologies such as gaps, spirals, and
warps. Most existing models for explaining such morphologies focus on the role of massive perturbers (i.e.
planets, stellar companions), ignoring the gravitational effects of the disk itself. Here we investigate the secular
interaction between an eccentric planet and a massive, external debris disk using a simple analytical model.
Our framework accounts for both the gravitational coupling between the disk and the planet, as well as the disk
self-gravity – with the limitation that it ignores the non-axisymmetric component of the disk (self-)gravity. We
find generally that even when the disk is less massive than the planet, the system may feature secular resonances
within the disk (contrary to what may be naively expected), where planetesimal eccentricities get significantly
excited. Given this outcome we propose that double-ringed debris disks, such as those around HD 107146 and
HD 92945, could be the result of secular resonances with a yet-undetected planet interior to the disk. We
characterize the dependence of the properties of the secular resonances (i.e. locations, timescales, and widths)
on the planet and disk parameters, finding that the mechanism is robust provided the disk is massive enough.
As an example, we apply our results to HD 107146 and find that this mechanism readily produces ∼ 20 au
wide non-axisymmetric gaps. Our results may be used to set constraints on the total mass of double-ringed
debris disks. We demonstrate this for HD 206893, for which we infer a disk mass of ≈ 170M⊕ by considering
perturbations from the known brown dwarf companion.

Keywords: planet-disk interactions — planets and satellites: dynamical evolution and stability — circumstellar
matter — stars: individual: HD 107146, HD 92945, HD 206893

1. INTRODUCTION

Debris disks are ubiquitous around main sequence stars,
with current detection rates of∼ 20% in the Solar neighbour-
hood (Montesinos et al. 2016; Sibthorpe et al. 2018). They
are optically thin, almost devoid of gas, and are believed to be
composed of objects ranging from micron-sized dust grains
up to kilometre-sized planetesimals. Since the dust grains
are short-lived compared to the stellar age (e.g. Dominik
& Decin 2003), their sustained presence requires a massive
reservoir of large planetesimals continually supplying fresh
dust via mutual collisions (Backman & Paresce 1993). Ob-
served disks typically contain 0.01 − 1M⊕ in mm/cm-sized
grains (Wyatt et al. 2003; Holland et al. 2017) which, when
extrapolated, yields masses of ∼ 1 − 100M⊕ for the parent
planetesimal population (e.g. Wyatt & Dent 2002; Greaves
et al. 2005; Krivov & Wyatt 2021). The spatial distribution
of these planetesimals is probed indirectly with observations
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at millimetre wavelengths, e.g. by ALMA. At such wave-
lengths, observations trace the distribution of mm-sized dust
which are largely insensitive to radiation forces, thus serving
as proxy for the distribution of parent planetesimals.

Recent high-resolution observations of debris disks by
ALMA and direct imaging have revealed a rich variety of
radial and azimuthal structures: e.g., gaps or double-ringed
structures, warps, spirals, and eccentric rings (e.g. Hughes
et al. 2018; Wyatt 2018, 2020). Analogous to the studies
of the asteroid and Kuiper belts, investigating the structure
of debris disks can provide unique insight into the architec-
ture and evolution of exoplanetary systems. For instance, the
presence of a giant planet around β Pictoris, dubbed as β-Pic
b, was predicted based on the warp in the debris disk (Mouil-
let et al. 1997), and such a planet was later discovered by
direct imaging (Lagrange et al. 2010). As such, modelling
of disk morphology is often focused on investigating the dy-
namical imprints of (invoked) massive perturbers, e.g. plan-
ets (e.g. Wyatt et al. 1999; Wyatt 2005; Lee & Chiang 2016)
or stellar companions (e.g. Nesvold et al. 2017).

However, studies of planet-debris disk interactions usually
ignore the gravitational effects of the disc itself. That is, de-
bris disks are treated as a collection of massless particles
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subject only to the gravity of the star and (putative) plan-
ets. Nonetheless, this assumption may not always be justi-
fied, especially in view of observations suggesting that debris
disks could contain tens of Earth masses in large planetesi-
mals (Wyatt & Dent 2002; Greaves et al. 2005; Krivov &
Wyatt 2021). In this regard, Jalali & Tremaine (2012) have
argued that many of observed debris disk features could be
ascribed to the slow (m = 1, 2) modes which, if and when
excited (e.g. by stellar flybys), could be supported by the disk
gravity alone. Despite this fact, gravitational effects of debris
disks have not yet been widely appreciated in the literature.

In this paper (the first in a series) we investigate the inter-
action between an eccentric planet and an external, massive
debris disk. The primary aim of this work is to present a
novel pathway to sculpting gaps, i.e. depleted regions, in
broad debris discs.

1.1. Existing mechanisms and this work

To date, four debris disks are known to exhibit double-belt
structures that are separated by depleted gaps in their dust
distribution as traced by ALMA: HD 107146 (Ricci et al.
2015; Marino et al. 2018), HD 92945 (Marino et al. 2019),
HD 15115 (MacGregor et al. 2019), and HD 206893 (Marino
et al. 2020). These systems (except HD 206893) have no
known companions or planets to date, and the disks are gas-
poor. In this work we focus on the nearly face-on disk of
HD 107146, a nearby ∼80-200 Myr old G2V star (Williams
et al. 2004). This disk, extending from ∼30 au to ∼150 au,
features a circular∼40 au wide gap centred at around 70−80
au in which the continuum emission drops by ∼ 50% (Ricci
et al. 2015; Marino et al. 2018).

Various mechanisms have been explored for explaining the
origin of gaps in debris disks. In analogy with the aster-
oid and Kuiper belts, the most popular scenario involves the
presence of single or multiple planets orbiting within the de-
pleted region, which are either stationary or migrating (e.g.
Schüppler et al. 2016; Shannon et al. 2016; Zheng et al. 2017;
Morrison & Kratter 2018). For instance, it has been sug-
gested that multiple stationary planets or a single but migrat-
ing planet of few tens of Earth masses on a near-circular orbit
at ∼ 70− 80 au could reproduce HD 107146’s gap (e.g. see
Ricci et al. 2015; Marino et al. 2018).

Other scenarios involving planets interior to the disk,
rather than embedded within, have also been considered. For
instance, Tabeshian & Wiegert (2016) showed that a low-
eccentricity planet can carve a gap at its external 2:1 mean
motion resonance. On the other hand, Pearce & Wyatt (2015)
demonstrated that HD 107146-like disks could be produced
as a result of secular interactions and scattering events be-
tween a massive (∼ 10 − 100M⊕) planetesimal disk and an
initially high-eccentricity (∼ 0.5) planet of comparable mass
to the disk. In the course of evolution, the planetary orbit is
then circularized due to scattering events. However, Pearce
& Wyatt (2015) consider only the back reaction of the disk
on the planet (and vice versa) in their simulations, neglecting
the disk self-gravity.

Finally, Yelverton & Kennedy (2018) considered a sce-
nario whereby two coplanar planets carve a gap through their
secular resonances within an external debris disk, which was
assumed to be massless. In their model, the secular reso-
nances occur at sites where the precession rates of the planets
(i.e. system’s eigenfrequencies) match that of the planetesi-
mals in the disk (due to planetary perturbations). They find
that at and around one of the two resonant sites planetesimal
eccentricities are excited, triggering a depletion in the disk
surface density of the kind seen in HD 107146.

The model proposed by Yelverton & Kennedy (2018) re-
quires (at least) two planets to ensure that their orbits are
precessing due to planet-planet interactions, a condition nec-
essary for establishing secular resonances. However, another
mechanism which may drive planetary precession is the secu-
lar perturbation due to the disk, which was ignored by Yelver-
ton & Kennedy (2018). This motivates our investigation into
whether gaps could be carved in self-gravitating debris disks
via secular resonances when perturbed by single rather than
multiple inner planets. A related scenario was studied by
Zheng et al. (2017) which showed that a single planet em-
bedded within a decaying gaseous disk (i.e. transitional disk)
could carve a wide gap around its orbit via sweeping secular
resonances assisted by the waning disk gravity.

In this paper we propose that double-ringed structures –
akin to that of HD 107146 – could be explained as the after-
math of secular resonances in systems hosting a single eccen-
tric planet and an external self-gravitating debris disk. The
mechanism we invoke here is different from those of Pearce
& Wyatt (2015) and Yelverton & Kennedy (2018). It is re-
alized through a secular resonance between the apsidal pre-
cession rate of planetesimals due to both the disk and planet,
and that of the planet due to disk gravity (c.f. Yelverton &
Kennedy 2018). Additionally, our mechanism does not re-
quire scattering events between the planet and disk particles
(c.f. Pearce & Wyatt 2015). As we show below, this mecha-
nism is robust over a wide range of parameters; particularly
when the disk is less massive than the planet.

Our work is organized as follows. In Section 2 we de-
scribe our model system and present the equations governing
planetesimal dynamics. In Section 3 we characterize the fea-
tures of the secular resonances over a wide range of parame-
ter space. In Section 4 we apply these considerations to HD
107146, and identify the planet-disk parameters which could
reproduce the observed gap. In Section 5, using some of
these parameters, we investigate the evolution of disk-planet
systems and present our main results. We discuss our re-
sults along with their implications in Section 6, where we
also consider the application of our results to other systems
(HD 92945 and HD 206893). In Section 7 we critically as-
sess the limitations of our model, discuss the implications of
relaxing some of them, and propose future work. Our find-
ings are summarized in Section 8.

2. ANALYTICAL MODEL

We describe a simple model to analyze the long-term dy-
namical evolution of planetesimals embedded within a mas-
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sive debris disk in a single-planet system. In our notation, a
planetesimal orbit is characterized by its semimajor axis a,
eccentricity e, and longitude of pericenter $. Orbital ele-
ments subscripted with ‘p’ and ‘d’ refer to the planet and the
disk, respectively.

2.1. Model system

Our model system consists of a broad debris disk of mass
Md orbiting the host star Mc exterior to, and co-planar with,
a planet of mass mp (Md,mp �Mc). We assume the planet
is initially on a low eccentricity orbit (ep ≤ 0.1) and that it
does not intersect the disk along its orbit. We consider the
debris disk to be razor-thin and initially axisymmetric. The
disk surface density is characterized with a truncated power-
law profile given by

Σd(a) = Σ0

(aout
a

)p
(1)

for ain ≤ a ≤ aout, and Σd(a) = 0 elsewhere. Here, ain and
aout are the semimajor axes of the inner and outer disk edges,
respectively. Defining δ ≡ aout/ain > 1, the total mass Md

of such a disk can be written as

Md =
2π

2− p
Σ0a

2
out

(
1− δp−2

)
, (2)

which allows us to express Σd in terms of Md. This setup is
very similar to that explored in Rafikov (2013) and Silsbee &
Rafikov (2015a) in the context of planetesimal dynamics in
circumbinary disks.

In this work, unless otherwise stated, we adopt a fiducial
disk model with p = 1, ain = 30 au and aout = 150 au (i.e.
δ = 5). This choice of p corresponds to a disk with constant
amount of mass per unit semimajor axis.

2.2. Secular gravitational effects

We are primarily interested in the long-term dynamics of
large (∼km-sized) planetesimals. Since the latter are ef-
fectively insensitive to radiative non-gravitational forces, we
focus purely on gravitational effects accounting for pertur-
bations due to both (1) the debris disk and (2) the planet.
For simplicity, the non-axisymmetric component of the disk
gravity is ignored in this work, although, as we will see later,
the disk naturally develops non-axisymmetry (a discussion of
the implications of this omission is provided in §7.1.2). We
perform calculations within the framework of secular (orbit-
averaged) perturbation theory to second order in eccentrici-
ties (Murray & Dermott 1999).

2.2.1. Effects of the disk and planet on planetesimals

The secular dynamics of planetesimals is described by the
disturbing function R which consists of contributions due to
the planet Rp and due to the disk Rd. An analytic expression
for the disturbing function Rd due to an axisymmetric disk
with surface density of the form (1) has been previously de-
rived in Silsbee & Rafikov (2015b) (see also Heppenheimer
1980; Ward 1981; Sefilian & Touma 2019). Combining Rd

with the contribution Rp due to the planet (e.g. Murray &
Dermott 1999, equation 7.7), the total disturbing function
R = Rd +Rp to second order in eccentricities reads as:

R=na2
[

1

2
Ae2 +Bpe cos ($ −$p)

]
, (3)

where n =
√
GMc/a3 is the planetesimal mean motion and

the meaning of different constants is explained below.
In Equation (3), A = Ad +Ap is the precession rate of the

free eccentricity vector of a planetesimal. It has contributions
from both the gravity of the disk (Ad) and the planet (Ap).
The contribution of the planet is (Murray & Dermott 1999)

Ap=
1

4
n
mp

Mc

ap
a
b
(1)
3/2(ap/a), (4)

≈35.5× 10−2 Myr−1 mp

0.6MJ
a2p,20 a

−7/2
70 M

−1/2
c,1.09,

where ap,20 ≡ ap/(20 au), a70 ≡ a/(70 au), Mc,1.09 ≡
Mc/(1.09M�), b(m)

s (α) is the Laplace coefficient defined by

b(m)
s (α) =

2

π

π∫
0

cos(mθ)dθ

(1 + α2 − 2α cos θ)s
, (5)

and the numerical estimate in Eq. (4) assumes ap/a � 1 so
that b(1)3/2(α) ≈ 3α. The contribution of the disk to the free
precession is (Silsbee & Rafikov 2015b)

Ad= 2π
GΣd(a)

na
ψ1 = (2− p)nMd

Mc

(
a

aout

)2−p
ψ1

1− δp−2
(6)

≈−14.4× 10−2 Myr−1 Md

20M⊕
a
−1/2
70

M
−1/2
c,1.09

aout,150

ψ1

−0.5
,

where aout,150 ≡ aout/(150 au), and the numerical estimate
is for p = 1 and δ � 1 such that ψ1 ≈ −0.5.

In general, the coefficient ψ1 in Eq. (6) depends on the
power-law index p as well as the planetesimal semimajor axis
with respect to the disk edges (Silsbee & Rafikov 2015b,
equation A33). As the sharp edges of the disk are ap-
proached, ψ1 formally diverges. However, when the plan-
etesimal is well separated from the edges (i.e. ain � a �
aout), ψ1 is effectively a constant of order unity (depending
on p) which can be well approximated by equation (A37) in
Silsbee & Rafikov (2015b). It is very important to note that
the disk and the planet drive planetesimal precession in op-
posite directions, Ap > 0 and Ad < 0, with Ap(a) falling off
more rapidly with a than |Ad(a)|.

The term Bp in Eq. (3) represents the excitation of plan-
etesimal eccentricity due to the non-axisymmetric compo-
nent of the planetary potential. It is given by (Murray &
Dermott 1999)

Bp = −1

4
n
mp

Mc

ap
a
b
(2)
3/2(ap/a)ep. (7)

Note that the analogous term due to the disk is absent in Eq.
(3), since we have neglected the non-axisymmetric compo-
nent of the disk self-gravity.
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2.2.2. Effect of the disk on planet

Next we consider the effect of the disk on the planet. Since
the disk is taken to be axisymmetric, it simply causes the
planetary apsidal angle to advance linearly in time such that
$p(t) = Ad,pt+$p(0), i.e. $̇p = Ad,p, without exchanging
its angular momentum with the planet. In this work, without
loss of generality, we set $p(0) = 0. In Appendix A we
show that the planetary precession rate Ad,p due to the disk
with surface density (1) is given by (see also, Petrovich et al.
2019):

Ad,p=
3

4
np

2− p
p+ 1

Md

Mc

(
ap
aout

)3
δp+1 − 1

1− δp−2
φc1 (8)

≈19.4× 10−2 Myr−1 Md

20M⊕

a
3/2
p,20

aout,150 a2in,30
M

−1/2
c,1.09,

where np =
√
GMc/a3p is the planetary mean motion,

ain,30 ≡ ain/(30 au), and the numerical estimate is for
p = 1 and ap = 20 au such that φc1 ≈ 1.8. Here φc1 =
φc1(ap/ain, p, δ) is a factor of order unity accounting for con-
tributions of the disk annuli close to the planet (Eq. A7). Its
behavior as a function of ap/ain and for various disk models
(i.e. p, δ) is shown in Fig. 13. For ap/ain � 1, we have
φc1 ≈ 1 regardless of (p, δ).

2.2.3. Combined planet-disk effects

The fact that the planet is precessing renders the forcing
term in R (Eq. 3) time-dependent. This time dependence
could be eliminated upon transferring to a frame precessing
with the planetary orbit: i.e. by subtracting ΦAd,p from Eq.
(3) where Φ = na2

(
1−
√

1− e2
)
≈ na2e2/2 is the action

conjugate to the angle ∆$ ≡ $−$p. As a result, we obtain
the following expression:

R = na2
[

1

2
(A−Ad,p) e2 +Bpe cos ∆$

]
. (9)

This completes our development of the disturbing function.
Note that for the particular set of parameters in equations

(4), (6), (8), the planetesimal free precession rateA at a = 70
au is comparable to that of the planetary orbit, Ad,p. In Fig-
ure 1 we show the radial behavior of A = Ad +Ap, together
with the curve for Ad,p. The fact that A(a) = Ad,p at certain
semimajor axes has very important implications for planetes-
imal dynamics; see Section 2.4.

2.3. Evolution equations and their solution

The secular evolution of a planetesimal orbit in the com-
bined potential of the planet and the disk can be determined
by Lagrange’s planetary equations (Murray & Dermott
1999). Introducing the eccentricity vector e = (K,H) =
e(cos ∆$, sin ∆$), convenient for describing the dynamics
in the frame corotating with the planet (e.g. Heppenheimer
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Figure 1. Planetesimal free precession rate A = Ad + Ap due to
both the planet and the disk as a function of semimajor axis (red
curve). Dotted and dashed curves represent Ap(a) and Ad(a), re-
spectively. The blue line represents the rate of planetary precession
Ad,p due to the disk. Calculations assume a 20M⊕ disk with p = 1

extending from ain = 30 au to aout = 150 au, and a 0.6MJ planet
at ap = 20 au around a 1.09M� star (Model A, Table 1). Note
that A(a) = Ad,p at two locations: at 70 au and at ' ain.

1980), we find that:
dK

dt
≈ −1

na2
∂R

∂H
= −(A−Ad,p)H,

dH

dt
≈ 1

na2
∂R

∂K
= (A−Ad,p)K +Bp. (10)

Note that in the case of a massless disk (Ad,p = 0, A = Ap),
one recovers the evolution equations due to a non-precessing
perturbing planet (e.g. Murray & Dermott 1999).

The system of equations (10) admits a general solution
given by the superposition of the ‘free’ and ‘forced’ eccen-
tricity vectors, e(t) = efree(t) + eforced(t) (Murray & Der-
mott 1999). In particular, when planetesimals are initiated on
circular orbits, K(0) = H(0) = 0, we have efree = eforced
and the evolution of planetesimal orbits is described by:

e(t) = 2

∣∣∣∣eforced sin

(
A−Ad,p

2
t

) ∣∣∣∣, (11)

tan ∆$(t) = tan

(
A−Ad,p

2
t− π

2

)
, (12)

where ∆$ stays in the range [−π, π], and the forced eccen-
tricity is given by

eforced(a) =
−Bp(a)

A(a)−Ad,p
=

−Bp(a)

Ad(a) +Ap(a)−Ad,p
.

(13)
Equations (11)–(13) represent the key solutions needed for
our work. We remark that this framework has been previ-
ously verified against direct orbit integrations of test particles
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in disks (e.g. Silsbee & Rafikov 2015b; Fontana & Marzari
2016; Davydenkova & Rafikov 2018).

For illustrative purposes, in Figure 2 we show the radial
profiles of instantaneous eccentricities (left panels) and lon-
gitudes of pericenter (relative to the planet, right panels) of
planetesimals computed using Eqs. (11) and (12) (i.e. for
e(0) = 0) at different times, as indicated in each panel.
The calculations assume the same disk-planet parameters as
in Fig. 1 and we have taken ep = 0.05 – the parame-
ters of the fiducial disk-planet model (Model A, Table 1)
which we consider in details later in this work (Section 5).
Furthermore, here we have sampled secular evolution using
N = 5000 planetesimals with semimajor axes distributed
logarithmically between ain and aout, i.e. with a ratio of
spacing β = (aout/ain)1/N ≈ 1.0003, each of which is rep-
resented by a blue dot in Fig. 2. We note that, as is typical
for secular evolution, the eccentricity oscillation at a given
semimajor axis is bounded between the initial value of 0 and
em(a) = 2|eforced(a)| (the red lines in left panels of Fig. 2).
Moreover, as expected, the period of each eccentricity os-
cillation in the frame corotating with the planet is given by
τsec = 2π/(A−Ad,p).

2.4. Planetesimal eccentricity behavior and secular
resonances

We now describe the essential features of planetesimal dy-
namics in the combined disk-planet potential1. In general,
planetesimal orbits evolve differently depending on their free
precession rate A(a) relative to that of the planet Ad,p, i.e.
for A(a) > Ad,p or A(a) < Ad,p – see Eqs. (11), (12).

For the particular set of parameters in Figs. 1 and 2, we
see that the regime A(a) > Ad,p is realized at small sep-
arations from the planet, where the precession rate of plan-
etesimals is dominated by the planet so that A ≈ Ap (except
near ain where Ad diverges due to disk edge effects, Silsbee
& Rafikov (2015b)); see also Eqs. (4), (6). In this planet-
dominated regime planetesimal orbits precess in the same
direction as the planet (i.e. prograde, see Eq. 12 and right
panels of Fig. 2), and we have eforced > 0 (Eq. 13). Thus,
as planetesimal orbits evolve, the apsidal angles ∆$ remain
constrained within [−π/2, π/2] at all times. Moreover, plan-
etesimals attain their maximum eccentricity when their orbits
are aligned with that of the planet, i.e. when ∆$ = 0; see
Eq. (11) and Fig. 2. Assuming Ap & Ad,p, the maximum
planetesimal eccentricity in this regime is em,p ≈ |2eforced,p|
with (e.g. Murray & Dermott 1999)

eforced,p =
−Bp
Ap

=
b
(2)
3/2(ap/a)

b
(1)
3/2(ap/a)

ep≈
5

4

ap
a
ep, (14)

≈1.8× 10−2 ap,20
a70

ep
0.05

,

1 For detailed summary of the dynamics in an analogous setup (in application
to planetesimal dynamics in circumbinary disks), see Rafikov (2013) and
Silsbee & Rafikov (2015a).
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Figure 2. Snapshots of the planetesimal eccentricities e (left pan-
els) and apsidal angles ∆$ (right panels, measured relative to that
of the precessing planet) as a function of semimajor axis a after
t = 1, 10, 30, 50, 80 and 100 Myr of evolution (top to bottom). The
time is also indicated relative to τ ≈ 135 Myr, Eq. (16). The plan-
etesimals were initiated on circular orbits in the fiducial disk-planet
model (Model A, Table 1). The maximum of eccentricity oscil-
lations em = 2|eforced| (Eq. 13) is shown by the red lines. For
reference, the solid black lines show the maximum planetesimal ec-
centricities driven by the planet in the absence of the disk (em,p, Eq.
14). The dashed vertical lines show the secular resonance location
(ares = 70 au), where eccentricities diverge in the course of evolu-
tion. One can clearly see that at the resonance ∆$ = −π/2 at all
times. Note also the resonance near the disk inner edge. This figure
is available as an animation in the electronic edition of the journal.
The animation runs from t = 0 to t = τ ≈ 135 Myr with a duration
of 36 seconds.

see Eq. (13), where we have used the approximations
b
(1)
3/2(α) ≈ 3α and b(2)3/2(α) ≈ (15/4)α2 valid for small α.

This is the limit of a massless disk, a configuration most of-
ten adopted in studies of debris disks. In the course of evo-
lution, planetesimals in this regime will form an eccentric
structure largely aligned with the planetary orbit (e.g. Wyatt
et al. 1999).
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In the opposite disk-dominated limit, far from the planet
(and for a ≈ ain, which we discuss later), Figure 1 shows
that the precession rate of planetesimals is dominated by the
disk so that A ≈ −|Ad| . Ad,p. In this regime planetesimal
orbits undergo retrograde free precession (see Eq. 12 and
right panels of Fig. 2), and we have eforced < 0. Thus, the
apsidal angles ∆$ are confined within the range ±[π/2, π]
at all times. Moreover, planetesimals attain their maximum
eccentricity when their orbits are anti-aligned with the plan-
etary orbit, i.e. when |∆$| = π; see Eq. (11). Assuming
Ad,p → 0 for simplicity, the maximum eccentricity in this
regime is em,d ≈ |2eforced,d| with

|eforced,d| =
∣∣∣∣BpAd

∣∣∣∣≈ 15ep
16|(2− p)ψ1|

mp

Md

(ap
a

)3 (aout
a

)2−p
,(15)

≈4.7× 10−3mp

Md

ep
0.05

a3p,20aout,150

a470
,

where the numerical estimate assumes p = 1 and ain �
a� aout so that ψ1 ≈ −0.5. Equation (15) shows that plan-
etesimal eccentricities in the disk-dominated regime decline
more rapidly with a than in the planet-dominated regime,
and their magnitude is suppressed – an effect pointed out in
Rafikov (2013). In the course of evolution, planetesimals in
this regime will form an eccentric structure anti-aligned with
the planetary orbit.

2.4.1. Main secular resonance

More importantly, one can clearly see that the transition
between planet- and disk-dominated regimes occurs via a
secular eccentricity resonance where A(a) = Ad,p; see
Fig. 1 (see also Rafikov 2013; Silsbee & Rafikov 2015a).
This resonance emerges because the relative precession be-
tween the planetesimal orbits and the planetary orbit van-
ishes, while the torque exerted by the non-axisymmetric
component of the planet is non-zero. At and around the loca-
tions of secular resonances, a = ares, planetesimal eccentric-
ities are forced to arbitrarily large values (in linear approxi-
mation), see left panels of Fig. 2. This is because the denom-
inator in Eq. (13) becomes small, introducing a singularity
into the secular solution2 (Rafikov 2013). By taking a limit
A(ares)→ Ad,p in Eq. (13) we find that the growth of eccen-
tricity at the resonance occurs linearly in time, e(t) = t/τ ,
with a characteristic timescale given by

τ =
1

|Bp(ares)|
≈ 158 Myr

0.6MJ

mp

0.05

ep

a
9/2
res,70

a3p,20
M

1/2
c,1.09,

(16)
where the approximation is valid for ap � ares. Eq. (16) also
explains why the eccentricities at the resonance near the disk
inner edge are pumped up more quickly than at the resonance
at 70 au, see left panels of Fig. 2.

2 Including higher order terms (in eccentricities) of the disturbing function
(9) imposes a finite upper limit on the amplitude of eforced at secular reso-
nance (Malhotra 1998; Ward & Hahn 1998).
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Figure 3. Forced eccentricities of planetesimals as a function of
their semimajor axis a, computed for different values of Md/mp

(with fixed mp = 0.6MJ ). The calculations assume all other sys-
tem parameters are as in Figs. 1, 2. All of these curves scale lin-
early with the planetary eccentricity ep, which we have taken to be
0.05 in this calculation. For reference, the black dashed line shows
forced eccentricity in the case of a massless disk eforced,p (Eq. 14),
and the dotted line illustrates the asymptotic behavior of eccentric-
ity given by eforced,d (Eq. 15). Note the occurrence of two secular
resonances for 10−3 ≤ Md/mp ≤ 1, with one of them being near
the inner disk edge. See text (§2.4) for details.

Moreover, we can see from the right panels of Fig. 2 that at
the resonance ∆$ remains fixed at −π/2, as expected from
Eq. (12). In Section 3.1 we will show that such secular res-
onances are generic: they occur for a large range of disk-to-
planet mass ratios, 10−4 .Md/mp . 2, for all ap . ain.

To further illustrate the analysis above, Figure 3 shows
the radial profiles of planetesimal forced eccentricities com-
puted for different values of disk mass. The calculations
are done for the same planetary parameters as in Figs. 1,
2. The most pronounced feature in Fig. 3 is the occurrence
of a secular resonance within the disk (apart from the one
very close to ain, see below) for 10−3 ≤ Md/mp ≤ 1,
where eforced diverges. At the same time, eforced asymp-
totically approaches eforced,p inward of the resonance, i.e.
where A & Ad,p, whereas eforced → eforced,d external to
it, i.e. where A . Ad,p (which is, of course, possible only if
ain . ares . aout). At the highest disk mass, Md/mp = 2,
there are no secular resonances as the disk dominates plan-
etesimal precession throughout the whole disk.

We note that in the region where the dynamics is domi-
nated by the disk eforced(a) does not follow the simple power
law profile ∝ a−4 given by Eq. (15). By and large, this
is because the disk edge effects neglected in computing Eq.
(15) render ψ1 = ψ1(a) in a non-trivial manner, even when
ain . a . aout (Silsbee & Rafikov 2015b). For instance, it
is evident in Fig. 1 that Ad(a) behaves more like a constant
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for ain � a � aout rather than as Ad ∝ a−1/2 (Eq. 6), im-
plying that |ψ1| ∝ a1/2 for the employed disk model. This
will be important in §3.1. As a matter of fact, ψ1 becomes
independent of semimajor axis only in disks of infinite radial
extent (Silsbee & Rafikov 2015b), whereas the radial range
of our adopted disk is finite with δ = aout/ain = 5 (§2.1) .

2.4.2. Secular resonance at ain

Finally, we clarify that the origin of the resonance at ≈
ain (apart from the one at & ain) lies in the fact that Ad ∝
−|ψ1| diverges as the sharp edges of a razor-thin disk are
approached, see black dashed lines in Fig. 1. This makes
|Ad(a)| ∼ Ap(a) as a→ ain, even for a modest value of disk
mass. However, it is also known that disks with Σd dropping
continuously near the edges rather than discontinuously, or
disks with small but non-zero thickness, should exhibit finite
Ad near the edges (Davydenkova & Rafikov 2018; Sefilian &
Rafikov 2019); different from our disk model. Thus, in such
more realistic disks, only a single resonance – rather than two
– will occur. This is portrayed in Fig. 3 for Md/mp = 1 by
artificially stipulating ψ1(a) = −0.5, i.e. by ignoring the
edge effects (Silsbee & Rafikov 2015b).

2.4.3. Secular resonances and gaps in debris disks

To summarize, the analysis presented here elucidates that
the disk gravity can have a considerable impact on the secular
evolution of planetesimals. In the remainder of this paper, we
exploit the feasibility of the discussed secular resonance as
the basis of a mechanism for sculpting depleted regions, i.e.
gaps, in debris disks.

The emergence of a gap could be understood as follows.
Planetesimals on eccentric orbits spend most of their time
near their apocenter, further away from their orbital semi-
major axes. Thus, provided that a secular resonance occurs
within the disk, we expect the surface density of planetes-
imals to be depleted around the resonance location where
planetesimal eccentricities grow without bound. This rea-
soning, in essence, is similar to that presented by Yelverton
& Kennedy (2018) where the authors show that two plan-
ets could carve a gap in an external massless debris disk
through their secular resonances. Additionally, given that
generally planetesimals in the inner disk parts tend to apsi-
dally align with the planet while those in the outer parts tend
to anti-align, we expect the depleted region to have a non-
axisymmetric shape. This effect has been previously pointed
out by Pearce & Wyatt (2015) in the context of secular in-
teraction between a debris disk and an interior, precessing
planet.

3. CHARACTERIZATION OF SECULAR RESONANCES

We now investigate how the characteristics of the secular
resonances – i.e. their locations, their associated timescales
for exciting eccentricities, and their widths – depend on the
properties of the disk and the planet. This will guide us
in putting constraints on the possible disk-planet parameters
that could reproduce the structure of an observed debris disk
featuring a gap (§4).
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Figure 4. Location of secular resonances relative to the disk inner
edge ares/ain as functions of ap/ain and Md/mp. Calculations
assume a power-law disk model with p = 1 and δ ≡ aout/ain = 5.
The full white line represents the contour forMd/mp = 1 obtained
by ignoring disk edge effects, i.e. ψ1 = −0.5. The dashed white
line shows the scaling of ares with ap for fixed Md/mp, Eq. 19.
See text (§3.1) for details.

3.1. Location of secular resonances

As mentioned in Section 2.4, secular resonances occur at
semimajor axes a = ares where the apsidal precession rates
of both the planet and planetesimals are commensurate,

Ad(ares) +Ap(ares) = $̇p ≡ Ad,p. (17)

Using Equations (4), (6) and (8), we can express the reso-
nance condition (17) in terms of the disk-to-planet mass ratio
Md/mp and the relevant semimajor axes, i.e. ares, ap, and
aout, scaled by ain:

C1ψ1
Md

mp

(
ares
ain

)2−p

+
1

4

ap
ares

b
(1)
3/2

(
ap
ares

)
=

3

4
C2φ

c
1

Md

mp

(
ap
ain

)3(
ap
ares

)−3/2

.(18)

HereC1 = (2−p)/(δ2−p−1) andC2 = C1(1−δ−p−1)/(p+
1) are constants depending on the disk model. It follows from
Eq. (18) that the locations of secular resonances can be com-
puted relative to the disk inner edge as functions of ap/ain
and Md/mp. This is illustrated in Figure 4, where we plot
the contours of Md/mp in the (ap/ain, ares/ain) plane com-
puted using our fiducial disk model i.e. p = 1 and δ = 5
(§2.1).

Figure 4 shows that for any given planet, two or no sec-
ular resonances occur within the disk provided that 10−4 .
Md/mp . 2. Additionally, we can see that for any ap/ain
one of the resonances always occurs in the vicinity of the disk
inner edge as described in §2.4.2, i.e. ares,1 ' ain, and its
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location varies weakly with Md/mp. On the other hand, the
second resonance occurs at semimajor axis ares,2 & ares,1
whose location changes significantly with varying Md/mp.
Indeed, with increasing Md/mp (at fixed ap/ain) this res-
onance is pushed inwards from ' aout towards the inner
resonance at ' ain until both resonances ‘merge’, i.e. the
distance between them approaches zero. Figure 3 provides
a complementary view of this behavior. Looking at Fig. 4
we also see that, for planets closer to the disk, larger Md/mp

is necessary to maintain the resonance at a given semimajor
axis.

We recall that the existence of the inner resonance is
mainly due to the disk edge effects. That is, the divergence
of Ad(a) ∝ −|ψ1(a)| as a → ain allows the resonance con-
dition (17) to be satisfied around ≈ ain, even for relatively
small values of Md (Section 2.4). This explains why for a
given ap/ain the resonance at a

res,1 is constrained to be very
close to ' ain irrespective of Md/mp. In the absence of
edge effects this inner resonance will not exist, resulting in
a single resonance for fixed system parameters rather than
two. This is illustrated in Fig. 4 for Md/mp = 1 by setting
ψ1(a) = −0.5 (white full line).

The behavior of the resonance locations can be explained
analytically. Consider the approximate form of the resonance
condition, Eq. (17), in the limit of ap/ain → 0 so thatAd,p is
negligible and one can use the asymptotic limit of b(1)3/2, and
the two terms on the left hand side of Eq. (18) balance each
other (recall that ψ1 < 0). It is then easy to demonstrate that
for a resonance to occur at ain . ares . aout, the disk mass
must be given by

Md

mp
≈ 3δ2−p

4|(2− p)ψ1(ares)|

(
ap
ain

)2(
ares
ain

)p−4

, (19)

≈0.15 a2p,20 a
−3.5
res,70,

where the numerical estimate is obtained for our fiducial disk
model (p = 1, δ = 5), for which |ψ1(a)| ∝ a1/2 when
ain � a � aout, see Section 2.4 3. Fixing Md/mp in Eq.
(19) then approximates the slopes of the contours in Fig. 4
reasonably well – see the white dashed line. As expected, the
numerical results deviate from the scaling in Eq. (19) both
as ares → ain or aout, where ψ1 diverges, and as ap → ain,
since Ad,p becomes non-negligible.

3.2. Timescale for eccentricity excitation

We now consider how the eccentricity excitation timescale
varies as a function of model parameters. To this end, we
make use of the definition of τ given by Eq. (16), which
quantifies the time it takes for initially circular orbits to reach
e = 1 at the resonance. We note that τ is a strong function
of the resonance location, and it explicitly depends on the

3 In an infinitely extending disk, i.e. as δ → ∞, ψ1 becomes independent
of semimajor axis e.g. ψ1(a) = −0.5 for p = 1. In this case, Eq. (19)
would read as Md/mp ≈ 0.26 a2p,20 a

−3
res,70

.
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Figure 5. Contour plot of the timescale τ for exciting planetesimal
eccentricities by the secular resonance (Eq. 16), in the space of
ap/ain and ares/ain. The calculations assume a planet with mp =

100M⊕ and ep = 0.1 around a solar-mass star. The white dashed
line shows the scaling of ares with ap for a fixed value of τ . See
text (§3.2) for details.

parameters of the planet but not the disk. This is because the
disk, assumed to be axisymmetric in our model (Section 2),
does not contribute to eccentricity excitation.

In Figure 5 we plot the contours of τ in the
(ap/ain, ares/ain) plane for a particular choice of plane-
tary mass and eccentricity, mp = 100M⊕ and ep = 0.1,
assuming a solar-mass star. It is evident that the timescales
are shorter when the planet and the resonance location are
closer together, i.e. in the lower-right corner of parameter
space where ares/ap → 1. Note that for the adopted plan-
etary parameters, over a broad range of parameter space the
timescales range from ∼ 10 Myr to few Gyr; this is com-
parable to the ages of observed debris disks. Moreover, the
slopes of the contours in Fig. 5 can be explained by setting τ
to a constant in Eq. (16): this yields the scaling ares ∝ a

2/3
p

illustrated by the white dashed-line in Fig. 5.
Finally, Equation (16) shows that τ is inversely propor-

tional to both the planetary mass and eccentricity. Thus,
more massive or eccentric planets exert larger torque and ex-
cite planetesimal eccentricities more quickly, shortening the
timescale τ when ap/ain and ares/ain are kept fixed. This
means that in Figure 5 the contours of τ will be shifted to
the left (right) when the product of mp and ep is increased
(decreased).

3.3. Resonance width

We now quantify the range of semimajor axes w over
which resonances act to significantly excite planetesimal ec-
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centricities. To this end, we follow4 Yelverton & Kennedy
(2018) and calculate the distance over which the forced plan-
etesimal eccentricities eforced(a) exceed a constant thresh-
old value ẽ. That is, we define w as the difference (in ab-
solute values) between the two values of semimajor axis ai
(i = 1, 2) satisfying

ẽ = |eforced(ai)| =
∣∣∣∣ −Bp(ai)A(ai)−Ad,p

∣∣∣∣ (20)

in the vicinity of a given resonance. Here, we clarify that this
definition serves as a proxy for the significance of a given res-
onance, and it does not necessarily correspond to the actual
widths of gaps that we expect to observe5.

In Equation (20), the planetary and disk masses appear
only through their ratio Md/mp, and the two relevant semi-
major axes – ai and ap – could be expressed relative to ain;
see Eqs. (4) – (8). Furthermore, the ratio Md/mp could
be related to ap/ain and ares/ain by using the condition for
secular resonance, Eqs. (17), (18). Thus, we can compute
the resonance width w relative to ain as functions of ap/ain
and ares/ain only, once ẽ and ep are specified (recall that
Bp ∝ ep, Eq. 7).

The threshold eccentricity ẽ in Eq. (20) represents an ad
hoc parameter, necessitating a physical justification for a par-
ticular choice of its value. To this end, we note that the
presence of a physical gap within the disk is subject to the
condition that planetesimal eccentricities are larger around
the resonances than elsewhere. Away from the resonances,
the forced planetesimal eccentricity is maximized near the
disk inner edge where, approximately, eforced(ain) →
eforced,p(ain) which can not exceed ep; see Eq. (14), Fig.
3. Based on this reasoning we adopt ẽ = ep in what follows,
unless stated otherwise.

In Figure 6 we plot the contours of w/ain in the
(ap/ain, ares/ain) plane for our fiducial disk model with
p = 1 and δ = 5 (see §2.1), assuming ẽ = ep. Looking
at Figure 6, we see that increasing the planetary semimajor
axis for a fixed ain tends to generally broaden the width of
a given resonance. This is, though, less obvious in the range
1.1 . ares/ain . 1.5 as the width there is a weaker func-
tion of ap/ain. Secondly (and relatedly), we see that for a
given planetary semimajor axis, resonances occurring closer
to the disk inner edge generally have larger widths compared
to resonances further away; see also Fig. 3. The exception to
this is if ares/ain ' 1, where the values of w/ain are com-
paratively smaller, particularly in the lower-left corner of Fig.
6.

To understand this behavior, we recall that for a given
ap/ain, our disk model with sharp edges has two resonance
sites: one always at ares,1 ' ain and another further away
at ares,1 . ares,2 . aout; see Section 3.1. In terms of

4 For an alternative method, see Levison & Agnor (2003).
5 This is not least because the actual widths of gaps depend non-trivially on

the spatial distribution of planetesimals, i.e. the profiles (and gradients) of
both e(a) and $(a) (Statler 2001).
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Fig. 6, this means that for a given ap/ain (and Md/mp,
see Fig. 4) if the resonances are well separated from each
other, i.e. ares,1 � ares,2, the inner resonance will be
much narrower than the other. This behavior could be un-
derstood for instance by looking at the curves in Fig. 3 for
Md/mp = 10−3, 10−2 or 10−1, which show that the inner
resonance width is insignificant.

On the other hand, for fixed (ap/ain,Md/mp), if the reso-
nances are close to each other such that ares,2/ain . 1.5 and
ares,1 ' ain (see Fig. 4), the resonances ‘merge’ together
yielding relatively large values of w/ain. What we mean by
‘merging’ here is that eforced(a) in-between the resonances
stays larger than ẽ, and our definition of w does not disen-
tangle the two resonances6. This could be understood, for
instance, by looking at the curve for Md/mp = 1 in Fig. 3.
These considerations explain why the contours of constant
w/ain in Fig. 6 behave differently for ares/ain . 1.5 com-
pared to ares/ain & 1.5.

To better understand the behavior of w/ain, in Appendix
B we derive an analytic expression for the resonance widths
showing that, to a good approximation,

w

ain
≈ 2

ain

∣∣∣∣Bp(a)/ẽ

dA/da

∣∣∣∣
ares

∝ ep
ẽ

ap
ain

(
ares
ain

)−1/2

, (21)

where the scaling holds for p = 1 in the limits of ap/ain → 0
and ain � ares � aout. First, Equation (21) shows that the

6 Adopting larger ẽ at fixed ep could modify this behavior. However, it
is not clear a priori what value must be assigned to ẽ, not least because
eforced(a) ∝ ep could stay well above unity in-between the resonances in
linear Laplace-Lagrange theory.
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width is inversely proportional to the gradient of A at ares.
This explains why resonances in proximity of the disk edges
are relatively narrow: in the limit of ares → ain, aout we
have A → Ad which diverges due to edge effects (Fig. 1),
and dA/da is very large. Second, we see from Eq. (21) that
the width is directly proportional to Bp ∝ ep: this makes in-
tuitive sense since ep controls the amplitude of planetesimal
eccentricities (Eq. 13). It follows that more eccentric plan-
ets tend to produce wider resonances, provided that ẽ can be
chosen independently from ep (though this is not clear a pri-
ori). Third, and more importantly, the scaling of Eq. (21)
adequately explains the slopes of the w/ain contours: setting
w/ain to a constant in Eq. (21) yields the scaling ares ∝ a2p,
obvious in Fig. 6. Indeed, by fitting the numerical results in
Fig. 6 with the functional form of Eq. (21), we find that the
following expression

w ≈ 15.3 au ap,20 a
−1/2
res,70 a

1/2
in,30 (ep/ẽ) (22)

provides an acceptable approximation of the resonance
widths for our fiducial disk model (Section 2.1).

4. EXAMPLE: APPLICATION TO HD 107146

For a given debris disk exhibiting a depletion in its sur-
face density, we can hypothesize that this depletion is due to
eccentricity excitation by secular resonances mediated by the
gravity of the disk and an unseen planet. We can then employ
the characteristics of the secular resonances analyzed in §3
to constrain the disk-planet parameters that could configure
the secular resonances appropriately and produce a depletion
similar to the observations. In this section, as an exemplary
case, we apply these considerations to the HD 107146 disk
and identify the “allowed” parameter space subject to obser-
vational constraints. The detailed investigation of the dynam-
ical evolution in models chosen from the allowed parameter
space is carried out in the next section.

4.1. Constraints from gap location

As noted in Section 1, ALMA observations show that the
HD 107146 disk, spanning from ain ∼ 30 au to aout ∼ 150
au, features a gap centered at ag ∼ 70 − 80 au (Ricci et al.
2015; Marino et al. 2018). Thus, we must choose the disk-
planet parameters such that a secular resonance occurs within
the depleted region. Here we opt to fix the resonance location
at ares = 70 au. The analysis in Section 3.1 then allows
us to uniquely determine the ratio Md/mp as a function of
ap/ain, see also Eq. 19. In other words, for a given disk
mass, we can deduce the planetary mass and semimajor axis
that configure the resonance location appropriately (or vice
versa). This is displayed by the black solid lines in Figure 7
for various values of disk mass (in M⊕).

However, the disk mass can not be arbitrarily large and
must be constrained. To this end, we note that observations
of HD 107146 have detected around 0.25M⊕ of dust at mil-
limeter wavelengths (Ricci et al. 2015; Marino et al. 2018).
By extrapolating this up to planetesimals of ∼ 100 km in di-
ameter the estimated total disk mass is Md ∼ 100− 300M⊕
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a function of planet semimajor axis ap that are expected to produce
a gap in a HD 107146-like disk at 70 au. The curves of constantMd

are shown by the black contours. The grey region is ruled out as the
disk would be too massive. The green region shows the excluded
region where the eccentricity excitation timescales are much longer
than the stellar age. The blue region is ruled out as the resulting
resonance width would be much narrower than the observed gap.
A planet close to the disk inner edge is ruled out (yellow region)
by considerations of overlapping mean motion resonances. The red
region is ruled out by direct imaging. The remaining white area
represents the region where the disk-planet parameters meet all the
above conditions. The lettered points represent the model parame-
ters discussed in Sections 5.1, 5.2.1 and listed in Table 1. See the
text (§4) for details.

(assuming a size distribution with an exponent of−3.5, Ricci
et al. (2015); Marino et al. (2018)). Here we choose to take
100M⊕ as the upper limit of the disk mass. Based on this, we
exclude regions in the (ap,mp) parameter space that require
more massive disks – see the gray shaded area in the upper
part of Figure 7.

4.2. Constraints from stellar age and disk asymmetry

We can further constrain the parameter space by consider-
ing the age of HD 107146, which is estimated to be tage ∼
80−200 Myr (Williams et al. 2004). Specifically, we require
the timescale for eccentricity excitation at the resonance τ
to be less than around the age of the system, i.e. τ . tage.
From Section 3.2, however, we know that τ depends not only
on the planet’s mass and semimajor axis but also on its ec-
centricity, see Eq. (16). To this end, we note that ALMA
observations have found that the HD 107146 disk is roughly
axisymmetric, with a 2σ upper limit of ∼ 0.03 for the global
disk eccentricity (Marino et al. 2018). This suggests that the
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invoked planet must be of relatively low eccentricity. Thus,
in what follows, we limit ourselves to ep ≤ 0.1.

The green curves in Figure 7 show contours along which
the excitation timescale τ is 20, 200, and 2000 Myr (dashed,
solid, and dotted lines, respectively) at ares = 70 au. The
calculations assume ep = 0.1 – the maximum value of ep
that we consider in our subsequent calculations – and use the
stellar mass of HD 107146, namely Mc = 1.09M� (Watson
et al. 2011). We first note that by definition τ ∝ 1/ep (Eq.
16): thus, for less eccentric planets the contours shown in
Fig. 7 will correspond to longer timescales. Second, recall
that τ is a measure of the time within which initially circu-
lar planetesimal orbits become radial, e → 1 (§3.2). Thus,
even if τ & tage for a given planet (such that e(tage) . 1),
we might still expect sufficient eccentricity excitation for de-
pletion to be apparent at the resonance within the stellar life-
time. Given these considerations and the uncertainty on the
age of the system, we exclude the region in (ap,mp) param-
eter space corresponding to τ > 200 (0.1/ep) Myr. This is
illustrated by the green shaded region in Figure 7.

4.3. Constraints from gap width

As noted in Section 1, the gap width in the HD 107146 disk
is estimated to be wobs ≈ 40 au (Marino et al. 2018). Given
this, the planet’s semimajor axis could, in principle, be con-
strained by using the analysis of resonance widths w in Sec-
tion 3.3 (recall that w ∝ ap, Eq. 22). However, we recall
that the resonance widths as defined in Section 3.3 do not
necessarily correspond to the physical width of gaps that we
expect to form. Nevertheless, we could still use the def-
inition of w to rule out the range of planetary semimajor
axes for which the resonance widths would be negligible, i.e
w/wobs � 1. Here we consider resonance widths to be neg-
ligible if w/wobs ≤ 0.1 (this choice is somewhat arbitrary).
The blue solid line in Fig. 7 corresponds to w/wobs = 0.1;
planetary semimajor axes to the left of this line are ruled out
(blue shaded region).

4.4. Considerations of mean-motion resonances

Finally, we note that the planet can not be arbitrarily close
to the disk. This is because the planetary orbit is surrounded
by an annular ‘chaotic zone’ wherein particles will be quickly
ejected from the system due to overlapping first-order mean
motion resonances (MMR). Moreover, the secular approxi-
mation of Section 2 would break down within this zone. The
half-width of the chaotic zone on either side of the planetary
orbit depends on the planet’s mass (Wisdom 1980; Duncan
et al. 1989) such that, to lowest order7:

δap ≈ 1.3

(
mp

Mc +mp

)2/7

ap. (23)

7 Strictly speaking, Eq. (23) is valid for circular orbits in the absence of
collisions. The chaotic zone is known to broaden with both increasing ec-
centricity (Mustill & Wyatt 2012) and due to collisional effects (Nesvold &
Kuchner 2015). For simplicity, we have ignored these effects.

We thereby can rule out the region in the (ap,mp) parameter
space wherein the planet’s chaotic zone would lie within the
disk, i.e. ap + δap > ain. This is illustrated by the yellow
shaded region near the right boundary of Fig. 7. Planetary
parameters lying along the yellow solid line correspond to
ap + δap = ain; thus, they could be responsible for setting
the inner disk edge (e.g. Quillen 2006) at ain = 30 au (orange
line).

We have now identified the ‘allowed’ range of disk-planet
parameters that can produce an HD 107146-like disk struc-
ture. This is represented by the white (unshaded) region in
Fig. 7, and roughly defined by ap in the range ∼ 5 − 27
au, mp between ∼ 0.1 and 25MJ , and 3 . Md/M⊕ .
100. Note that the allowed combinations of mp and ap are
consistent with the limits placed by direct imaging of HD
107146 (Apai et al. 2008), see the dashed red curve in Fig.
7. For reference, the combinations of mp, ap and Md which
we consider later in this work are labelled as models A–C
in Fig. 7, see also Table 1. Note that each of these configura-
tions correspond to τ ≈ 135 × (0.05/ep)Myr, and model A
represents the fiducial configuration considered next in Sec-
tion 5.1.

We remark that in the above discussion we have implic-
itly ignored the occurrence of an inner secular resonance at
' ain; apart from the one already fixed at ares = 70 au in
Fig. 7, see §3.1. This can be justified on the grounds that
the inner resonance is of very narrow width except if the two
resonances are close to each other, which is not the case here
(§3.3). As a result, and as we will see next, the inner reso-
nance is irrelevant and does not have any observable effect.

Finally, we point out that equations (19), (16) and (22),
combined with Eq. (23), can be applied to generate an ap-
proximate version of Figure 7 for any other observed debris
disk with a gap.

5. EVOLUTION OF THE DISK MORPHOLOGY

In the previous section, we identified the combinations of
the ‘allowed’ disk-planet parameters that could reproduce the
observed depletion in the HD 107146 disk, see Fig. 7. We
now investigate the dynamical evolution of disk-planet sys-
tems using some of these parameters. Our specific aims here
are two-fold: to illustrate how secular resonances sculpt de-
pleted regions, and to analyze more fully the disk and gap
morphology in the course of secular evolution.

5.1. A Fiducial Configuration

We begin by presenting results showing the evolution of
the disk surface density in the fiducial configuration, i.e.
model A (see Table 1). We recall that model A is the configu-
ration that was considered in Section 2.4, where we discussed
the temporal evolution of planetesimal eccentricities and ap-
sidal angles as a function of semimajor axis – see Fig. 2. To
this end, we convert the orbital element distributions of plan-
etesimals shown in Fig. 2 – which, we remind, were deter-
mined analytically using equations (11) and (12) – into sur-
face density distributions. Technical details about this pro-
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Table 1. Parameters of the disk-planet systems considered in Section 5.

Model Md[M⊕] mp[MJ ] ap[au] Md/mp ep $p(0) τsec[Myr]

A 20 0.6 20 1.05× 10−1 0.05 0 33

A-Loep ... ... ... ... 0.025 ... ...

A-Hiep ... ... .... ... 0.1 ... ...

B 95 15.8 7 1.89× 10−2 0.05 ... 56

C 6 0.2 26.93 9.44× 10−2 ... ... 26

NOTE—The combinations of Md, mp, and ap (columns 2–4) chosen from the allowed region in Fig. 7. Column 5 presents the disk-to-planet
mass ratio. Columns 6–7 present the planet’s eccentricity and initial apsidal angle, whose precession period is given in column 8. (a) Model

A is the fiducial configuration adopted in this work. (b) Each of the considered models have τ ≈ 135× (0.05/ep) Myr.

cedure can be found in Appendix C, and may be skipped by
the reader at first reading. However, to avoid confusion, we
remark that the results presented here (and in subsequent sec-
tions) are obtained by the analytical model described in Sec-
tion 2 and not by directN -body simulations, which is beyond
the scope of this paper.

The resulting maps of the (normalized) disk surface den-
sity Σ at times corresponding to those in Fig. 2 are shown
in Figure 8. For reference, in this figure we also show the
planet’s orbit and its pericenter position, which precesses
with a period of τsec ≡ 2π/Ad,p ≈ 33 Myr (Eq. 8). To facili-
tate the interpretation of our results, in Figure 9 we also show
the profiles of the azimuthally-averaged disk surface density
〈Σ〉 as a function of radial distance r at the same times as
in Fig. 8. Below we provide a detailed description of the
different evolutionary stages that we identified.

Stage 1 (0 ≤ t . τsec): At early times, the disk quickly
evolves away from its initial axisymmetric state by develop-
ing a trailing spiral structure (see Figs. 8a, b). This spiral
structure initially starts off at the inner disk edge and propa-
gates radially outwards with time as it wraps around the star;
see also the animated version of Fig. 8. For instance, by 1
Myr at least two windings are noticeable (Fig. 8a), with the
outermost prominent spiral arm occurring at ∼ 40 au. This
arm moves out to ∼ 60 au by 10 Myr (Fig. 8b). A comple-
mentary view of this behavior is provided by Figs. 9(a),(b).

We note that the outermost portion of the spiral is associ-
ated with planetesimal orbits that have attained their maxi-
mum eccentricity, i.e. have completed half a precession pe-
riod – see Fig. 2. Interior to this, the spirals become difficult
to discern since planetesimals in this region have completed
more than one precession period and their orbits are phase-
mixed, i.e. ∆$(a) spans the range [−π/2, π/2] – see Figs.
2(a), (b). As a result, the surface density distribution inte-
rior to the outermost spiral looks roughly axisymmetric; see
e.g. panel (b) of Fig. 8. We also note that the spiral prop-
agates outwards at a slower rate as it extends to larger radii;
see panels (a)–(c) of Fig. 8 and its animated version. This
follows from the fact that the planetesimal precession rate is
a decreasing function of the semimajor axis (Fig. 1).

We remark that the behavior described thus far shows some
parallels with the findings of Wyatt (2005), which showed
that an eccentric planet launches a spiral wave which propa-

gates throughout a massless disk. The main difference is that,
in our setup, the spiral wave extends out to only about a ra-
dius of 70 au and not to the outer disk edge (as would happen
in a massless disk), see Fig. 8. This is to be expected, since in
our model planetesimal dynamics is dominated by the planet
only within≈ 70 au, beyond which the disk gravity becomes
important – see Fig. 1 and §2.4.

Stage 2 (t ∼ τsec): By the time the planet has nearly com-
pleted its first precession cycle, the disk develops a clear de-
pletion in its surface density, which effectively splits the disk
into an internal and an external part (Figs. 8c, 9c). The deple-
tion occurs around the location of the secular resonance, i.e.
at ares = 70 au, where the system was designed to emplace
one – see §4. The appearance of the gap is evidently corre-
lated with the excitation of planetesimal eccentricities at and
around ares, where e = t/τ ≈ 0.22 by 30 Myr (Fig. 2c).

An interesting feature of the gap is that it is of a crescent
shape which points in the direction of the planet’s pericen-
ter (Fig. 8c). In other words, the gap is asymmetric in the
azimuthal direction such that it is wider and deeper towards
the planetary pericenter. This asymmetry is associated with
the inner and outer disk components being offset relative to
the star in opposite directions (Fig. 8c). Indeed, the inner
part forms an eccentric structure which is apsidally aligned
with the planet while the outer part is anti-aligned (see also
Section 2.4) – the latter though is difficult to discern in Fig.
8 due to the smaller eccentricities in the outer parts (Fig. 2).
Nevertheless, by simply looking at the azimuthally-averaged
density profile we find that the gap has a radial width of∼ 20
au (measured relative to the initial density profile, Fig. 9c).
Looking at Fig. 9(c), it is also clear that this region is not
depleted fully but only partially – by about a factor of two
relative to the initial density distribution.

Finally, we note that the gap is surrounded by narrow over-
dense regions, with the one just exterior to the gap being
sharper than that interior to it (see Figs. 8c, 9c). These over-
densities correspond to the apocentric positions of planetes-
imals with semimajor axes in the depleted region. The con-
trast between the sharpness of the overdensities is mainly due
to the apsidal angles of planetesimals at a . ares being more
phase-mixed than at a & ares (Fig. 2c). This also justifies
why these sharp overdensities are transients: they taper with
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Figure 8. Series of two-dimensional snapshots showing the evolution of the (normalized) disk surface density Σ in the fiducial model (Model
A, Table 1), as derived from the analytically computed dynamical state of planetesimals shown in Fig. 2. The snapshots correspond to the same
moments of time t as in Fig. 2, and are indicated in each panel for reference. The time is also indicated relative to τ ≈ 135 Myr, Eq. (16).
All panels have 400 × 400 pixels and share the same surface density scale (and normalization constant) as shown in the colour bar. In each
panel the stellar position is marked by the yellow star, while the planet’s orbit and its pericenter position are shown by the white solid line and
green circle, respectively. To enhance the resolution of the images, the orbit of each planetesimal (N = 5000 in number) has been populated
with 104 particles with the same orbital elements but with randomly distributed mean anomalies (see Appendix C). At early times (panels a,
b), the planet launches a trailing spiral wave at the inner disk edge ain which is quickly wrapped around the star. By the time the planet has
completed around one precession cycle (panel c), a crescent-shaped gap forms around the secular resonance at ares = 70 au, which is both
wider and deeper in the direction of planet’s pericenter. Beyond this time (panels d–e), the shape of the gap practically remains the same as it
precesses while maintaining its coherence with the planet’s pericenter. Note that the disk part interior to the gap is offset relative to the exterior
part, where a wound spiral pattern is visible at late times (panels d–e). It is also clear that no gap forms around the secular resonance at ∼ ain.
See the text (Section 5.1) for more details. This figure is available as an animation in the electronic edition of the journal. The animation runs
from t = 0 to t = τ ≈ 135 Myr with a duration of 34 seconds.

time as planesimal orbits around the resonance are perturbed
further (see panels d–e in Figs. 2, 8, and 9).

Stage 3 (τsec . t . τ ): Further into the evolution, the
structure of the gap practically remains invariant without be-
ing significantly affected by the continued growth of eccen-
tricity around ares = 70 au (see panels d–e in Figs. 2, 8).
Indeed, the gap maintains its crescent shape along with its

alignment with the planet as it co-precesses with the planet’s
apsidal line.

At the same time, since the inner component of the disk
precesses much faster than the outer component (Fig. 1), the
degree of offset between them varies as the system evolves.
This causes the gap width wg to fluctuate in time, see e.g.
Figs. 9(d)–(e), with a time-averaged value of wg ≈ 18.13 ±
1.04 au. Looking at Figs. 9(d)–(e), it is also clear that the gap
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Figure 9. The azimuthally-averaged surface density of the disk 〈Σ〉 as a function of radial distance r from the star (solid blue lines). Each
panel corresponds to each of the snapshots of the fiducial configuration (Model A, Table 1) shown in Fig. 8. The time t of each snapshot
is marked in each panel, which is also shown relative to τ ≈ 135 Myr for reference. The results are obtained by splitting the disk into 200

annular bins (Appendix C), and are all normalized with respect to the initial analytic surface density Σd(a) (Eq. 1 with p = 1) at the inner
disk edge, a = ain. For reference, the normalized profile of the initial Σd(a) is shown in each panel with the solid black lines. At early times
(panels a, b), the overall shape of 〈Σ〉 is similar to the initial profile, but with some peak features around ∼ 40 au at 1 Myr and ∼ 60 au at 10

Myr, respectively. At all times after 30 Myr (panels c–e), a clear depletion in the surface density is evident around the location of the secular
resonance (ares = 70 au, dashed vertical lines). One can see that the width and the depth of the depletion are effectively constant in time (panels
c–e). Note also the peak structure in the density just exterior to the depletion in panels (c)–(e). See the text (Section 5.1) for more details. This
figure is available as an animation in the electronic edition of the journal. The animation runs from t = 0 to t = τ ≈ 135 Myr with a duration
of 34 seconds.

depth remains roughly constant such that, in a time-averaged
sense, about 50 ± 3% of the initial density is depleted at the
resonance.

Note that, at this stage, i.e. at t & τsec, at least one secular
period has elapsed for planetesimals interior to the depletion,
causing them to settle into a lopsided, precessing coherent
structure (Figs. 8d–e). It is also noticeable that this struc-
ture reveals little or no evidence for surface density asymme-
try between its apocenter and pericenter directions, as would
have otherwise been the case if the disk were massless (i.e.
pericenter or apocenter glow; see Wyatt et al. 1999; Wyatt
2005; Pan et al. 2016). This can be understood by noting that
in this region, although planetesimal dynamics is dominated
by the planet, the disk gravity renders the forced eccentricity
to be more of a constant with semimajor axis rather than scal-
ing as 1/a (see Figs. 1, 2). This hinders the occurrence of a
pericenter or apocenter glow (for a more detailed discussion,
see section 2.4 in Wyatt (2005)).

On the other hand, planetesimal orbits exterior to the de-
pletion have not yet had the time to be randomly populated in
phase (Fig. 2). Hence, a spiral pattern develops in this region
as planetesimals undergo eccentricity oscillations. The spi-
rals appear to wrap almost entirely around the star, and these
are more noticeable closer to the depletion than to the outer
disk edge (Figs. 8d–e). This can also be seen in Figs. 9(d)–
(e) as a series of narrow peaks in the radial profile of 〈Σ〉.
This behavior can be understood by noting that planetesimals
closer to the outer disk edge have smaller eccentricities (e.g.
Fig. 2) and that their orbits are quickly phase-mixed as a re-
sult of their rapid orbital precession due to disk edge effects,
particularly at a & 130 au (e.g. Fig. 1, §2.2). Relatedly, if we

were to evolve the system for longer, planetesimals exterior
to the depletion would become phase-mixed and the spiral
structure would fade away. We note that, depending on the
resolution of observations, the spirals in this region may or
may not be visible.

Before moving on, we note that already by 1 Myr into the
evolution, planetesimal eccentricities around the inner secu-
lar resonance (i.e. ares ≈ ain) are excited to ≈ 1; see e.g.
Fig. 2(a). Evidently, however, this occurs over a narrow ra-
dial range that it does not lead to the emergence of a gap (see
Figs. 8, 9), in agreement with our expectations from Section
3.3. This also justifies our assertion in Section 4 about ig-
noring the occurrence of an inner secular resonance for the
purposes of Fig. 7.

5.2. Parameter variation

We now analyze the variation of the disk morphology as-
sociated with varying the disk-planet parameters relative to
the fiducial values (Model A).

5.2.1. Variation of the planetary semimajor axis ap

We first consider the effects of varying the planetary semi-
major axis ap which, we remind, all else being kept the same,
is equivalent to changing the ratio Md/mp (§3.1, §4). For
ease of comparison, we choose the combinations of ap, mp

and Md from Fig. 7 such that they yield the same eccen-
tricity excitation timescale at the secular resonance τ as in
model A. The parameters of the chosen models, which we la-
bel as B and C, are listed in Table 1 and are marked on Fig.
7. Note that the planet in Model C could be responsible for
truncating the disk at ain = 30 au; see §4.4.
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Figure 10. Summary of results for Model B (small ap, left col-
umn) and Model C (large ap, right column), see Table 1. The
results are shown after 100 Myr of evolution, corresponding to
t/τ ≈ 0.74 for both models. Rows (a) and (b) show the planetesi-
mal eccentricities and apsidal angles (relative to that of the planet)
as a function of semimajor axis, respectively, which are determined
analytically using Eqs. (11), (12). The corresponding snapshots
of the disk surface density and radial profiles of the azimuthally-
averaged surface density are shown in the rows (c) and (d), respec-
tively – see Appendix C for details. All other notations are the same
as in Figs. 2, 8 and 9. One can see that wider gaps are carved around
the secular resonance at ares = 70 au when the planet is closer to
the disk inner edge than to the star. It is also evident that the resul-
tant gaps are asymmetric and of approximately the same depth in
both models. See the text (§5.2.1) for more details.

Generally, we find that the evolution of the disk morphol-
ogy in each of models B and C proceeds in a similar manner
as in the fiducial model (i.e. stages 1–3 in §5.1). Indeed,
we observe the same qualitative behaviour: the launching of
a spiral arm at ain and its outward propagation in time, the
sculpting of a crescent-shaped gap around ares = 70 au by
∼ τsec, the development of a spiral pattern exterior to the de-
pletion at t & τsec and its subsequent potential disappearance

at late times (depending on the period of secular precession
at a & ares).

Figure 10 summarizes the snapshots of models B and C at
100 Myr (i.e. t/τ ≈ 0.74) into their evolution. A compari-
son of the results shown in this figure with those of Model
A (Figs. 8f, 9f) indicate that the only obvious difference is
in terms of the radial width of the gaps wg . Indeed, the gap
is radially narrower when the planet is closer to the star than
to the inner disk edge: for ap = 7 au (i.e. Model B), on
time-average, wg ≈ 11.32 ± 0.05 au, while for ap = 26.93
au (i.e. Model C) we have wg ≈ 20 ± 2 au. This depen-
dence will be investigated in the future (Rafikov & Sefilian,
in preparation), though for now we note that it is in qualita-
tive agreement with our expectation from Section 3.3 regard-
ing the resonance widths. Finally, we note that the gap depth
is not affected by variations in planetary semimajor axis: on
average, about a half of the initial density is depleted around
the secular resonance regardless of ap.

5.2.2. Variation of the planetary eccentricity ep

The models presented thus far assumed the same planetary
eccentricity of ep = 0.05. To examine its effect on the disk
morphology, we considered the evolution in otherwise iden-
tical setups but differing in the value of ep by a factor of two
from model A. These are referred to as models A-Loep (with
ep = 0.025) and A-Hiep (with ep = 0.1) in Table 1.

Once again, we found that the evolution of the disk mor-
phology qualitatively follows the same stages outlined in
Section 5.1, but on a shorter timescale when the planet is
more eccentric (recall that τ ∝ 1/ep, Eq. 16). Additionally,
we identified subtle differences in the structure of the spiral
arms with increasing ep. First, the spiral initially launched at
ain by the planet became more open for larger ep – in agree-
ment with the results of Wyatt (2005). Second, and relatedly,
the spirals beyond the gap became more prominent with in-
creasing ep due to the higher forced eccentricities in that re-
gion.

More importantly, however, we found that more eccentric
planets give rise to wider gaps8 – in qualitative agreement
with our expectations from Section 3.3, see Eq. (21). In-
deed, on time-average, we find that wg ≈ 12.8 ± 0.2 au
when ep = 0.025, and wg ≈ 24.6± 2.8 au when ep = 0.10.
This can be seen in Figure 11, where we summarize the re-
sults for models A-Loep and A-Hiep. Note that, for ease
of comparison, the results are shown at different times such
that t/τ(ep) ≈ 0.74 for both models – the results must be
compared with those of model A at 100 Myr (Figs. 8, 9).
Looking at Fig. 11, it is also evident that variations in ep do
not significantly affect the fractional depth of the gap. Note
also that, while planets with lower ep reduce the offset of the
inner disk component, the gap retains its non-axisymmetric
feature. This is largely related to the fact that for narrower

8 We defer a quantitative characterization of this dependence to future work
(Rafikov & Sefilian, in prep.)
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Figure 11. Similar to Fig. 10, but for models A-Loep (left pan-
els) and A-Hiep (right panels); see Table 1. Models A-Loep and
A-Hiep are identical to the fiducial model A, except that they are
initiated with planets with eccentricities that are lower and higher by
a factor of two than in model A (i.e. ep of 0.025 and 0.10), respec-
tively. For ease of comparison, results for each model are shown at
different times (as indicated in the top panels) such that they both
correspond to t/τ ≈ 0.74. One can see that increasing ep leads to
a wider gap around the secular resonance at ares = 70 au, with-
out significantly affecting the asymmetric shape of the gap and its
depth. See the text (§5.2.2) for more details.

gaps a smaller offset suffices for the inner component to oc-
cupy about the same fraction of the gap.

5.2.3. Variations with disk and planet masses

We now discuss the effects of varying the disk and planet
masses while keeping other parameters unchanged. To begin
with, we first recall that this requires varying both Md and
mp simultaneously, i.e. while keeping Md/mp constant, to
ensure that the secular resonance location where a gap is ex-
pected to form remains the same (i.e. ares = 70 au); see §3.1
and §4.1. In Figure 7, this is equivalent to moving vertically
up or down relative to any of the simulation setups we have
considered thus far.

As we know from Section 2, the secular precession rates
scale linearly with masses (Eqs. 4 – 8), whereas the forced
eccentricities depend only on the ratio Md/mp (Eq. 13).
Thus, varying the disk and planet masses (while Md/mp =
cte) should only change the secular evolution timescale, but
not the details of the secular dynamics. This simply is a re-
statement of the fact that scaling both Md and mp does not
affect the relative strength of perturbations due to the disk
and the planet. Consequently, if we increase both the disk
and planet masses in any of our simulations, then the very
same dynamical end-states – hence, disk morphology – will
be achieved within shorter timescales, and vice versa. We
note that, in principle, this scaling rule applies as long as
Md,mp � Mc, since otherwise the Laplace-Lagrange de-
scription in Section 2 becomes unreliable (Murray & Der-
mott 1999). However, looking at Figure 7 we see that this
limitation is not a concern in our case: the most massive al-
lowed planet has mp ∼ 10−2Mc.

5.2.4. Variations with the mass distribution in the disk

Our calculations so far have assumed a disk with density
profile Σd ∝ 1/a, i.e. with a power-law index of p = 1 in
Eq. (1). We now discuss how our results would change for
different values of p, when all else is kept the same. Since
the slope of the surface density p effectively controls the pre-
cession rate of both the planetesimals and the planet (Eqs. 6,
8), it is natural to expect that the location of the secular reso-
nance will shift as the mass distribution in the disk is varied;
see also Eq. (18). We found that this is indeed the case, and
we further confirmed that it does not qualitatively affect the
evolutionary stages presented in Section 5.1.

We generally find that when ain � ares � aout, the res-
onance location shifts at most by only about 10 per cent as
p is varied between 0.5 and 1.5. However, the direction in
which the resonance shifts in a given setup is rather subtle to
characterize for the following reasons. First, larger values of
p lead to larger Ad,p (and vice versa) as now more mass will
be concentrated in the inner disk parts than in the outer re-
gions, causing the planet to precess at a faster rate. Second –
and relatedly – the disk induced precession rate of planetes-
imals Ad at a � ain decreases in absolute magnitude, since
it is proportional to the local surface density of the disk (Eq.
6)9. To summarize, varying p has opposite effects on Ad,p
and |Ad|, and it is the detailed balance between these two ef-
fects that determines whether the resonance shifts outwards
or inwards in a given setup, see Eq. (17). For the parameters
of HD 107146 in Figure 7, we find that the resonance shifts
inwards from its nominal location, i.e. ares = 70 au, when
a larger value for p is adopted (and vice versa). Thus if we
were to generate a version of Figure 7 with e.g. p = 1.5
rather than p = 1, the values of Md required to reinstate the
resonance at ares = 70 au would be a factor of ∼ 1.1 lower.

9 We recall that Ad(a) depends also on p through the coefficient ψ1; how-
ever, the latter changes by less than a factor of 2 within the range 0.5 ≤
p ≤ 1.5 (e.g. Silsbee & Rafikov 2015b).
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6. DISCUSSION

The results of previous sections show that the secular in-
teraction between a low-eccentricity planet and an external,
co-planar debris disk can lead to the formation of a gap in the
disk. This occurs through the excitation of planetesimal ec-
centricities at around one of the two secular resonances aris-
ing due to the combined gravitational influence of the disk10

and the planet. The novelty of this mechanism is that it re-
quires the presence of only a single planet interior to a less
massive disk, and is also robust, in the sense that it operates
over a wide range of parameters.

As an example, we applied our model to the HD
107146 disk and investigated the general features of the disk
and gap morphology in the course of secular evolution. In
the following, we first discuss (in a general context) how the
results of our model compare with the observed features in
HD 107146 (§6.1). We also discuss the application of our
model to other systems (§6.2). Finally, we discuss the im-
plications of our study for determining the masses of debris
disks (§6.3), and for their dynamical modeling in general
(§6.4),

6.1. Comparison with observed structure in HD 107146

By applying our model to HD 107146, we have shown
that a gap can be readily sculpted at the observed location,
i.e. around 70 au (Marino et al. 2018), for a wide range of
planet-disk parameters; see e.g. Fig. 7, Section 5. Addition-
ally, our results show that the produced gaps invariably have a
fractional depth of about 0.5 (Section 5), which is consistent
with that observed in HD 107146 (Marino et al. 2018). While
these results are encouraging, there are some issues with our
model that need to be highlighted when it comes to compar-
ing with the observational data of HD 107146 (Marino et al.
2018).

First, as already mentioned in Section 4.2, ALMA obser-
vations of HD 107146 indicate that its disk is axisymmetric
and characterized by a circular gap (Marino et al. 2018). Our
model, however, produces gaps that are asymmetric in the
azimuthal direction (Section 5), with the disk surface density
being depleted to a greater extent and over a wider region in
the direction of planet’s pericenter. We further found that the
gap asymmetry can not be mitigated, as one might naively
expect, by adopting lower values for the planetary eccentric-
ity – see Section 5.2.2.

Second, as already stated in Section 4.3, the observed gap
in HD 107146 is ∼ 40 au wide. This is larger by about a
factor of two compared to the gap in our fiducial configu-
ration (Section 5.1). In principle, our model can yield such
wide gaps with a combination of high-eccentricity and large
semimajor axis for the planetary orbit; see Sections 5.2.1 and
5.2.2. However, this would also impose more notable non-
axisymmetric structure on the disk which, given the discus-
sion above, is problematic for HD 107146. Thus the con-

10 Recall that in this paper we ignore the non-axisymmetric component of the
disk gravity. See Section 7.1.2 for further discussion of this point.

clusion is that, within the limitations of our model (for a de-
tailed discussion, see Section 7), it is difficult to sculpt a gap
as wide and as axisymmetric as that in HD 107146 without
invoking additional processes. We discuss a way in which a
wider gap could form as a result of disk mass depletion and
secular resonance sweeping in Section 7.2.

Third, observations of HD 107146 indicate that the surface
brightness of the outer and inner rings are comparable (see
fig. 2 in Marino et al. 2018). Since sub-mm dust emission at
a distance r scales as T (r) ∝ r−1/2 (assuming black body
emission in the Rayleigh-Jeans limit), this observation sug-
gests an increasing surface density with radius, which may
seem unnatural in the context of protoplanetary disks. As a
result, this has been taken as evidence for collisional deple-
tion of planetesimals in the inner disk regions (Ricci et al.
2015; Yelverton & Kennedy 2018). Thus, if our collisionless
model were applied to any physically realistic profile (i.e.
with p > 0, Eq. 1), it is unlikely that we would reproduce
the observed brightness peaks. However, it is possible that a
shallower density slope than p = 1 could generate compara-
ble brightness peaks at times t ∼ τsec, when our model pro-
duces an overdensity just exterior to the depletion (see Stage
2 in §5.1).

The above discussion suggests that although our mecha-
nism acting alone can produce a structure qualitatively sim-
ilar to that observed in HD 107146, it does not provide a
quantitative interpretation of the observations. However, we
re-emphasize that our aim in this work was not to provide
a complete description of the HD 107146 disk, but rather to
provide a proof-of-concept for our mechanism and its feasi-
bility. We also stress that the limitations of our simple model
need to be assessed before making any definitive conclusions
(see §7 for a detailed discussion). Our results serve as a start-
ing point to guide future, more comprehensive studies which
aim to match the observations of the HD 107146 disk, or any
other disk with an observed gap.

Given the potential ubiquity of gaps in debris disks (e.g.
Kennedy & Wyatt 2014; Marino et al. 2020), it is also pos-
sible that future surveys will reveal a sample of disks with
asymmetric gaps. Two potential candidates for such systems
are HD 92945 (Marino et al. 2019) and HD 206893 (Marino
et al. 2020), which we discuss next.

6.2. Application to other systems

6.2.1. HD 92945

We first consider the system HD 92945 (Golimowski et al.
2011) which is often viewed as a sibling to HD 107146 in
many ways. Both systems not only have stars with simi-
lar masses and ages (1M� and 100 − 300 Myr, Plavchan
et al. (2009)), but also their disks show some similarities in
terms of their radial structure. Indeed, ALMA observations
of Marino et al. (2019) show that the HD 92945 disk, ex-
tending from ∼ 50 to 140 au, is double-peaked with a gap
centered at about ∼ 73 au, roughly coincident with that in
HD 107146. However, and in contrast to HD 107146, the
gap in HD 92945 appears to be asymmetric and is relatively
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narrow with an estimated width of 20+10
−8 au (Marino et al.

2019).
These features speak in favor of our model, so we could

use our results (§3) to determine the properties of the planet
and disk such that the gap is sculpted by secular resonances.
Figure 12 summarizes the results of our analysis (following
a similar reasoning as for HD 107146 in Section 4). We find
that a companion with a semimajor axis ap in the range ∼
3 − 50 au and mass mp between ∼ 10−2 and 102MJ can
produce a wide enough gap at the observed location within
the stellar age, provided that 1 . Md/M⊕ . 100 – see the
white region in Fig. 12. These limits are in agreement with
(i) direct imaging constraints (Biller et al. 2013, red curve in
Fig. 12), and (ii) disk mass estimates of ∼ 100 − 200M⊕
derived from collisional models (Marino et al. 2019).

Finally, we note that since the inner disk edge in HD
92945 is located at ∼ 50 au, i.e. further out than in HD
107146, it is possible for the planet to be on a more distant
orbit than in HD 107146 (Fig. 12). However, we confirmed
that this is only necessary if the true gap width is towards
the upper end of its estimated range (recall that increasing
ap/ain in our model leads to wider gaps). For instance, we
find that invoking a planet similar to that in Model A (but
with a disk of mass Md ≈ 16.4M⊕) produces a ∼ 16 au
wide gap, which is comparable to that observed. Future ob-
servations of this system could help to put better constraints
on the disk mass and planetary properties.

6.2.2. HD 206893

We next consider HD 206893, a 50 − 700 Myr old F5V
star, which hosts a debris disk (Marino et al. 2020) as well as
one brown dwarf companion, HD 206893 B, detected using
direct imaging (Milli et al. 2017). ALMA observations of
Marino et al. (2020) show that this disk, extending from∼ 30
to 180 au, features an asymmetric∼ 27 au wide gap centered
at ∼ 75 au. Given that HD 206893 B orbits interior to the
disk with ap ∼ 11 au (Delorme et al. 2017), this system is
ideally suited to test whether our model can reproduce the
observed gap.

To assess this, we adopt the minimum possible mass of
HD 206893 B (∼ 12MJ , Delorme et al. 2017) and calcu-
late, using Eq. (17), the disk mass that would place a secular
resonance at the observed gap location, i.e. ares = 75 au.
Assuming a surface density profile with p = 1 (Eq. 1), we
find that the required disk mass is Md ≈ 170M⊕; see also
Eq. (19). This is roughly consistent with the disk mass es-
timates of Marino et al. (2020) based on collisional models.
Moreover, we also confirmed that the gap width wg obtained
from our model agrees well with that observed: adopting the
best-fitting eccentricity of HD 206893 B, ep ∼ 0.15 (Marino
et al. 2020), we find that wg ≈ 26 au after ∼ 20 Myr of evo-
lution. If future observations with better resolution confirm
that the gap in the HD 206893 disk is indeed wider towards
the companion’s pericenter position, this will then provide a
strong support to our model.

Finally, we note that recent analyses of HD 206893 have
indicated that it is likely that this system harbors a second in-
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Figure 12. Similar to Fig. 7, but for a HD 92945-like disk. The
white region represents the disk-planet parameters that place a sec-
ular resonance at 73 au such that it acts on a time-scale less than
the stellar age (i.e. ≤ 300 Myr) and is wide enough to have an
observable effect. All other notations and exclusion criteria are
similar to those in Fig. 7, except that here we have also excluded
planet masses that exceed one tenth of the central star mass, i.e.
mp ≥ Mc/10 (olive shaded region in the top part of parameter
space). See the text (§6.2.1) for details.

ner companion at∼ 2 au (Grandjean et al. 2019; Marino et al.
2020). While in this work we only considered single-planet
systems, our model may easily be extended to two-planet
systems (or more). In this case, depending on the strength
of perturbations from the companion(s), our results both in
general (e.g. Section 2) and for HD 206893 may or may not
be affected significantly. Although such an analysis is be-
yond our scope here, we briefly discuss this caveat in Section
7.5.

6.3. Implications for disk mass estimates

Our results may be used to infer the presence of a yet-
undetected planet in any system harboring a double-ringed
debris disk. The inferences are, of course, degenerate with
the assumed system parameters but, more importantly, they
are subject to the condition that there be sufficient mass in
the disk (Sections 3, 4). Thus, the detection of planets with
the inferred properties will not only provide strong support
to our model, but also – and more importantly – provide a
unique way to indirectly measure the total mass of the debris
disk Md (see e.g. Section 6.2.2). This is particularly appeal-
ing, considering the fact that Md can not be accessed using
other techniques – not least without invoking theoretical col-
lisional models to extrapolate observed dust masses to the
unobservable larger planetesimals that carry most of the disk
mass (see Krivov & Wyatt 2021, for a detailed discussion).
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This represents a promising avenue to consider in the future,
in particular with the advent of new generation instruments
such as JWST which could detect planets with mp . 10MJ

at ap ∼ 10 au separations. Conversely, the results of Section
3 may be used to investigate whether or not the debris disk
of a known planet-hosting system should have a gap. Future
observations of such systems e.g. with ALMA looking for
evidence – or lack thereof – of a gap could help in constrain-
ing the total disk mass.

6.4. The importance of disk self-gravity in dynamical
modelling of debris disks

The study presented here has further consequences beyond
an explanation of gap formation in debris disks. Particularly,
our findings strongly emphasize the need to account for the
(self-)gravitational effects of disks in studies of planet-debris
disk interaction. As we showed in this study, the end-state of
secular interactions between a single planet and a disk having
only a modest amount of mass can be radically different from
the naive expectations based on a massless disk. Indeed, if it
were not for the disk gravity in our model, secular resonances
would have not been established and so no gap would have
formed in the disk – at least not without invoking two or more
planets (e.g. as done by Yelverton & Kennedy 2018), or a
single but precessing planet (Pearce & Wyatt 2015).

This also highlights an important caveat related to the dy-
namical modelling of debris disks in general. While stud-
ies treating debris disks as a collection of massless particles
seem to successfully reproduce a large variety of observed
disk features by invoking unseen planets (e.g. see reviews
by Krivov 2010; Wyatt 2018), their inferences about the un-
derlying planetary system architecture may be compromised.
The inclusion of disk gravity would – at least – impose modi-
fications on the masses and orbital properties, if not numbers,
of invoked planets. Thus, caution must be exercised in the in-
terpretation of observed disk structures when the disk mass
is ignored.

Recently, Dong et al. (2020) raised a similar point when
it comes to ascribing observed morphologies of disks (as-
sumed to be massless) to single planets in situations where
the potential presence of a second planet is ignored. We urge
a similar analysis to be performed by considering a natural
hypothesis of having non-zero disk mass in contrast to the
potential presence of additional planets. Although this is be-
yond the scope of our current work, the formalism outlined
in Section 2 could provide a useful starting point for such
an analysis. To summarize, the inclusion of disk self-gravity
in studies of planet-disk interactions should be considered in
dynamical modelling of debris disks.

7. LIMITATIONS AND FUTURE WORK

We now review some of our model assumptions and limita-
tions, and discuss how relaxing them would affect our results.
We plan to address these issues in future papers of this series.

7.1. Disk model assumptions

7.1.1. Treating planetesimals as test-particles

In this work we treated planetesimals as massless test-
particles, and analyzed their secular evolution under the in-
fluence of gravity from both the planet and the debris disk.
To this end, we modelled the debris disk as being passive:
that is, as a rigid slab that provides fixed axisymmetric grav-
itational potential (see Eq. 3 and §2, disk non-axisymmetry
is discussed next in §7.1.2). Thus, at first glance, it appears
that instead of the planetesimals to be contributing to the col-
lective potential of the disk, they are enslaved by the fixed
disk potential given in Eq. (3). In reality, though, these
two approaches are subtly similar. This is because the orbit-
averaged disturbing function for a planetesimal of mass mj

due to all other N massive planetesimals in a disk – in the
continuum limit (i.e. N → ∞,mj ∼ N−1) – is equivalent
to that in Eq. (3). This can be verified by somewhat tedious
but straightforward calculation which requires softening the
gravitational interaction between massive planetesimals, in-
tegrating radially over all planetesimals, and taking the limit
of zero softening (Hahn 2003; Sefilian & Rafikov 2019).

To further justify this equivalence, we simulated the sec-
ular dynamics of disk-planet systems by modelling the disk
as a swarm of N massive planetesimals, each represented as
a ring11, that interact via softened gravity (e.g. Hahn 2003;
Touma et al. 2009; Batygin 2012). We found that simula-
tions carried out with negligible softening parameter accu-
rately reproduce the analytical solutions presented in Sec-
tion 2.3 (which is, of course, possible only when the non-
axisymmetric perturbations due to simulated disk particles
are neglected, i.e. as in §2). We will present further details
about this softened ‘N -ring’ method in an upcoming work
(Paper II).

7.1.2. Non-axisymmetric component of disk gravity

A major limitation of this work is that we only accounted
for the axisymmetric contribution of the disk gravity, ignor-
ing its non-axisymmetric component (Section 2). That is to
say, our model does not account for the non-axisymmetric
perturbations that disk particles can exert both among them-
selves and onto the planet (see §7.1.1), even though we find
that the disk naturally develops non-axisymmetry (Sections
5.1, 5.2). This omission allowed us to elucidate the key ef-
fects of disk gravity (semi-)analytically. This comes at the
expense of reduced coupling within the system that inhibits
the exchange of angular momentum between the disk and
planet. Thus, the outlined theory serves as a first step to-
wards a comprehensive understanding of the role played by
disk gravity and its observational implications.

Previous studies of gravitating disk-planet systems (which
include the full gravitational effects of disk particles) have
shown that an eccentric planet could launch a long, one-

11 Recall that orbit-averaging is equivalent to smearing particles into massive
rings along their orbits, where the line-density of each ring is inversely
proportional to the orbital velocity of each particle (Murray & Dermott
1999).
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armed, spiral density wave at a secular resonance in the
disk (Ward & Hahn 1998; Hahn 2003, 2008). Such spiral
waves propagate away from the resonance location as trail-
ing waves with pattern speed equal to the planetary preces-
sion rate. These waves also transfer angular momentum from
the disk to the planet in a way that damps the planet’s eccen-
tricity, without affecting its semimajor axis12 (Goldreich &
Tremaine 1980; Ward & Hahn 1998; Tremaine 1998; Ward
& Hahn 2000).

Our idealized model is not designed to capture the full rich-
ness of such dynamical phenomena. Thus, a more sophisti-
cated analysis is crucial, and will be the subject of future
work (Paper II, in preparation). For now, we note that the
non-axisymmetric component of disk gravity is not going
to qualitatively affect the gap-forming picture. This is be-
cause the divergence of eccentricities at the resonance ensues
from the commensurability between planetesimal and plane-
tary precession rates, while the torques due to the planet’s and
disk’s non-axisymmetric potentials are non-zero (e.g. Silsbee
& Rafikov 2015b,a; Davydenkova & Rafikov 2018). Never-
theless, the generation of long spiral waves exterior to the
depleted region may affect the disk structure and its evolu-
tion; this could be of observational relevance. Additionally,
the damping of planetary eccentricity could reduce the gap
asymmetry observed in our simulations via lowering eforced
over time, especially in the inner disk parts. Preliminary sim-
ulations carried out with the softened ‘N -ring’ model con-
firm these expectations (Paper II).

7.2. Collisional depletion of planetesimals

We modelled the debris disk as an ensemble of collision-
less planetesimals. In practice, once the disk is sufficiently
stirred, planetesimals collide and break up into smaller frag-
ments, initiating a collisional cascade (e.g. Wyatt 2008). In
this process, colliding planetesimals are gradually ground to
dust until they are removed from the system by radiation ef-
fects; causing the disk mass to collisionally deplete over time.

We expect collisions to preferentially deplete the disk den-
sity around the secular resonance (where e → 1 and rela-
tive velocities between planetesimals are high), in addition
to the purely dynamical depletion illustrated in Sections 5.1,
5.2. This may enhance the gap depths arising from our col-
lisionless model. Collisional evolution may also contribute
to widening the gaps resulting from our model. This can
be understood as follows: as the total disk mass is depleted
over time, the system’s precession frequencies get altered,
modifying the location of the secular resonances in a time-
dependent way13 (e.g. Heppenheimer 1980; Ward 1981; Na-
gasawa & Ida 2000). Looking at Fig. 4, we can infer that the
resonance would sweep through the disk outwards as Md de-
creases, potentially producing a wider gap than in our model

12 This process is referred to in the literature as “resonant friction” (Tremaine
1998) or “secular resonant damping” (Ward & Hahn 2000).

13 We note that this could also happen if the planet migrates, either inwards
or outwards, due to some physical process not considered here.

(as then eccentricities could be excited over a larger range
in semimajor axis). This could be important e.g. for the HD
107146 disk, for which our fiducial model produces gaps that
are narrower than observed (see §6.1). Furthermore, we ex-
pect the shape of the resulting gap to provide information on
the initial and final disk masses along with the history of mass
loss. We defer detailed investigation of collisional effects to
future work.

7.3. Coplanarity of the disk-planet system

Another assumption of our model is the coplanarity of the
debris disk and the planetary orbit, which can be easily re-
laxed in future studies. Generally, however, we believe that
a small but non-zero relative inclination (e.g. . 5◦) between
the planet and disk particles would not affect our results for
eccentricity dynamics (e.g. Pearce & Wyatt 2014). This is
because the evolution of eccentricities e and inclinations I
are decoupled from each other when e, I � 1 (Murray &
Dermott 1999). Nevertheless, it is possible for planetesimal
inclinations – similar to eccentricities – to be excited sig-
nificantly at inclination resonances (e.g. Hahn 2003, 2007),
where the precession rates of both planet’s and planetesimal’s
longitudes of ascending node are commensurate. In princi-
ple, this could happen when the planet is initially inclined
with respect to a razor-thin disk, or when the planet lies in
the mid-plane of a puffed-up disk that is populated by plan-
etesimals with non-zero inclination dispersion. Future stud-
ies should investigate this intriguing phenomenon.

7.4. Secular approximation

We limited the expansion of the secular disturbing func-
tion to second order in eccentricities (§2). Hence, our results
are only approximate at high eccentricities, e.g. in the vicin-
ity of the secular resonances, where it is necessary to include
higher-order terms in the disturbing function (e.g. see Sefil-
ian & Touma 2019). Such an exercise would, primarily, limit
the eccentricity amplitude at the resonance (Malhotra 1998).
Nevertheless, it seems unlikely that this would affect the gap
formation. For instance, from Figs. 8, 9, we can see that
the gap is already well-developed when eccentricities at the
resonance are still rather modest, i.e. e ∼ 0.2. Higher-order
terms, however, could give rise to mild quantitative differ-
ences in terms of the dynamical timescales, e.g. period of
eccentricity oscillations.

We also ignored mean-motion resonances between the
planet and the planetesimals. Previously, Tabeshian &
Wiegert (2016) found in simulations of synthetic debris disks
that gaps can be carved at the 2:1 MMR with an internal low-
e planet (ep . 0.1, see also Regály et al. 2018). In our simu-
lated systems, this can occur around ' ain. However, as the
authors explain, MMR gaps will be blurred or even washed
out by high-eccentricity planetesimal orbits further out in the
disk. In our case, this could be easily achieved by planetesi-
mals in the vicinity of the secular resonance.

7.5. Extension to multi-planet systems
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Finally, we only considered what is arguably the least com-
plex planetary system architecture: a single planet orbiting
interior to a massive disk. However, the model presented
in Section 2 may easily be extended to systems of two (or
more) planets interior to the disk. The presence of additional
planet(s) may or may not affect our results, depending on the
perturbation strength of the additional planet(s).

In a two-planet system, for instance, it is straightforward
to expect that our results would remain roughly the same if
the perturbations due to the additional planet are negligible,
e.g. if it is much less massive and closer to the central object
than its counterpart. The extreme of course is a system where
the additional companion overshadows the gravitational ef-
fects of the disk – even if the latter is relatively massive, say,
with Md ∼ 100M⊕. Such a case would be reminiscent of
the setup in Yelverton & Kennedy (2018), where the authors
show that two planets carve a crescent-shaped gap – similar
to that we find in our study (Section 5) – centered around
one of the two secular resonances they establish within an
external, massless disk. The transition between these two ex-
treme cases remains an interesting scenario to explore. In
this case it may be possible to carve either two or a single
but broader gap in the disk, depending on the properties of
the secular resonances of the “two planets + massive disk”
system which, in principle, can feature up to four resonances
(where two of them will be near ain due to disk edge effects,
see §2.4.2). A detailed investigation of the potential effects
of an additional planet on our results is beyond our scope
here and is best deferred to a future study. Nevertheless,
we acknowledge that it could be important for the location
(if not number) of secular resonances and thus is crucial for
constraining the disk-planet parameters based on imaged gap
structures.

8. SUMMARY

In this work we explored the secular interaction between an
eccentric planet and an external self-gravitating debris disk,
using a simplified analytic model. The model is simplified in
the sense that it only accounts for the axisymmetric compo-
nent of the disk (self)-gravity, ignoring its non-axisymmetric
contribution. Despite this limitation, however, this is the first
time (to our knowledge) that the effects of disk gravity have
been considered analytically in such detail in the context of
debris disks. We used the analytic model to assess the pos-
sibility of forming gaps in debris disks through excitation of
planetesimal eccentricities by the secular apsidal resonances
of the system. We summarize our key results below.

(i) When the debris disk is less massive than the planet,
10−4 . Md/mp . 1, the combined gravity of the
disk and the planet can mediate the establishment of
two secular apsidal resonances in the disk.

(ii) We map out the behavior of the characteristics of the
secular resonances – i.e. locations, time-scales, and
widths – as a function of the disk and planet parame-
ters. In particular, we find that one of the secular reso-
nances can lead to the formation of an observable gap
over a broad region of parameter space.

(iii) As an example we applied our results to HD
107146 and HD 92945, and showed how the proper-
ties of a yet-undetected planet, together with the mass
of the debris disk, can be constrained to produce a gap
at the observed location. In the case of HD 206893, we
find that the directly imaged companion can sculpt the
observed gap if the debris disk is ≈ 170M⊕ in mass.

(iv) By investigating the secular evolution in such systems,
we identified three distinct evolutionary stages which
occur on timescales measured relative to the planetary
precession period. We find that the gap forms by the
time the planet has completed around one precesional
cycle, on a timescale of tens of Myr.

(v) Independent of the system parameters, the gap carved
around the secular resonance is asymmetric: it is both
wider and deeper in the direction of the planetary peri-
center. Additionally, its fractional depth is always
about 0.5. The gap width, however, increases with in-
creasing planetary semimajor axis and/or eccentricity.

(vi) More generally, our results suggest that the gravita-
tional potential of debris disks can have a notable effect
on the secular evolution of debris particles. We advo-
cate the inclusion of disk gravity in studies of planet-
debris disk interactions.

The mechanism presented here represents what is arguably
the simplest pathway to forming gaps in debris disks, akin to
those observed in HD 107146, HD 92945 and HD 206893. It
may indeed obviate the need for invoking more complicated
scenarios, e.g. multiple planets interior to or within the disk.

Finally, we remark that the present work should be envis-
aged as a first step towards an in-depth exploration of the
effects of disk gravity in planet-debris disk interactions. In a
forthcoming paper (Paper II), we will extend our current cal-
culations using numerical techniques to properly account for
the full gravitational effects of the disk. In the future, we also
plan to investigate the role of disk gravity in shaping debris
disk morphologies other than gaps.
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APPENDIX

A. DISTURBING FUNCTION OF PLANET DUE TO
DISK GRAVITY

To calculate the secular disturbing function Rd,p of the
planet due to an external disk, we use equations (4)–(6) from
Sefilian & Rafikov (2019) for the case of unsoftened gravity.
Strictly speaking, these equations represent the continuum
version of the classical Laplace-Lagrange theory (e.g. Mur-
ray & Dermott 1999), and are valid for arbitrary profiles of
disk surface density Σd(a), eccentricity ed(a), and apsidal
angle $d(a).

For the purposes of this work, we consider the disk to be
apse-aligned (i.e. d$d/da = 0) and have surface density
Σd(a) given by Eq. (1). For future use in Paper II, we also
adopt a power-law scaling for the disk eccentricity given by

ed(a) = e0

(aout
a

)q
(A1)

for ain ≤ a≤aout. Plugging these ansatzes into Eqs. (4)–
(6) of Sefilian & Rafikov (2019) it can be shown, after some
algebra, that Rd,p is given by:

Rd,p=npa
2
p

[
1

2
Ad,pe

2
p +Bd,pep cos ($p −$d)

]
,(A2)

with

Ad,p(ap) = 2π
GΣd(ain)

npap

ain
ap
φ1, (A3)

Bd,p(ap) =π
GΣd(ain)

npap

ain
ap
ed(ain)φ2. (A4)

Here Ad,p represents the free precession rate of the planetary
orbit in the disk potential, while Bd,p represents the torque
exerted on the planet by the non-axisymmetric component
of the disk gravity (which we have neglected in this work,
§7.1.2). The effects of the latter will be explored in the future
(Paper II).

The coefficients φ1 and φ2 appearing in Eqs. (A3) and
(A4), respectively, are given by:

φ1 =
1

4

(
ap
ain

)1−p ap/ain∫
ap/aout

αp−1b
(1)
3/2(α)dα,

=
3

4

(
ap
ain

)2
1− δ−1−p

p+ 1
φc1, (A5)

φ2 =−1

2

(
ap
ain

)1−p−q ap/ain∫
ap/aout

αp+q−1b
(2)
3/2(α)dα,

= −15

8

(
ap
ain

)3
1− δ−2−p−q

p+ q + 2
φc2, (A6)

where δ ≡ aout/ain. Here, the second lines in both (A5)
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Figure 13. The behavior of the correction factors φc
1 (panel A, Eq.

A7) and φc
2 (panel B, Eq. A8) as a function of ap/ain. The calcu-

lations assume different disk models specified by the values of p, q
and δ = aout/ain as explained in legend. Both φc

1 and φc
2 approach

unity as ap/ain → 0, and they diverge as ap/ain → 1.

and (A6) are obtained by performing the integrals appearing
in the definitions of φ1 and φ2 assuming α → 0; that is,
b
(1)
3/2(α) ≈ 3α and b(2)3/2(α) ≈ (15/4)α2. Thus, the coeffi-

cients φc1 and φc2 in Eqs. (A5) and (A6) represent correction
factors accounting for the contribution of disk annuli close to
the planet, i.e. higher order terms in b(m)

3/2 (α). It is straight-
forward to show that

φc1 =
1

3

p+ 1

1− δ−p−1

ain
ap

δ∫
1

u−p−1b
(1)
3/2

(
1

u

ap
ain

)
du, (A7)

φc2 =
4

15

p+ q + 2

1− δ−p−q−2

(
ain
ap

)2
δ∫

1

u−p−q−1b
(2)
3/2

(
1

u

ap
ain

)
du.(A8)

Figure 13 shows the behavior of φc1 and φc2 as a function of
ap/ain, computed for different values of p, q and δ. For clar-
ity, we have plotted the curves of φc1 and φc2 in separate pan-
els. We see that φci (i = 1, 2) mainly depend on ap/ain,
showing weak dependence on the disk model. Indeed, re-
gardless of (p, q, δ), we have φci → 1 for ap/ain → 0, while
in the limit ap/ain → 1 we see that φci diverge. This diver-
gence follows from the fact that b(m)

3/2 (α)→ (1−α)−2 when
α→ 1.

Finally, we note that inserting Eqs. (2) and (A5) into Eq.
(A3) results in the expression for Ad,p given by Eq. (8). A
similar expression was found by Petrovich et al. (2019) (see
also Ward 1981; Rafikov 2013).
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B. ANALYTIC EXPRESSION FOR RESONANCE
WIDTHS

The width w of a given resonance at a = ares can be ap-
proximated by using the fact that

A
(
ares +

w

2

)
−A

(
ares −

w

2

)
≈ w × dA

da

∣∣∣∣
ares

. (B9)

Additionally, Equation (20) allows us to write

A (ares ± w/2) ≈ Ad,p ∓ ẽ−1Bp(ares)× sgn [dA/da]ares ,
(B10)

where sgn(x) = x/|x| is the sign function introduced to ac-
count for the fact that resonances occurring at ' ain have
dA/da > 0, while those further away have dA/da < 0; see
Fig. 1. Substituting Eq. (B10) into Eq. (B9), we thus arrive
at

w

ain
≈ 2

ain

∣∣∣∣Bp(a)ẽ−1

dA/da

∣∣∣∣
ares

. (B11)

The above expression can be further simplified by consid-
ering the approximate forms of Ap and Ad in the limits of
ap/ares → 0 and ain � ares � aout, respectively. In this
case, we can approximate the derivative of A = Ap + Ad in
the following fashion

dAp
da

∣∣∣∣
ap�a

=
−7

2a
Ap,

dAd
da

∣∣∣∣
ψ1=cte

=
1− 2p

2a
Ad, (B12)

and expression (B11) reduces to

w

ain
≈ 4

ares
ain

∣∣∣∣ Bp(ares)ẽ
−1

7Ap(ares) + (2p− 1)Ad(ares)

∣∣∣∣ . (B13)

Inserting the condition for secular resonances, i.e. Eq. (17) or
Eq. (19), into the above expression for p = 1, and taking the
limits ap/ain → 0 (so we can use the asymptotic behavior
of b(m)

s (α)) and ain � ares � aout, we arrive at the scaling
relationship given by Eq. (21).

C. CONSTRUCTING MAPS OF DISK SURFACE
DENSITY

Here, we provide some technical details about how we con-
vert the eccentricity-apsidal angle distribution of planetesi-
mals into maps of disk surface density.

We first begin by assigning a mass mi to each considered
planetesimal in a given annulus of the disk (which in this
work are N = 5000 in number, §2.3). Given that in our
calculations the planetesimals are initiated on circular orbits,
the planetesimal masses can be determined from their initial
semimajor axis distribution – which remains constant in the
secular approximation. This can be done by using the rela-
tionship dm(a) = 2πaΣd(a)da (Statler 2001; Davydenkova
& Rafikov 2018) relating the mass distribution per unit semi-
major axis to the density distribution (which in our case is
given by Eq. 1 with p = 1, §2.1). The self-consistency of
this initial mass assignment to planetesimals – which are es-
sentially treated as massless particles in our analytical model
(see §2) – is discussed in Section 7.1.1.

At a given time of the evolution, we then populate every
planetesimal’s orbit with Nnp = 104 new particles: each
with mass mi/Nnp, orbital elements similar to the parent
planetesimal, but with randomly distributed mean anoma-
lies l between 0 and 2π. This procedure is motivated by the
orbit-averaging principle (Murray & Dermott 1999). We also
note that this procedure effectively increases the number of
evolved planetesimals (from N to N ×Nnp), enhancing the
quality of the resultant maps of disk surface density. Next, we
numerically solve for each new particle’s eccentric anomaly
ε using Kepler’s equation (Murray & Dermott 1999),

l = ε− e sin ε, (C14)

and compute the position of each particle along its orbit via
(Sridhar & Touma 1999; Binney & Tremaine 2008):(

X

Y

)
= a

(
cos$ − sin$

sin$ cos$

)
·

(
cos ε− e√
1− e2 sin ε

)
. (C15)

Finally, we bin the positions of all N × Nsp particles in the
Cartesian system centered at the host star (with a resolution
of 400 × 400 pixels in this work), compute the total mass
per bin and divide by its area to arrive at the disk surface
density distribution, Σ, at a given time. Note that this also
allows us to trivially obtain the azimuthally-averaged surface
density profile 〈Σ〉 as a function of radial distance r, where
r =
√
X2 + Y 2 = a(1 − e cos ε), by splitting the disk into

annular bins.
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