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ABSTRACT
The SEDs of some nearby stars show mid-infrared excesses from warm habitable zone dust,
known as exozodiacal dust. This dust may originate in collisions in a planetesimal belt before
being dragged inwards. This paper presents an analytical model for the size distribution of
particles at different radial locations in such a scenario, considering evolution due to destructive
collisions and Poynting-Robertson (P-R) drag. Results frommore accurate but computationally
expensive numerical simulations of this process are used to validate the model and fit its free
parameters. The model predicts 11 µm excesses (R11) for discs with a range of dust masses and
planetesimal belt radii using realistic grain properties. We show that P-R drag should produce
exozodiacal dust levels detectable with the Large Binocular Telescope Interferometer (LBTI)
(R11 > 0.1%) in systems with known outer belts; non-detection may indicate dust depletion,
e.g. by an intervening planet. We also find that LBTI could detect exozodiacal dust dragged in
from a belt too faint to detect at far-infrared wavelengths, with fractional luminosity f ∼ 10−7

and radius ∼ 10 − 80 au. Application to systems observed with LBTI shows that P-R drag
can likely explain most (5/9) of the exozodiacal dust detections in systems with known outer
belts; two systems (β Uma and η Corvi) with bright exozodi may be due to exocomets. We
suggest that the three systems with exozodiacal dust detections but no known belt may have
cold planetesimal belts too faint to be detectable in the far-infrared. Even systems without
outer belt detections could have exozodiacal dust levels R11 > 0.04% which are problematic
for exo-Earth imaging.
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1 INTRODUCTION

About 20% of main sequence stars show far-infrared (IR) excesses,
indicating the presence of circumstellar dust orbiting at tens or
hundreds of au, known as debris discs (Wyatt 2008; Krivov 2007;
Matthews et al. 2014). For example, surveys have been conducted
at 24 µm and 70 µm with Spitzer/MIPS (e.g. Rieke et al. 2005;
Meyer et al. 2006; Su et al. 2006; Hillenbrand et al. 2008) and 70−
160 µmwith Herchel/PACS (Eiroa et al. 2013; Thureau et al. 2014;
Sibthorpe et al. 2018) in order to detect cold debris discs. These
observations are explained by large planetesimals in a belt colliding
and grinding down to produce a collisional cascade of particles
covering a range of sizes. Poynting-Robertson (P-R) drag causes
particles to lose angular momentum, leading to inward migration as
their semimajor axes decrease and their orbits become circularised.
However, Wyatt (2005) showed that for the debris discs that have
been detected, themajority of the dust does notmanage tomigrate in
by P-R drag, since these belts are so dense that the dust is destroyed
on a much shorter timescale in mutual collisions.
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Nevertheless, observations of stars in the mid-infrared show
the presence of warm (∼ 300 K) dust in many systems, at closer
proximity to the star than a standard debris disc. These clouds of
warm dust are referred to as ‘exozodi’, with exozodiacal dust in
analogy to our solar system’s zodiacal cloud. The term ’exozodia-
cal dust’ can also be used to refer to the hot circumstellar dust which
produces near-infrared excesses (originally detected by Absil et al.
2006). While this is important to the study of the very innermost re-
gions of planetary systems within a few 0.1 au of the star, it requires
additional physics which is not considered here, such as sublima-
tion. The focus of this paper is on warm exozodiacal dust, which
produces mid-infrared excesses. For observations of hot exozodi,
see Absil et al. (2013) and Ertel et al. (2014).

The first observations of warm exozodiacal dust were done us-
ing mid-infrared photometry, such as with the Infrared Astronomi-
cal Satellite (IRAS, Gaidos 1999), the Infrared Space Observatory
(ISO, Laureijs et al. 2002), Spitzer (Lawler et al. 2009), and WISE
(Kennedy &Wyatt 2013), all finding less than 2% of observed stars
had mid-infrared excesses at the given sensitivities. However, the
sensitivity of photometry is limited, as only the brightest exozodi
can be detected above the stellar photosphere, with mid-infrared
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fluxes in excess of 10% of the stellar flux required for a detec-
tion. Interferometry gives much better spatial resolution, allowing
the dust emission to be separated from that of the star such that
much fainter excesses can be detected, at levels . 1%. Previously
the Keck Interferometer Nuller (KIN, Colavita et al. 2009; Serabyn
et al. 2012) studied 47 nearbymain-sequence stars (Mennesson et al.
2014; Millan-Gabet et al. 2011). These studies found that five stars
had an 8-9 µm excess at a sensitivity of 150 zodis (where the unit of
zodi refers to dust with the same optical depth at 1 au as the zodiacal
cloud), equivalent to an excess of ∼ 1%. NASA’s Large Binocular
Telescope Interferometer (LBTI, Defrère et al. 2016; Hinz et al.
2014) is a nulling interferometer which is sensitive to warm dust
down to the level of a few zodis, equivalent to a null excess of
∼ 0.05%. Recently the HOSTS survey (Ertel et al. 2018a, 2020)
was conducted in the N band to search for levels of exozodiacal dust
around 38 nearby main sequence stars using LBTI, with a detection
rate of 26%.

The origin of exozodiacal dust is still not well understood. In a
cold planetesimal belt at tens of au, km-sized bodies can survive for
Gyr timescales, but in exozodiacal clouds at just a few au, collisional
lifetimes of such planetesimals are much shorter (Dominik & Decin
2003; Wyatt et al. 2007a). While some exozodi can be explained by
an in situ planetesimal belt (Geiler & Krivov 2017), particularly for
those found in young systems, this is not always the case (see, e.g.
Wyatt et al. 2007a; Lebreton et al. 2013). For example, Kennedy &
Wyatt (2013) concluded that another component is needed in addi-
tion to in situ belts to explain the bright exozodi detected in WISE
12 µm observations. Some of these exozodi could be explained by
transient phenomena, such as a dynamical instability similar to the
Late Heavy Bombardment (LHB) of the solar system, that produces
a short-lived enhancement of dust in the inner regions (Booth et al.
2009; Bonsor et al. 2013). Rare, bright exozodi may also be ex-
plained by recent collisions of large planetesimals similar to the
Moon-forming impact (Jackson & Wyatt 2012; Kral et al. 2015).
However, such events cannot explain a phenomenon as common as
26%.

Another possibility is that exozodiacal dust is produced in
a cold outer planetesimal belt, and then transported to the inner
regions of the planetary system, either by P-R drag (Kennedy &
Piette 2015) or comet delivery (Bonsor et al. 2012; Marboeuf et al.
2016; Faramaz et al. 2017). Indeed, it is believed that the zodiacal
cloud is primarily sustained by Jupiter-family comets delivering
material to the inner solar system (Nesvorný et al. 2010, 2011;
Rowan-Robinson & May 2013; Ueda et al. 2017), along with dust
from the asteroid belt being dragged in towards the Sun by P-R
drag. Both the results of KIN (Mennesson et al. 2014) and HOSTS
(Ertel et al. 2020) found a higher occurrence rate of exozodiacal
dust around stars with known far-infrared excesses which imply the
presence of a cold debris disc.

Given the potential correlation of the presence of cold and
warm dust, it is important to explore the viability of transport of
dust from an outer planetesimal belt as a source of the observed
exozodiacal dust. The full distribution of grains created in a plan-
etesimal belt, including all grain sizes and distances to the star, can
be studied numerically. For example, ACE (Krivov et al. 2005, 2006,
2008; Reidemeister et al. 2011) finds the distribution of particles
in phase space based on the gain and loss of particles to collisions
and drag, with simplified dynamics. Similarly, van Lieshout et al.
(2014, hereafter V14) produced a numerical model of the evolu-
tion of particles in a debris disc, including the effects of collisions,
P-R drag, and sublimation. However, numerical methods such as
these models are computationally expensive, meaning they are less

straightforward to implement than a simple analytical model and
are more time-consuming.

A simple analytical prescription for the process of P-R drag
transporting dust inward from a planetesimal belt exists, but is only
approximate. For example, Mennesson et al. (2014) showed con-
sistency between observations with KIN and the simple analytical
prescription of Wyatt (2005) for the interplay of collisions and P-R
drag. A modified version of the Wyatt (2005) model was used by
Kennedy & Piette (2015) to predict the levels of dust transported
inwards from Kuiper belt analogues by P-R drag. They found that
LBTI, which probes lower excess levels, should be able to detect
this component of dust brought inwards by P-R drag for systems
with known Kuiper belt analogues, and that it may detect such dust
for some systems with no detectable parent belt. Nevertheless, this
model was still inaccurate, and only considered a single grain size,
moreover assuming the grains were black bodies.

This provides the motivation for this study, which aims to
produce an analytical model that considers all particle sizes, rather
than only grains just above the blowout size, to give a distribution
of dust for a system with an outer planetesimal belt evolving via
collisional evolution and P-R drag. The size distribution is described
in terms of geometrical optical depth, defined such that τ(D, r)dD is
the cross-sectional area surface density in particles of size D→ D+
dD at radius r . Combining the approach ofWyatt et al. (2011) for the
size distribution of a planetesimal belt at a single radial distancewith
Wyatt (2005) for the radial profile of a given particle size produces a
two-dimensional distribution. Results from the analytical model are
validated against the numerical model of V14 to show how it can
predict two-dimensional distributions in debris discs, and to find the
limitations of the analytical model. This gives predictions for the
levels of dust transported to the inner regions of a planetary system.
Realistic grain properties can be applied to find the corresponding
flux, and so the model can be used to assess whether this scenario
could explain the observed mid-infrared excesses of exozodi, such
as those found by LBTI.

We briefly summarise the numerical model of V14 and our
numerical results in Section 2, then describe our analytical model in
Section 3. In Section 4 we compare the predictions of our analytical
model with results from the numerical model in order to fit the
model parameters before exploring the parameter space in Section 5.
Applications of the model to the zodiacal cloud and exozodi are
presented in Section 6, and our conclusions are given in Section 7.

2 NUMERICAL MODEL

The numerical model of V14 considers the evolution of a belt of
planetesimals and the debris created when they are destroyed in mu-
tual collisions. It self-consistently takes into account the effects of
collisions, P-R drag, and sublimation on these particles. This model
uses a statistical method based on that of Krivov et al. (2005, 2006),
applying kinetic theory to obtain the spatial and size distribution of
particles in a phase space of orbital elements and particle masses.
The phase space is over orbital eccentricity e, periastron distance
q, and particle mass m; other orbital elements are averaged over
under the assumption that the disc is axisymmetric. It is assumed
that there is a uniform distribution of particles over inclination.

The continuity equation is solved numerically to find the num-
ber of particles in each phase space bin at successive times. P-R
drag and sublimation act as diffusion terms which shift particles to
adjacent phase space bins. For these processes orbit-averaged equa-
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tions are used, assuming that the relevant timescales are longer than
an orbital period.

Collision rates are calculated between pairs of phase-space
bins according to analytical equations from Krivov et al. (2006), in-
cluding the number densities of the particles, their relative velocity,
collisional cross-section, and effective volume of interaction. The
outcome of collisions is determined by the impact energy per unit
mass: if this exceeds the critical specific energy, Q?D, the collisions
are destructive such that the largest fragment has at most half the
mass of the target particle. Cratering collisions, which have specific
energy below Q?D, are not considered by the model. When two par-
ticles collide, their mass is redistributed amongst the bins according
to a redistribution function, which is a power law nr(D) ∝ D−αr ,
where D is particle diameter. Integrating this redistribution func-
tion gives the number of particles which go into each bin, up to
a maximum mass determined by the specific energy. The orbital
elements of collision fragments are determined based on conserva-
tion of momentum and the effects of radiation pressure. If a particle
has a mass below the lowest mass bin, it is considered lost due to
blowout.

The strength of radiation pressure acting on particles of a given
size is determined by the ratio of radiation pressure to gravity acting
on a particle:

β =
Frad
Fg
=

3L?Qpr
8πGM?cDρ

, (1)

where L? is the stellar luminosity, M? is stellar mass, ρ is particle
density, and c is the speed of light. Qpr is the radiation pressure
efficiency averaged over the stellar spectrum, which is a function
of particle size; this can be found numerically given assumptions
about the dust composition and stellar spectrum (see Section 2.2).
Grains released from parent bodies on circular orbits will have
eccentricities e = β/(1 − β), and will be blown out of the system
on hyperbolic orbits when β ≥ 0.5. From this, we can estimate the
smallest particle sizewhich can remain bound, under the assumption
of Qpr = 1, such that grains are perfect absorbers, as

Dbl =
3L?

4πGM?cρ
. (2)

It would be computationally expensive to model the entire col-
lisional cascade from km-sized planetesimals down to sub-micron
grains, so only particles 0.1 µm < D < 2 cm are modelled. The
largest bodies will remain confined to the planetesimal belt, with
negligible P-R drag, producing dust via collisions. This is taken
into account with a source of dust in the belt, which mimics the
production of grains by larger bodies, replenishing the dust in the
belt each time step. The model is run from an initially empty disc
until steady state is reached, such that the distribution changes by
less than 1% in a logarithmic time step. For a very massive, col-
lisional disc it takes 10 Gyr to reach steady state due to the time
taken by the largest particles to migrate inwards from the belt via
P-R drag, as the migration timescale is proportional to particle size.
However, the smallest, barely-bound grains will be in steady state
after ∼10 Myr, and dominate the optical depth. The time taken to
reach steady state increases as disc mass is decreased, and the least
massive disc considered here takes 1014 yr to reach steady state at
< 1 au. The optical depth of the lowest mass discs is dominated by
larger grains, which take longer to evolve inwards. While this is an
unrealistically long time, the time taken to reach steady state would
likely be shorter with alternative initial conditions. The starting con-
ditions chosen here assume an initially empty disc. It may be more
realistic for the disc to start with dust spread throughout the system

and so closer to steady state, which would lead to shorter conver-
gence times. In terms of computing time, it takes about a week on
a standard desktop. Only particles at < 0.02 au are affected by sub-
limation around a Sun-like star, and the minimum distance used in
this paper is 0.03 au. Sublimation is therefore ignored throughout
this paper, as the focus is on the overall distribution, rather than the
innermost edges of the disc. Sublimation would, however, be very
important when studying hot exozodiacal dust, which gives rise to
near-infrared excesses. Our model is only aimed at explaining warm
exozodi, for which sublimation is less important. The output of the
numerical model is a steady-state distribution of particles in the
phase space of orbital elements and particle masses, which can be
converted to a distribution over radial distance and particle size via
Haug’s integral (Haug 1958).

2.1 Model inputs

The inputs to the model include the radius of the parent belt r0,
stellar mass M? and luminosity L?, the semi-opening angle of the
disc ε , and the slope of the redistribution function αr. The critical
specific energy for catastrophic collisions follows a combination
of power laws to represent the strength and gravity regimes as
Q?D = QaD−a + QbDb , with the parameters of the power laws
being inputs. The overall level of dust in the source belt is set with
an input parameter which is the mass supply rate of dust in the belt
from collisions of large bodies, ÛMin. The mass from the break-up
of the largest bodies is distributed according to the redistribution
function of collisional fragments nr(D) across the range of sizes
considered, down to the blowout size. The model also takes the
grain density ρ, as well as values of β for different particles sizes
(see Section 2.2).

Typically it is assumed that the slope of the redistribution
function is in the range 3 < αr < 4, so αr = 3.5 is used. The
effect of varying αr is studied in Section 5.4. All particles which are
modelled are small enough such that they are in the strength regime
of Q?D. Laboratory experiments with high-velocity collisions of
small particles find a constant value of Q?D = 107 erg g−1 (Flynn &
Durda 2004), which is used for ease of comparison betweenmodels.
Section 5.3 investigates the effect of using a power law forQ?D. Most
of the simulations are for a Sun-like star, M? = M� , L? = L� ,
and a disc semi-opening angle (equivalent to the maximum orbital
inclination of particles) of ε = 8.5°. The fiducial value for the
belt radius is r0 = 30 au, and for the mass input rate is ÛMin =
10−15M⊕ yr−1, though a range of values is considered for each.

A similar phase space grid is used to that of V14. For eccen-
tricity, the grid has ten logarithmically spaced bins for 0 ≤ e ≤ 1,
for which the lowest bin is at e = 10−4, with two linear bins each
for hyperbolic orbits (1 ≤ e ≤ 2) and the anomalous hyperbolic
orbits of β > 1 grains (−2 ≤ e ≤ −1). The periastron grid has 60
logarithmic bins from q = 0.03 au to q = 100 au for the fiducial
model, which has a belt at r0 = 30 au. Themass grid has logarithmic
bins, with higher resolution for the smallest particles. There are 45
high resolution bins from D = 0.1 µm to D = 20 µm, with 18 low
resolution bins going up to the maximum size D = 2 cm.

2.2 Optical properties

Optical properties of the grains are calculated using the same
method as Wyatt & Dent (2002), with compositions from the core-
mantle model of Li & Greenberg (1997), first used for interstellar
dust, which can also be used for dust in debris discs (Li &Greenberg
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1998; Augereau et al. 1999). This model assumes fluffy aggregates
with a silicate core and organic refractory mantle. Grains are nomi-
nally assumed to be asteroidal, such that they have volume fractions
of 1/3 amorphous silicate and 2/3 organic refractory material with
zero porosity, which gives a dust density of ρ = 2.37g cm−3 Alter-
native compositions are considered later in the paper. The radiation
pressure efficiency Qpr and absorption efficiencies Qabs(λ,D) are
calculated using Mie Theory (Bohren & Huffman 1983), Rayleigh-
Gans theory, or geometric optics, depending on the wavelength
(Laor & Draine 1993). Given Qpr, realistic values of β can be found
for use in the numerical model. For the assumed asteroidal compo-
sition, the blowout size (i.e. that for which β = 0.5) is found to be
Dbl ∼ 1.5 µm around a Sun-like star. Grain temperatures T(D, r)
and absorption efficiencies Qabs(λ,D) are used when predicting
fluxes from distributions of dust (Section 6.2).

2.3 Numerical results

The left column of Figure 1 shows the results of simulations for
belts with the standard values of Sections 2.1 and 2.2, but with
mass input rates varying from 10−18M⊕ yr−1 to 10−10M⊕ yr−1.
The colour scale shows the geometrical optical depth per unit size
decade, dτ/d log10 D, as a function of both particle size D and
radial distance relative to the belt radius r0.

Some characteristics are seen at all disc masses, such as a
concentration of dust at r0 with a drop off outside of the belt, while
the smallest grains are put onto highly eccentric orbits by radiation
pressure, forming a halo at larger radii. Plots are truncated at a
radius of 3r0, as this study is not focussed on modelling the halo.
In all cases grains below the blowout size, Dbl ∼ 1.5µm, are blown
away by radiation pressure such that their contribution is negligible.
Grains below the blowout size are present in the belt, where they
are produced, and in the halo as they are blown out, with a density
which is proportional to the mass input rate. However, these grains
do not contribute significantly to the optical depth overall as they
are orders of magnitude lower than other grain sizes in the belt. As
disc mass is decreased, the discs evolve from being collisional to
being dominated by P-R drag, which is reflected by a flattening of
the radial distribution.

Where particles are collisional, they are destroyed by collisions
before they have a chance to migrate in towards the star, such that
their optical depth is heavily depleted inwards of the belt. A charac-
teristicwavy pattern is seen in collisional discs. This is awell-known
phenomenon in the size distributions of collisional cascades (see,
e.g. Campo Bagatin et al. 1994; Durda & Dermott 1997; Thébault
et al. 2003; Krivov et al. 2006) which is caused by the truncation
of the size distribution below Dbl, where particles get blown away
by stellar radiation. The lack of particles just below Dbl means that
particles just above the cutoff are not destroyed by collisions due
to a lack of impactors, causing an increase in their numbers. This
increased number of particles just above Dbl then breaks up larger
particles faster, causing them to be more depleted than in an infinite
cascade, and so on. Within the belt the size distribution follows the
standard result for a collisional cascade (Dohnanyi 1969), such that
n(D) ∝ D−α, with a slope of α = 3.5. The wavy pattern is then
superposed on this size distribution, and the pattern also extends
inwards of the belt since collisions continue to operate on the dust
as it is dragged into the inner regions. The barely bound grains just
above Dbl dominate the optical depth and have a flatter radial profile
than larger grains.

For the lowest disc masses, P-R drag is the dominant loss
mechanism, and particles migrate inwards while suffering very few

collisions. This gives radial profiles which are almost flat, although
the largest particles still see a small amount of depletion due to
collisions. In these cases, the particle size which dominates the
optical depth is the largest particle size which is not significantly
depleted by collisions. As expected, the overall number and mass
of particles also decreases as mass input rate decreases, leading to
lower total cross-section.

The waves seen in the distributions cannot be modelled analyt-
ically, so to better compare the numerical and analytical models we
also consider the optical depth integrated over decades of particle
size to smooth over the waves. The right hand column of Figure 1
shows the radial distribution of integrated optical depth. This is
shown for three different size ranges: the total optical depth, small
grains which are barely bound (Dbl < D < 20µm), and the largest
particles (2 mm < D < 2 cm). For the most massive discs, the total
optical depth is very close to that from the smallest particles, which
is due to grains just above the blowout size dominating the cross-
section. Larger particles are very depleted, and contribute much
less. As disc mass is decreased, the relative contribution of barely
bound grains decreases, and the largest particles contribute more.
For the least massive disc, most of the cross-section is in the largest
grains.

3 ANALYTICAL MODEL

Here we present a model which predicts the size distribution of the
disc at different radii by considering the balance between collisional
evolution and migration due to P-R drag. First we consider the size
distribution expected at the location of the planetesimal belt, then
apply a model for how these particles evolve inwards of the belt.

The size distribution within the planetesimal belt can be found
using the model of Wyatt et al. (2011), which determines the size
distribution in a planetesimal belt at a single radius undergoing
catastrophic collisions with loss processes acting. Particles are con-
sidered lost from the belt when P-R drag causes them tomigrate past
the belt’s inner edge. To find how the distribution of a given particle
size evolves radially we use the model ofWyatt (2005), which found
the radial optical depth profile for a population of single-sized par-
ticles evolving via destructive collisions and P-R drag. The shape
depends on the ratio of the P-R drag timescale to the collision time.

Combining the models of Wyatt et al. (2011) andWyatt (2005)
gives the size distribution of a debris disc at different radial loca-
tions, taking into account the collisional evolution of particles and
P-R drag.

3.1 Parent belt size distribution

Consider a belt of planetesimals at a radius r0 from the star, colli-
sionally evolving to produce smaller grains. The method of Wyatt
et al. (2011) can be used to find the one-dimensional size distribu-
tion of particles in the belt, which will extend up to some maximum
particle size Dmax. The lower end of the distribution is determined
by the blowout size Dbl (equation 2). The size distribution is ap-
proximated by a series of broken power laws; the precise power
laws depend on the collision timescales, as collisions move mate-
rial down the collisional cascade. We calculate the collision rate
between particles in the disc with the particle-in-a-box approach.
The rate of impacts onto a particle of size D from impactors of sizes
Dim → Dim + dDim is

Rcoll(D, Dim)dDim =
n(Dim)dDim

V
π

4
(D + Dim)

2vrel. (3)

MNRAS 000, 1–24 (2020)



Dust distributions in debris discs 5

Figure 1. Left: two-dimensional size distribution of particles over size and radial distance from the numerical model of V14 for discs with different dust mass
input rates and a belt radius of 30 au. The colour scale gives the optical depth per unit size decade. Right: radial distribution of optical depth integrated over
different size ranges: all particles (blue), barely bound grains (orange, dashed), and cm-sized particles (yellow, dotted). Markers show the values close in to the
star (0.01r0) and in the belt, which are used later to characterise the behaviour of the model.
MNRAS 000, 1–24 (2020)
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Here V is the disc volume, n(Dim) is the number of particles per
unit diameter, and vrel is the relative velocity of the collisions. As
in the numerical model (Section 2), only catastrophic collisions are
considered; these are destructive such that the largest fragment has
less than half the mass of the target particle, producing fragments
according to some redistribution function nr(D) ∝ D−αr . Catas-
trophic collisions require the impact energy per unit target mass to
be above some critical dispersal value Q?D, so destructive collisions
only occur with impactors of a diameter greater than XCD, where

XC =

(
2Q?D
v2

rel

) 1
3

. (4)

The critical specific energy for dispersal in the strength regime is
parameterised as Q?D = QaD−a . It is assumed that the velocity
of collisions is related to the Keplerian velocity by the maximum
inclination, Imax, as

vrel = Imaxvk = Imax

√
GM?

r
, (5)

where the semi-opening angle of the disc ε in the V14 model would
correspond to the maximum inclination. This assumes that the rel-
ative velocity of collisions is dominated by the vertical motion per-
pendicular to the plane of the disc. The volume of a disc of width
dr and radius r can be approximated as

V = 4πr3
(

dr
r

)
Imax. (6)

Within the belt we assume that the number of particles per unit
diameter follows a power law

n(D) = KD−α, (7)

such that n(D)dD is the number of particles with diameters
D → D + dD, and the classical power law has α = 3.5 when
Q?D is independent of particle size (Dohnanyi 1969; Tanaka et al.
1996). Integrating over all possible impactors, we find that the rate
of catastrophic collisions for a particle of size D is

Rcc(D) =
∫ Dmax

XCD
Rcoll(D,Dim)dDim

≈
π

4(α − 1)
Kvrel

V
X1−α

C D3−α, (8)

where we assume that α > 3 and that XC � 1 to find the most
relevant term in the collision rate. Therefore, the collision timescale
for particles of size D is

tcoll(D) ≈
4(α − 1)

π

V
Kvrel

Xα−1
C Dα−3. (9)

Note that this may have additional size dependence via XC whenQ?D
is a power law with size. The normalisation of the size distribution
in equation 7 can be found by

K =
6(4 − α)
πρ

Dα−4
max Mdust, (10)

where ρ is the density of particles, Dmax is the maximum particle
diameter, and Mdust is the total mass of dust particles, under the
assumption that α < 4 such that the mass distribution is dominated
by the largest particles.

The timescale for a particle on a circular orbit to migrate in to
the star via P-R drag from a radius r is (Wyatt & Whipple 1950;
Burns et al. 1979)

tPR(r) =
cr2

4GM?β
, (11)

where M? is the stellar mass, c is the speed of light, and β the ratio
of radiation pressure to gravity acting on a particle.

The balance between collisions and P-R drag is described by
the ratio of their timescales for particles in the belt,

η0(D) =
tPR(D, r0)

tcoll(D, r0)
. (12)

Both timescales are dependent on particle size, so the relative
strength of collisions and P-R drag is a function of particle size.
For low mass discs there is a critical particle diameter Dpr such that
the P-R drag and collisional timescales are equal,

η0(Dpr) = 1, tcoll(Dpr, r0) = tPR(Dpr, r0). (13)

Wyatt et al. (2011) showed that the size distribution in a planetesimal
belt can be approximated by two power laws of different slope, with
a transition at the critical particle size Dpr. Particles larger than
Dpr (η0 > 1) are dominated by destructive collisions, and they
follow the classical size distribution given in equation 7, with a
slope determined by the power law of Q?D as

α =
7 − a/3
2 − a/3

. (14)

However, Wyatt et al. (2011) found a turnover in the slope of the
size distribution for particles smaller than Dpr such that η0 < 1, for
which P-R drag is the dominant loss mechanism. The new slope is
given by αpr = αr − 1:

n(D) = KprD1−αr, D ≤ Dpr, (15)

where continuity of the size distribution at Dpr gives that

Kpr = KDαr−α−1
pr . (16)

Once again integrating equation 3 over the size distribution of im-
pactors for particles smaller than Dpr and assuming that α > 3 and
3 < αr < 4, for particles such that D � Dpr and XC � 1, the
dominant term in the collision timescale is

tcoll(D < Dpr,eff) ≈
4(αr − 2)

π

V
Kvrel

Dα−αr+1
pr Xαr−2

C D−(4−αr). (17)

This is equivalent to replacingα byαr−1 andK byKpr in equation 9.
So under the given assumptions, equation 9 applies to both regimes
of the size distribution, with different parameters α and K .

While the size distribution is continuous, with two regimes
which match at Dpr, generally tcoll and thus η0 are discontinuous at
Dpr, motivating the introduction of an effective critical size Dpr,eff
at which they are continuous. Then tcoll and η0 have two power laws
which join at Dpr,eff . It is to be expected that particles slightly bigger
than Dpr will be affected by the turnover of the size distribution, as
it affects the number of impactors that can catastrophically destroy
them. The size at which tcoll and η0 are continuous is close to the
particle size at which XCD = Dpr such that the smallest impactors
are of size Dpr, so that

Dpr,eff =

(
αr − 2
α − 1

) 1
1+α−αr

X−1
C Dpr (18)

=

(
αr − 2
α − 1

) 3
(3−α)(1+α−αr)

(
v2

rel
2Qa

) 1
3−α

D
3

3−α
pr . (19)

3.2 Two-dimensional distribution

Once the size distribution of the parent belt has been found, each
particle size is assumed to evolve independently inwards of the belt.
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The radial profile of a given particle size can be found using the
model of Wyatt (2005), which takes into account P-R drag and
mutual collisions for a single particle size. The collision timescales
from Section 3.1 (equations 9 and 17) and the P-R drag timescales
(equation 11) are used to calculate the values of η0 for each size
(equation 12), which determines the shape of the radial profile. This
gives a two-dimensional size distribution over particle size D and
radius from the star r . We express the distribution of particles in
terms of vertical geometrical optical depth, which is the surface
density of cross-sectional area.

For an annulus of particles all of the same size at r → r + dr ,
the geometrical optical depth is given by

τ(r) =
σn(r)dr
2πrdr

=
σn(r)
2πr

, (20)

where n(r) is the number density of particles per unit radius and σ
is the cross-section of a particle. Wyatt (2005) solved the continuity
equation for n(r) to show that the optical depth due to particles
inwards of a belt at radius r0 is given by

τ(r) =
τ(r0)

1 + 4η0(1 −
√

r
r0
)

. (21)

The shape of the profile depends on the balance between collisions
and P-R drag via the parameter η0. For massive debris discs, such
as those which are currently detectable, collisions dominate and
there is a sharp depletion of particles inwards of the belt, as grains
are destroyed before they have a chance to migrate inwards. For
less massive discs, however, the dominant process is migration via
P-R drag; with negligible collisions the surface density becomes
constant throughout the disc.

Now considering a distribution of particle sizes, if τ(D)dD is
the cross-sectional area surface density in particles of size D →
D + dD at radius r , the optical depth in a belt with size distribution
n(D) is given by

τ0(D) =
n(D)πD2

4
2πr0dr

=
n(D)D2

8r2
0

(
dr
r

) . (22)

As stated above, themodel ofWyatt (2005) is applied to each particle
size independently. By only considering a single size of particle,
this does not take into account the gain of smaller particles due to
the fragmentation of larger grains or the overall size distribution.
While particles will interact and be destroyed in collisions with
particles of different sizes, we assume that the collision rate of
grains of a given size scales with the number of similarly sized
particles. This approximation will be corrected for in Section 3.3.
Let τ(D, r)dD be the cross-sectional area surface density in particles
of size D → D + dD at radius r, then applying equation 21 to each
size D, the two-dimensional distribution is

τ(D, r) =
τ0(D)

1 + 4η0(D)
(
1 −

√
r
r0

) . (23)

3.3 Application of model

The analytical model makes many assumptions, such as that all
particles are on circular orbits. It also assumes that inwards of
the belt, particles are only destroyed by similarly sized particles,
or at a rate which scales with the local density of similarly sized
particles. To take into account approximations in the model, we
follow Kennedy & Piette (2015) in introducing a factor k which

modifies the previously derived collisional timescales, affecting how
collisional particles are such that

η0(D) =
tPR(D, r0)

ktcoll(D, r0)
. (24)

Section 4.2 shows that it is necessary for this to be dependent on
size, which is implemented as

k = k0

(
D

Dbl

)−γ
, (25)

for some parameters k0 and γ which are to be fitted by comparison
with the numerical model (Section 2), where these approximations
were not made.

Our model can be used to find the two-dimensional size dis-
tribution for a disc, given the belt radius r0, the grain density ρ, the
stellar mass and luminosity M? and L?, the maximum inclination
Imax, the dust mass Mdust, and the disc fractional width dr

r . These
parameters can be input to find the disc volume (equation 6), rela-
tive velocity (equation 5), the critical impactor sizes (equation 4),
and the β values (equation 1). Then the P-R drag timescale can be
found with equation 11, and equations 9 and 17 give the collisional
timescales in the two regimes. The ratio of these timescales gives
η0, and Dpr is the particle size for which η0 = 1. Then Dpr,eff can be
calculated to find where the two regimes for the collision timescales
apply. The k factor should be applied to η0 after finding Dpr. The
size distribution within the belt is

n(D) =

{
KDαr−α−1

pr D1−αr, D ≤ Dpr
KD−α, D ≥ Dpr,

(26)

where the normalisation K is given by equation 10. This size distri-
bution can be used to find the optical depth in the belt (equation 22),
which should be applied at radii r0 → r0 + dr to take into account
the finite extent of the belt. Inwards of the belt, the size distribution
can be found using equation 23. The size distribution is cut off for
particles smaller than Dbl.

The numerical model uses the rate at which dust mass is intro-
duced to the system by collisions of larger parent bodies, ÛMin, as an
input. We assume that the disc is in steady state, such that this mass
input is balanced by the loss of the largest particles to collisions
or P-R drag. Since the largest particles should dominate the mass
distribution given the assumption that α < 4, the belt mass can be
estimated using

Mbelt ≈ ÛMin min(tcoll(Dmax), tPR(Dmax)). (27)

As in the numerical model, the fiducial model has a belt
location of r0 = 30 au and a maximum particle inclination of
Imax = 8.5°. The particles included in the model are in the strength
regime, with a maximum size Dmax = 2 cm, so the critical dispersal
threshold is taken to be constant at Q?D = 107 erg g−1. The slope of
the size distribution of particles has the standard value when Q?D is
independent of particle size, α = 3.5. As for the numerical model,
a value of αr = 3.5 is used. The fiducial model considers a Sun-like
star with M? = M� , L? = L� , and the mass input rate is varied
from ÛMin = 10−18 M⊕ yr−1 to ÛMin = 10−12 M⊕ yr−1.

4 COMPARISON OF NUMERICAL AND ANALYTICAL
MODELS

Comparison of results from the analytical and numericalmodelswas
used to find the best fit parameterisation of k and test predictions of
parameter space trends.
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8 J. K. Rigley et al.

Figure 2. Left: two-dimensional size distribution of particles over size and radial distance for discs with different dust mass input rates and a belt radius
r0 = 30 au as predicted by our analytical model, with our best fit of the factor k. The colour scale gives the optical depth per unit size decade. Right: radial
distribution of integrated optical depth for all particles (blue), barely bound grains (orange, dashed), and cm-sized particles (yellow, dotted). Markers show
values at 0.01r0 and r0; ratios of these integrated optical depths are used to characterise the behaviour of the model.
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Dust distributions in debris discs 9

4.1 Disc mass

The left column of Figure 2 shows the optical depth per unit size
decade dτ/d log10 D as a two-dimensional distribution in grain
size D and radius r for the best fit of k, to be compared with the
numerical model in Figure 1. In terms of the analytical model, this
is equivalent to

dτ
d log10 D

= D log 10 × τ(D, r). (28)

Regardless of the value of k, our model captures the broad
trends with disc mass seen in the numerical model, going from par-
ticles being collisional to drag-dominated as disc mass is decreased.
Low mass discs are in the drag-dominated regime, and the radial
profiles are close to flat. The highest mass discs are in the collisional
regime, showing a rapid decrease in optical depth inwards of the
belt. Intermediate disc masses such as ÛMin = 10−15 M⊕ yr−1 show
a transition between being drag-dominated for the smallest parti-
cles, while large particles are collisionally depleted. The transition
between these two regimes for a given disc mass occurs at a similar
particle size in both models. There is an abrupt drop-off in optical
depth outside of the belt, as the model has not been constructed
to include consideration of the halo, instead focussing on structure
within and interior to the belt. There is also a drop-off at particle
sizes below Dbl, the lower limit of our size distribution, as grains
below this size will be blown out by stellar radiation pressure. The
analytics (equation 2) give a value of Dbl = 0.98 µm, slightly
smaller than 1.5 µm which is found numerically. The main issue is
the wavy patterns seen in the most massive discs for the numerical
model (Figure 1). As noted in Section 2.3, to avoid the waves bias-
ing the comparison between models, the behaviour of the models is
characterised by integrating the size distribution over particle size.

The right hand column of Figure 2 shows the radial distribution
of optical depth integrated over particle size to better compare the
behaviour of the two models. Radial profiles are given for the total
optical depth, the smallest particles (Dbl < D < 20 µm), and
the largest particles (2 mm < D < 2 cm). Similar trends are
seen to the numerical model for the relative contributions of grain
sizes. Most of the optical depth for massive discs is in barely bound
grains, with the large particles heavily depleted by collisions. As
disc mass decreases, the contribution of barely bound grains also
decreases. In the lowest mass disc, most of the optical depth comes
from the largest particles. The radial profiles of large particles are
much flatter in the analytical model, while in the numerical model
the profiles are less uniform due to the effect of collisions, and the
aforementioned waviness.

4.2 Model fitting

Themodel has three parameters to fit: the belt width dr
r , and the two

parameters k0 and γ which determine the collisional factor k. While
dr
r is not a direct input parameter of the numerical model, the belt
width can be altered either by changing the eccentricity of the parent
bodies in the belt, which mostly affects large grains, or changing the
range of initial periastra. This was found to have little effect on the
distribution inwards of the belt, only affecting the breadth of the belt.
Therefore, the same initial conditions are used throughout for the
numerical model. It is assumed in the analytical model that particles
are on circular orbits, with no eccentricity inherited from the parent
bodies. Varying dr

r in the analytical model affects the breadth of
the belt, but also has an effect on the optical depth profile due to the
dependence of belt volume and area on its width. The belt width was

Figure 3. Radial optical depth profiles for discs with mass input rates ÛMin
of 10−12 M⊕ yr−1 (blue), 10−16 M⊕ yr−1 (orange), and 10−18 M⊕ yr−1

(yellow). Profiles from the numerical model are shown with solid lines,
while the analytical model is shown for three values of dr/r : 0.3 (dashed),
0.5 (dash-dotted), and 0.7 (dotted). The analytical model is shown with the
values k0 = 10 and γ = 0.7.

fitted using the radial optical depth profiles simultaneously along
with k0 and γ, which were fitted using metrics described below.

Figure 3 shows the effect of varying the belt width on the radial
optical depth profile. Smaller belt widths cause the optical depth of
the belt to be higher (equation 22). Similarly, the collision timescale
(equation 9) is proportional to the disc volume, which depends on
the belt width, such that smaller belt widths have shorter collisional
timescales, meaning they have profiles which are more depleted.
The best fit of dr

r is different for discs with different masses. For
example, for the most collisional discs (e.g. 10−12 M⊕ yr−1), no
value is a very good match as the analytical model overestimates the
optical depth. For intermediatemass discs (e.g. 10−16 M⊕ yr−1), the
best fit is dr

r = 0.5. For low mass discs (e.g. 10−18 M⊕ yr−1), the
optical depth is underestimated, but the best fit would be dr

r = 0.3.
The best fit of the factor k was found by considering themodel’s

behaviour in two dimensions, comparing ratios of optical depths for
different particle sizes and locations. The right hand columns of
Figures 1 and 2 show markers for which points are compared in the
ratios. The first ratio,

R1 =

∫ 2cm
2mm τ(0.01r0,D)dD∫ 20 µm
Dbl

τ(0.01r0,D)dD
, (29)

compares the relative contributions of large particles and small
particles to the optical depth when close in to the star. In highly
collisional discs, η0 � 1, the optical depth (equation 23) close in
to the star tends towards a value

τ(D, 0.01r0) ≈
τ0(D)

3.6η0(D)
∝

k(D)D2−α

D4−α = k(D)D−2. (30)

This means that the ratio of optical depths in two different sizes just
depends on the values of D and k as

τ(D1, 0.01r0)

τ(D2, 0.01r0)
=

k(D1)

k(D2)

(
D1
D2

)−2
=

(
D1
D2

)−2−γ
. (31)

Therefore at large disc masses, R1 should tend to a constant value
depending only on the chosen particles sizes to be compared and γ.
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(b) R1 with varying k0 for fixed γ = 0.7.
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(c) R2 for large particles, 2mm < D < 2cm, with γ = 0.7 and varying k0.
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(d) R2 for the smallest particles, Dbl < D < 20 µm, with γ = 0.7 and
varying k0.

Figure 4. Ratios used to fit the parameters of the factor k (equation 25), which matches the analytical model to the numerical one. The top panels show R1
(equation 29), the ratio of integrated optical depth in large particles to small particles when close in to the star at 0.01 r0, as a function of mass input rate ÛMin,
which is related to disc mass. The bottom panels show R2 (equation 32), the ratio of integrated optical depth close in to the star to that in the belt as a function
of mass input rate ÛMin for two different particle sizes. In all cases the numerical model (black) is compared with the analytical model for various values of the
parameters.

Figure 4a shows R1 plotted as a function of mass input rate,
which determines disc mass. As predicted, a plateau is seen at
the largest disc masses, where the disc is collisional. When k is a
constant with particle size, this plateau cannot be fitted with the
analytical model. However, when k becomes a function of particle
size, the value of the analytical model can be shifted to match
the numerical one. This explains the choice of the prescription of
equation 25 with k a function of particle size, for which k0 and γ
are parameters to be fitted to the numerical model. Figure 4a shows
how varying γ shifts the value of the plateau, with a best fit expected
to be close to γ = 0.7.

The effect on R1 of varying k0 with fixed γ = 0.7 is shown in
Figure 4b. A broad range of values are feasible for k0, but the most
consistent value is close to k0 = 3 or 10. The other ratio used to fit
k is the ratio of optical depth close in to the star to that in the belt,
given by

R2 =

∫ Dupper
Dlower

τ(0.01r0,D)dD∫ Dupper
Dlower

τ(r0,D)dD
. (32)

This varies for different ranges of particle size Dlower to Dupper.

When considering the largest particles, as in Figure 4c, which shows
R2 for 2 mm < D < 2 cm, there is some fluctuation, but broadly
the best fit is expected to be close to k0 = 10. However, when con-
sidering the smallest particles as in Figure 4d (Dbl < D < 20 µm),
our analytical model cannot fit to the drag-dominated regime (low
disc masses) for any values of the parameters. The integrated optical
depths in Figure 1 show that in low mass discs the optical depth of
barely bound grains in the numerical model decreases with radius,
causing the ratio plotted in Figure 4d to exceed 1. By construction,
the radial profile of a single particle size in the analytical model
must either be flat, or increase with radius, meaning that this ratio
cannot exceed 1. In the drag-dominated regime, a flat radial profile
is predicted, giving a ratio of 1.

One reason for this discrepancy is the assumption in the ana-
lytical model that particles of different sizes evolve independently
inwards of the belt. However, the breakup of large particles will
act as a source of smaller grains, such that optical depth of small
particles actually increases in towards the star, rather than being flat,
for the numerical model.

Fitting of the three parameters was done by minimising χ2

for the logarithms of the ratios R1 (equation 29) and R2 for large
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particles (equation 32), along with the radial profile of optical depth
τ(r). For example, the χ2 for R1 would be given by

χ2(R1) =
∑
ÛMin

(
log R1,analytical − log R1,numerical

)2
. (33)

The ratios R1 and R2 have a single point for each mass input rate,
while the radial optical depth profile is sampled at nr different points
for each mass input rate. Therefore, the χ2 for τ(r) is weighted by
1/nr such that each of these factors contributes equally to the fit.
While a range of values for each parameter gives reasonable results,
combined minimisation gives the best fit values dr

r = 0.4, γ = 0.7,
and k0 = 4.2.

4.3 Thermal emission

Thermal emission from dust grains can be seen at infrared wave-
lengths in the spectral energy distributions (SEDs) of stars as excess
flux above the stellar photosphere. This can be described as a frac-
tional excess, Rν = Fν disc/Fν?. Once the size and spatial distri-
bution of dust in a disc has been determined using a model, infrared
excesses of the disc can be predicted by applying realistic grain
properties (Section 2.2) for the absorption efficiencies Qabs(λ,D)
and temperatures T(D, r) of grains. The disc flux in Jy at a given
wavelength can be found from the model by summing the emission
from different radii and particle sizes as

Fν = 2.35 × 10−11d−2
∬

Qabs(λ,D)Bν[T(D, r)]2πrτ(D, r)dDdr,

(34)

where d is the distance from the star in pc, radius r is in au, and Bν
is the spectral radiance in Jy sr−1 (Wyatt et al. 1999).

As an example, Figure 5 shows a comparison of the SEDs
resulting from the numerical and analytical models for the discs
considered in Sections 2.3 and 4.1. An inner cut-off at a radius
of 0.1 au is used, such that the SEDs will not be fully accurate
at wavelengths below ∼ 6 µm. Only thermal emission has been
included, while scattered light will also contribute below ∼ 5 µm.
Realistic optical properties for asteroidal grains are used for both
models, so both models include similar features in the SED. A
similar pattern is seen as when fitting the optical depth in Figure 3.
The analytical model fits very well at intermediate disc masses, but
slightly overestimates the optical depth for the most massive discs,
and slightly underestimates the optical depth of the least massive
discs. For the disc with a mass input rate of 10−10 M⊕ yr−1, the
fractional 11 µm excess is overestimated by a factor 2.0, while for
the disc with a mass input rate of 10−18 M⊕ yr−1, the 11 µm flux
is underestimated by a factor of 2.5. This shows that while there are
differences between the two models, the 11 µm excess should not
differ by more than a factor ∼3 for discs of masses similar to those
considered here.

5 PARAMETER SPACE

Once the model has been fitted for the fiducial planetesimal belt
properties, its ability to predict parameter space trends can be tested
by further comparison with the numerical model.The dependence
of size distributions on individual input parameters is investigated
in the following subsections.
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Figure 5. Comparison of SEDs based on the numerical (solid lines) and
analytical (dashed lines) models for the discs considered in Sections 2.3
and 4.1. Realistic optical properties were used, assuming asteroidal grains.

Table 1. Stellar types used in comparison of the models (Figure 6).

Stellar type Mass Luminosity Temperature
M� L� K

M0 0.5 0.074 3822
K2 0.75 0.31 4958
G2 1.0 1.1 5868
F7 1.25 2.4 6264
A5 2.0 14.0 8204
A0 3.0 61 9722

5.1 Stellar type

To ascertain the effect of stellar mass and luminosity, the model was
applied to stars of different types, whose parameters are given in
Table 1. The optical properties for dust around different stars were
calculated for the numerical model using the method described in
Section 2.2. Equation 1 was used for the analytical model, assuming
Qpr = 1. A comparison of the size distributions from the numerical
and analytical models is given in Figure 6 with fixed mass input rate
ÛMin = 10−15M⊕ yr−1 and a belt of radius r0 = 30 au. As stellar
mass is increased, the blowout size increases due to higher stellar
luminosity and therefore stronger radiation pressure. Both models
broadly follow the same trends without having to change the factor
k, although for the lowest mass stars sub-micron grains are present
in the numerical results, whereas such grains are assumed to be
removed by radiation pressure in the analytical model.

The β profiles for grains around stars of different masses are
plotted in Figure 7, calculated numerically using the approach in
Section 2.2, and analytically using equation 1. The standard shape
of the profile of β is that it is inversely proportional to particle size,
with a turnover at the smallest particle sizes. Since β ∝ L?/M?,
low mass stars have lower values of β, such that either when the
profile turns over it drops back below 0.5 (as seen for 0.75M�), or β
never actually exceeds 0.5 (as seen for 0.5M�). Sub-micron grains
are therefore present around low mass stars in contradiction to the
simple analytical prescription suggesting that they should be blown
out on hyperbolic orbits. A limitation of the analytical model is that
it cannot faithfully reproduce the distribution of small grains for
late-type stars, for which radiation pressure is weaker, such that it
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Figure 6. Two-dimensional size distribution of particles over size and radial distance for discs with different stellar types, as produced by the numerical
model of V14 (left) and our analytical model (right). The colour scale gives the optical depth per unit size decade. The mass input rate is fixed throughout at
ÛMin = 10−15 M⊕ yr−1, and the planetesimal belt has a radius of r0 = 30 au.
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Figure 7. β as a function of particle diameter, D, for grains around stars
of different masses. Solid lines show numerical values, while dashed lines
show the analytical predictions from equation 1, assuming Qpr = 1. The
black line shows β = 0.5, the limit above which particles should be blown
out of the system on unbound orbits by stellar radiation pressure.
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Figure 8. Comparison of SEDs from the numerical (solid lines) and analyti-
cal (dashed lines) models for discs with a mass input rate of 10−15 M⊕ yr−1

and different stellar masses, assuming asteroidal grains.

is not always possible to blow particles out (e.g. Sheret et al. 2004).
Furthermore, drag forces around late-type stars are significantly
enhanced by stellar winds (Plavchan et al. 2005), which have not
been considered. It may be possible to incorporate the effects of
stellar wind drag by modification of β if the magnitude of the stellar
wind is known, as described in V14, but that is beyond the scope of
this work.

The effect of stellar type on the SED is shown in Figure 8
for discs with a mass input rate of 10−15 M⊕ yr−1. Overall the
shapes of the SEDs are similar between the two models, with slight
differences in the magnitude of the flux. For an A star (3 M�), the
11 µm excess is underestimated by a factor of 1.6, while the Sun-
like star (1 M�) is overestimated by a factor 1.3. For the M dwarf,
the analytical model overestimated the 11 µm flux by a factor of 7.
Therefore the model is most applicable to Sun-like and A stars. As
concluded previously from the optical depth, there is a much poorer
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Figure 9.Total geometrical optical depth as a function of radius for discswith
parent belts at different radii and amass input rate of ÛMin = 10−15 M⊕ yr−1.
Results from the numericalmodel are solid lines, while the dashed lines show
the analytical model.

fit for M stars due to the discrepancy with β. However, how well the
model fits will also vary with the mass of the disc.

5.2 Belt radius

Another parameter of the model which can be varied is the distance
of the planetesimal belt from the star, r0. Simulations were run with
belt radii in the range 0.3−300 au. Figure 9 shows the radial profile
of optical depth as r0 is varied at constant mass input rate. As was
seen for the fiducial model in Figure 2, the radial profiles predicted
analytically are quite flat, with either a sharp drop inwards of the belt
before becoming flat for collisional particles, or a completely flat
profile for drag-dominated particles. The numerical radial profiles
are moderately flat, but less so than the analytical ones. In the ana-
lytical model, the optical depth in the belt has a weak dependence on
belt radius for fixed mass input rate, so varying the radius over a few
orders of magnitude causes little variation. The numerical results
also show similar optical depth levels in the belt regardless of r0.
As the belt location moves outwards there is a slight decrease in the
level the optical depth flattens out to in the inner regions of the disc.
Comparison of the radial profiles shows that both models follow
similar trends with radius, but the analytical profiles overestimate
the optical depth by a factor of ∼ 2. However, this offset does not
significantly affect the predicted size distribution, and is expected
due to the compromise needed when choosing dr

r to fit the model
over a large range of ÛMin (see Figure 3).

5.3 Dispersal threshold of particles

So far the critical dispersal energy, Q?D, has been taken to be inde-
pendent of particle size. However, this is not a realistic prescription,
and many attempts have been made to characterise its dependence
on particle size. For example, Benz & Asphaug (1999) used SPH
to simulate collisions, while Housen & Holsapple (1999) used lab-
oratory experiments to measure the outcomes of collisions between
small particles. Durda & Dermott (1997) and Durda et al. (1998)
ran numerical collisional evolution models, and fit these to observa-
tions of the main belt asteroid size distribution to find the best fit of
Q?D. In general, it is assumed that Q?D can be approximated by a sum
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of two power laws, representing the strength and gravity regimes.
All particles considered in this paper are small enough that material
strength determines their critical dispersal threshold, which can be
described by a single power law, Q?D = QaD−a . Holsapple (1994)
found a dependence in the strength regime of Q?D ∝ D−0.33, while
Housen & Holsapple (1990) found Q?D ∝ D−0.24. Benz & Asphaug
(1999) considered both basalt and ice, and found that depending on
the material and impact velocity, the dependence varied between
a = 0.36 − 0.45. Here we choose to use the same values as Löhne
et al. (2008), which in our notation gives Qa = 2.45 × 107erg g−1

and a = 0.3, with D given in cm.

As shown in Figure 10, using a realistic prescription for Q?D
only had a minor effect on the size distribution of particles in
the belt. For the numerical model, particles are assumed to be
within the parent belt if they are between radii 30 ≤ r0 ≤ 45 au.
The most significant effect is that for collisional discs, such as
ÛMin = 10−12 M⊕ yr−1, using a power law for Q?D dampens the
collisional waves which are due to truncation of the distribution
at the blowout size. For the chosen values, Q?D also has a greater
value when a power law is used, so this may be an effect of using
a greater Q?D value. The slope of the size distribution in the colli-
sional regime should also be affected. Wyatt et al. (2011) derived
that the slope of the steady state size distribution depends on the
power law of Q?D as in equation 14, which gives a slope of -3.63
for the chosen prescription of Q?D. Comparison of the distributions
for ÛMin = 10−12 M⊕ yr−1 shows that with a power law, the slope
of the distribution becomes steeper, going from -3.52 to -3.57. The
increasedQ?D for the realistic prescription also causes the collisional
waves in size distributions to move closer together, due to particles
being destroyed by other particles which are a larger fraction of their
own size (as shown by equation 4). This change in spacing of the
waves is most evident in the inner regions of the disc, where the
waves are more significant.

The discs with ÛMin = 10−15 M⊕ yr−1 show a transition be-
tween regimes, with large particles being collisional, while smaller
particles are drag-dominated, with a shallower slope. The analyt-
ical model predicts that the location of the turnover, Dpr, should
be smaller with constant Q?D due to its lower value. The numerical
model similarly has a change in slope of the size distribution at a
larger particle size for the realistic Q?D. Low mass discs, such as
ÛMin = 10−18 M⊕ yr−1, are drag-dominated, such that the slope of
their size distribution depends only on the redistribution function.
Therefore, no difference is seen in the size distribution when Q?D
is changed, with a slope of -2.5 in both cases agreeing with the
analytical prediction of 1 − αr. A minor difference is seen in the
analytic model due to the different values of Dpr obtained with the
different Q?D values. The normalisation of the size distribution of
the drag-dominated regime, Kpr, depends on Dpr as in equation 15.

Collision timescales increase with Q?D (equation 9), so the
analytical model predicts that discs will be less collisional with the
realistic prescription. Thiswill cause the radial optical depth profiles
to become flatter. However, very minimal differences are seen in the
radial profiles of the numerical model, as they are dominated by
barely bound grains, which are mostly flat. Thus these profiles are
not shown. The grains which are most affected by Q?D are cm-sized,
but these grains contribute less to the overall optical depth profile
of the disc.
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Figure 10. The size distribution n(D) of particles within the belt for discs of
different mass input rates, both withQ?

D = constant, andQ
?
D = QaD−a . Re-

sults from the numerical model are shown with solid lines, and the analytical
predictions are shown with dashed lines.

5.4 Redistribution function

As derived in Wyatt et al. (2011), the redistribution function of
collisions should determine the slope of the size distribution for
particles which are dominated by P-R drag, such that their size dis-
tribution has a slope 1 − αr. It is expected that the size distribution
should change slope at the critical particle size Dpr. Figure 11 com-
pares the size distribution of particles in the belt from the numerical
and analytical models as αr is varied. These distributions show the
expected decrease in steepness of the slope as αr is decreased.

Figure 11 shows the size distribution for a disc with
ÛMin = 10−15 M⊕ yr−1. This is a disc for which the largest parti-
cles are collisional, while the smaller particles are drag-dominated.
For the larger, collisional particles, the slope is the same for all re-
distribution functions and agrees with the analytical model. Below
100 µm there is a change in slope as predicted, though the slope
does not perfectly match the analytical prediction. One possible
explanation for the numerical model having a steeper slope is the
inclusion of small particles which are put onto eccentric orbits by
radiation pressure, forming the halo.

The size distribution of a lower mass disc is given at the
bottom of Figure 11, which shows a drag-dominated disc with
ÛMin = 10−18 M⊕ yr−1. Since this disc is more fully in a P-R drag
dominated regime, the slopes in the numerical model match better
with the analytical predictions, and once more a slope change is
seen when varying αr. The slope of the numerical model varies be-
tween −2.7 for αr = 3.75 and −2.02 for αr = 3, while the analytical
predictions of the slope are −2.75 and −2 respectively.

5.5 Limitations of model

The model has been fitted over a large range of mass input rates,
with the highest mass input rate, 10−10 M⊕ yr−1, corresponding
to a dust mass of 3 × 10−4 M⊕ for a belt with a radius of 30 au,
while the lowest disc mass the model was fitted to is 3 × 10−8 M⊕ .
Some of the discs this model is applied to may have higher dust
masses, such that they are outside the range the model has been
fitted to. Further, the model was fitted for a Sun-like star, and may
slightly underestimate the flux for A stars (see Section 5.1). It is
advised not to apply the model to M dwarfs, where the β profile
differs significantly from the analytical prediction, and stellar winds
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Figure 11. The size distribution n(D) of particles in the belt for a disc with
mass input rate ÛMin = 10−15 M⊕ yr−1 (top) and 10−18 M⊕ yr−1 (bottom).
The slope of the redistribution function, αr, is varied between 3 and 3.75
in both the numerical model (solid lines) and the analytical model (dashed
lines) to show the corresponding change in slope of the size distribution for
drag-dominated particles.

need to be considered. It would be possible to include stellar winds
by adjusting β for a specific system, if the magnitude of the stellar
wind were known.

Further, real debris discs can either be very broad or very
narrow, while our model assumes discs to have a width dr/r = 0.4,
and does not predict the correct dependence when varying disc
width. Therefore it is difficult to apply the analytical model to discs
which are very broad, such as τ Ceti, which has inner and outer
radii of 6 and 52 au respectively. While the model has been fitted to
a range of disc masses, it is difficult to constrain the best value of
k, and a range of parameters can produce acceptable results. For a
different stellar type or belt radius, it may be that slightly different
values of k0 and γ fit better than those chosen here. Overall for the
discs considered in this paper, the model should fit to within a factor
∼ 3, except for M stars.

6 APPLICATIONS

6.1 Solar system

The model can be used as a simple way to predict the distribution of
particles within the inner solar system. As a toy model, we assume
a belt with a radius of r0 = 3 au, and vary its mass to best fit
the optical depth of the zodiacal cloud at 1 au. This is not meant
to provide a more accurate description of the zodiacal cloud than
currently available models. Rather it is used to serve as a quick
illustration of the model in a situation where there are observational
constraints on its predictions before it is applied to systems with
fewer constraints. The source of dust at 3 au could either be from
collisions of asteroids, or delivery of material from comets. For a
face-on optical depth at 1 au of τ(1 au) = 7.12×10−8 (Kelsall et al.
1998), fitting the radial optical depth profile to this value gives a
dust mass of Mdust = 6.62 × 10−9 M⊕ , including all particle sizes
up to D = 2 cm. This agrees with the predicted mass of the inner
zodiacal cloud from Nesvorný et al. (2011), who predicted a mass
of ∼ 6.6 × 10−9 M⊕ within the inner 5 au, assuming a single grain
size of D = 100 µm and grain density ρ = 2 g cm−3, though
this estimate is dependent upon the model parameters and chosen

grain size. This low value of the dust mass means that P-R drag
is significant, such that the toy model predicts only a modest drop
(factor of ∼ 2) in optical depth inwards of the source region due to
collisions, giving a relatively flat radial profile.

The predicted size distribution at different radii from the Sun is
given in Figure 12 (top) in terms of the differential number density
of particles. Number density is used to better compare with obser-
vations; the number density at a given radius can be found from
optical depth as

nv(D) =
τ(D, r)

hσ
, (35)

where h = 2r sin ε is the height of the disc, and σ = πD2/4 is
the cross-sectional area of a grain with a given size. At 3 au the
size distribution is as described in Section 3.1, with a turnover to
a shallower slope below Dpr = 27.5 µm. Small grains have a
flat radial optical depth profile, and converting number per cross-
sectional area to number density requires dividing by r, such that
closer to the star the number density of small grains increases.
Particles larger than Dpr are depleted by collisions inwards of the
source belt, causing the slope of the size distribution to be steeper
inwards of 3 au. The model predicts a steep slope of -4.7 for large
particles inwards of 3 au, with a shallower slope for small grains.

Also shown in Figure 12 (bottom) is a comparison of themodel
with two empirical models for the size distribution of dust at 1 au in
the solar system which were obtained by fitting to measurements of
interplanetary dust particles (IDPs). Grun et al. (1985) developed
an empirical model for the interplanetary meteoroid flux at 1 au
based on data from the lunar crater size distribution for large me-
teoroids (m & 10−6 g, or D & 91 µm), and in situ measurements
frommicrometeoroid detectors on board the Highly Eccentric Orbit
Satellite 2 (HEOS-2) and the Pegasus satellite for small meteoroids
(m . 10−9 g, or D . 9.1 µm). Love & Brownlee (1993) deter-
mined the mass flux distribution of meteoroids in the mass range
10−9 ≤ m ≤ 10−4 g accreted onto Earth using hypervelocity impact
craters on the Long Duration Exposure Facility (LDEF) satellite.
This is equivalent to a size range of 9.1 ≤ D ≤ 424 µm. The size
distribution shown for LDEF has taken into account the effect of
gravitational focussing, as the Earth’s gravity will increase the flux
of particles onto the Earth. Fluxes were converted to number densi-
ties using equation 3 from Grun et al. (1985), assuming an isotropic
flux.

For large particle sizes, which will be the most collisional, the
slope of themodel fromGrun et al. (1985) is -4.9, in good agreement
with the analytical model. For collisional particles, the analytical
size distribution close in will be ∝ n0(D)/η0(D), such that the size
dependence of the factor k affects the slope of the size distribution
inside of the belt. Without the size dependence of k, the slope of the
size distribution would be shallower, and have a poorer fit to that of
the Grun et al. (1985) model, providing further justification for the
size dependence of k.

Despite the good agreement for large particles, there are some
differences between the analytical and empirical models at small
sizes. While all the models include a turnover to a shallower slope
at smaller particle sizes, the turnover is smoother in the empirical
models, whereas the simpler analytical prescription necessitates a
sharper change. The analytical model turns over at a value of Dpr =
27.5 µm, however the empirical models suggest that this should be
slightly larger, perhaps closer to Dpr = 100 µm. Wyatt et al. (2011)
showed that the size distribution of drag-dominated particles can be
indicative of the redistribution function. Generally the redistribution
function power law is assumed to lie in the range 3 ≤ αr ≤ 4. The
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Figure 12. Size distribution, shown as differential number density, for a belt
with radius 3 au fitted to the optical depth of the inner solar system at 1 au
as a toy model for the zodiacal cloud. Top: the size distribution at different
radii in the disc. Bottom: the size distribution at 1 au for the model (solid),
and the empirical models of Grun et al. (1985) (dash-dotted) and Love &
Brownlee (1993) (dashed).

empirical size distributions have shallower slopes than the analytical
model at small particle sizes, so a value of αr = 3 is chosen to better
match the empirical models. This fits the slope of the LDEF model,
and is the smallest value that would typically be expected for αr.
In order to best fit the Grun et al. (1985) model, a value of αr ∼ 2
would be needed. Another discrepancy between the models is that
Grun et al. (1985) suggests there is a high density of submicron
grains. However, such small grains are not included in this paper
as it is expected that they will be blown out by stellar radiation
pressure. Despite these discrepancies, the analytical model captures
most of the main features of the empirical models, which are also
not completely accurate, and is good for a rough approximation
of the size distribution at 1 au. This provides confidence that our
model gives reasonable predictions for the exozodi properties in
other systems, which are described in the following sections.

6.2 Thermal emission

As discussed in Section 4.3, SEDs can be found for a given distribu-
tion by finding realistic grain temperatures and absorption efficien-
cies, and integrating the optical depth over grain size and radius.
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Figure 13. SED for the toy model for the zodiacal cloud from Section 6.1,
showing the contributions from different radii ranges, as well as the total
disc emission and that of the Sun, as observed at a distance of 10 pc.

For example, Figure 13 shows the resulting SED for the disc
used in the toy model of the zodiacal cloud in Section 6.1, as well
as the contributions from different radii. This disc produces small
excesses at all wavelengths relative to the stellar flux. The fractional
excess at 11 µm is 7.6 × 10−5, and the emission peaks at 19 µm,
where the fractional excess is 2.9 × 10−4. As would be expected, at
the shortest wavelengths the emission is dominated by the warmest
dust, which is close to the star. Habitable zone dust dominates the
mid-infrared, and the colder dust further out dominates far-infrared
emission.

Figure 14 shows predictions of fractional excesses and frac-
tional luminosity from the model for discs across the broader pa-
rameter space of dust mass and belt radius for a Sun-like star, where
the dust mass is defined to be the mass in grains up to Dmax = 2 cm
in the belt. Figures 14a, 14b, and 14c show the predicted excesses at
11 µm, 24 µm, and 70 µm respectively for various discs. The highest
excesses are seen for discs with small radii and high dust masses, but
these will have short lifetimes, as they would rapidly grind down by
collisions to a lower mass (Wyatt et al. 2007a). While a large range
of belt radii are considered, most planetesimal belts would be ex-
pected to lie between ∼ 1 au and a few hundred au. Discs which are
detectable with a given instrument should lie above a given excess
level, which corresponds to the instrument sensitivity. The solid
lines in Figures 14a, 14b, and 14c give an indication of the regions
of parameter space for which the discs would be detectable. For
example, it is estimated that LBTI can detect mid-infrared (11 µm)
null excesses down to 0.05% (Hinz et al. 2016), and KIN had a
sensitivity of ∼ 1%. Thus Figure 14a shows how the improved de-
tection capabilities of LBTI mean that the exozodi are detectable for
a much larger range of outer belt properties than with previous in-
struments. Photometry, which is used at all wavelengths considered
here, has a detection limit ∼ 10%. For example, Spitzer/MIPS (e.g.
Su et al. 2006; Meyer et al. 2006) and Herschel/PACS (e.g. Eiroa
et al. 2013; Sibthorpe et al. 2018) have been used to detect debris
discs at 24 µm and 70 µm.WISE (Wright et al. 2010) has been used
at 12 µm to observe bright exozodi (Kennedy & Wyatt 2013).

The dotted contours on the excess plots show the line where
50% of the disc emission comes from the planetesimal belt. Discs to
the left of this contour have most of their emission originating from
dust in the parent belt, while discs to the right have emission which
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Figure 14. Fractional excesses and luminosities for discs of various dust masses Mdust and belt radii r0 around a Sun-like star, as predicted by our analytical
model for realistic asteroidal grains. Dotted contours show where 50% of dust emission comes from the planetesimal belt, with the other half from dust
interior to that belt, such that the thermal emission of discs to the left of these contours is dominated by the parent belt. (a) Fractional excess at 11 µm, R11.
Contours show excesses of 10%, 1%, and 0.05%, which correspond to the approximate sensitivities of WISE, KIN, and LBTI. (b) Fractional excess at 24 µm,
R24. The sensitivity of Spitzer/MIPS photometry, ∼ 10%, is indicated by a contour. (c) Fractional excess at 70 µm, R70. The sensitivity of Spitzer/MIPS or
Herschel/PACS photometry, ∼ 10%, is indicated by a contour. (d) Fractional luminosity f of discs, as obtained by integrating the disc flux over the whole
spectrum. Contours show upper limits on dust mass for discs around a Sun-like star at different ages, based on the model of Wyatt et al. (2007a), using the
parameters from Sibthorpe et al. (2018).

is dominated by dust in the inner regions of the system. At 24 µm
and 70 µm, this means that the emission frommost discs that can be
detected must originate in the planetesimal belt, rather than closer
in. However, at 11 µm, for parent belts which are not very close to
the star (r0 & 10 au), emission will be dominated by the warm dust
which is dragged in to the inner regions. The fractional luminosity,
f , of the discs is shown in Figure 14d, as found by integrating the
disc flux and stellar spectrum then finding the ratio. As expected,
the fractional luminosity correlates with the fractional excesses.

Asmentioned previously, in situ belts at small radii will rapidly
grind down by collisions such that theirmass is depleted.Wyatt et al.
(2007a) showed that the mass of a planetesimal belt will decrease
with time once the largest planetesimals in the belt are broken up
by collisions, giving a time dependence of

Mtot(t) = Mtot(0)/(1 + t/tc(0)), (36)

where Mtot is the mass of the planetesimal belt, and tc(0) is the
collision timescale of the largest planetesimals at the initial time.
Since the collision timescale depends on the total mass, at late times
the mass of the belt will be independent of its initial mass. Based
on equation 19 of Wyatt et al. (2007a), the maximum dust mass at
a given age, tage, is

Mdust,max =
2.3 × 10−15ρr13/3

BB (dr/r)A

M4/3
? tage

(37)

in M⊕ , where ρ is in kg m−3, rBB is the radius which would be
inferred from the dust temperature assuming black body emission
in au, A in km0.5J5/6kg−5/6 is a parameter which can be found
by fitting to observations, M? is in M� , and tage is in Myr. It
has been assumed that the mean eccentricities and inclinations of
planetesimals are equal.
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The Wyatt et al. (2007a) model gives the total planetesimal
belt mass, which has been converted to mass in dust up to 2cm
in diameter by scaling with a factor Mdust,max =

√
2×10−5
Dc

Mmax,
where Dc is the maximum planetesimal size in km. Sibthorpe et al.
(2018) fitted the model to observations of Sun-like stars from the
Herschel DEBRIS survey. The model was chosen to have the pa-
rameters ρ = 2700 kg m−3 and dr/r = 1/2. The best fitting model
also had A = D0.5

c Q?D
5/6e−5/3 = 5.5 × 105 km0.5J5/6kg−5/6. The

model uses the black body radius of a planetesimal belt, while the
resolved radius is typically 1-2.5× larger due to inefficient emission
of dust grains (Booth et al. 2013; Pawellek et al. 2014). Therefore,
to compare with our model we assume that the disc radius plotted
in Figure 14 is r0 = 2rBB as an approximation. The upper limits on
dust mass up to cm-size grains from this model for a Sun-like star
at different ages are shown in Figure 14d. The Wyatt et al. (2007a)
model shows that the brightest belts, which have very small radii
and high dust masses, would not be in steady state even around
very young stars of a few hundred Myr. Therefore, the region of
parameter space we would expect to observe systems in is at lower
dust masses and larger radii.

A direct comparison of the mid-infrared excesses which can
be detected by LBTI with the 10% limits at 24 µm and 70 µm is
shown in Figure 15. The model predicts that stars which have ex-
cesses detected at longer wavelengths with photometry should have
exozodiacal dust levels due to P-R drag from the outer belt which
are detectable by LBTI. Therefore, non-detections around stars with
known cold dust could imply other mechanisms are depleting hab-
itable zone dust. For example, planets could deplete exozodi levels
by accreting dust or ejecting it from the planetary system, such that
this could be a way to infer the presence of planets (see Bonsor et al.
2018).

The shading in Figure 15 highlights the region of parameter
space for which it may be possible to detect warm exozodiacal
dust that has been dragged inwards from an outer belt which is not
currently detectable in far-infrared photometry. However, the limits
on dust mass based on the model of Sibthorpe et al. (2018) shown in
Figure 14d rule out a lot of this shaded region around stars older than
∼ 100 Myr. For example, for a Gyr Sun-like star, it remains possible
for LBTI to detect warm dust dragged in from planetesimal belts
without a far-infrared detection, however the region of parameter
space in which such a disc might be present is smaller than the
shaded region shown in Figure 15, e.g. requiring a planetesimal
belt & 3 au in radius for asteroidal grains. Consequently, it may be
the case that LBTI detections without far-infrared excesses are the
result of dust being dragged inwards from a planetesimal belt which
is too faint to detect at longer wavelengths, but there are limits on the
possible disc radius and dust mass of such systems, depending on
the age of the star. There were three such detections in the HOSTS
survey (Ertel et al. 2020). Also of note in Figure 15 is the dotted
contour, which shows where half of the emission comes from the
planetesimal belt. Discs for which emission is dominated by the
belt will lie to the left of this line, but comparison with the age
limits shows that such discs will typically collisionally deplete on a
∼10 Myr timescale. Therefore if warm dust is detected by LBTI in
a system without a far-infrared detection, it would not be dust in the
planetesimal belt that is being detected, but rather the dust dragged
into the inner region.

Throughout this study grains have been assumed to be aster-
oidal, with no porosity, and a core-mantle model with 1/3 silicates
and 2/3 organic material. Grain composition may differ from that
assumed in Section 2.2, so the effect of using cometary grains was
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Figure 15. Detectability thresholds for different wavelengths for asteroidal
grains (top) and cometary grains (bottom). The solid contours show R11 =
0.05%, the level above which LBTI should be able to detect discs. Dashed
and dashed-dotted contours show where a disc would have a 10% excess
at 24 µm and 70 µm around a Sun-like star, such that the parent belt is
detectable in far-infrared photometry. The shaded region is the region of
parameter space for which we predict that LBTI would be able to detect
warm dust dragged in from a cold outer belt that has not been detected in
the far-infrared. Solid lines show the upper limits on dust mass at given ages
based on the model of Wyatt et al. (2007a), as fitted to Sun-like stars in
Sibthorpe et al. (2018). Dotted contours show where 50% of dust emission
comes from the planetesimal belt, with the other half from dust interior to
the belt, such that the thermal emission of discs to the left of these contours
is dominated by the parent belt.

investigated. These grains came from the core-mantle model of Li
&Greenberg (1998), with a porosity p = 0.95; half of the vacuum is
filledwithwater ice. Thematrix remains 1/3 silicates and 2/3 organic
material, as for the asteroidal composition. This gives grains with a
much lower density of ρ = 0.688 g cm−3. Overall there is no qual-
itative change to the conclusions with this alternative composition,
but there are relatively minor quantitative changes. The excess plots
shown in Figure 14 were not significantly affected, with the same
overall trends, but a slight change in contour shape. Figure 15 shows
how a cometary composition affects the region of parameter space
for which dust is detectable. The parameter space for which LBTI
can detect exozodiacal dust dragged inwards from an undetected
planetesimal belt decreases slightly with a cometary composition.
Only belts which are relatively close to the star, r0 . 5 au, can
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Figure 16. The same as Figure 15 but for A type stars. Solid lines show the
upper limits on dust mass at given ages based on the model of Wyatt et al.
(2007b).

be detected uniquely by LBTI, and the relevant region of parame-
ter space is greatly reduced by collisional evolution. Stars known
to host cold debris belts should still be detectable by LBTI in the
mid-infrared.

The detectability of discs around A stars is demonstrated in
Figure 16, which shows the detection thresholds for realistic aster-
oidal and cometary grains. Again the model predicts that stars with
excesses detectable at longer wavelengths should have detectable
levels of exozodiacal dust. Overall the conclusions are similar to
those for Sun-like stars, though LBTI could detect slightly lower
dust masses around an A star.

6.3 Application to the HOSTS survey

The HOSTS survey (Ertel et al. 2018b, 2020), searched for exo-
zodiacal dust around 38 nearby main sequence stars, of which 9
have previously detected cold outer debris belts. LBTI uses nulling
interferometry to subtract the stellar emission, resulting in a mea-
surement of null depth. Predictions can be made using the analytical
model presented in this paper for the excess around a certain star
given the radius of the planetesimal belt and the mass of millimetre
to centimetre-sized grains. To take into account the fact that total
flux (which is that reported in Figure 14) will be attenuated by the
LBTI transmission pattern, our predicted fluxes are divided by a
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Figure 17. Null excess predictions at 11 µm for planetesimal belts of differ-
ent radii, dust masses and stellar spectral types with asteroidal grains (top)
and cometary grains (bottom). The HOSTS results for the nine stars with
detected debris discs are also shown. Arrows show 3σ upper limits for stars
which had no detection.

factor of 2 to better correspond to null depths. This is a very rough
approximation, as the transmission pattern is highly dependent on
the distance to the star and disc orientation. It is likely that the
observed null depth will be less than half of the fractional excess,
but the precise factor relating fractional excesses to null depths
will depend on the geometry and vary between systems, such that
individual systems need to be modelled (see Kennedy et al. 2015).

Predictions are presented in Figure 17 (top) for null depths
around stars of different spectral types for discs of certain dust
masses and planetesimal belt radii, assuming asteroidal grains. Also
shown are results fromHOSTS survey starswith knowndebris discs.
While the sensitivity of LBTI is around 0.1%, predictions are shown
down to 10−3%, i.e. just below the null depth corresponding to 1
zodi. While the exact null depth corresponding to 1 zodi will vary
between systems, in Section 6.1 we found a fractional excess of
7.6 × 10−3% for our toy model of the zodiacal cloud, giving a null
depth in good agreement with the value of ∼ 2 × 10−3% found
by Kennedy et al. (2015) for the null depth around a Sun-like star
corresponding to 1 zodi. Predictions down to this level are important
because detection of Earth-like planets would be hampered by dust
at the level of 10-20 zodi (Beichman et al. 2006; Defrère et al. 2010,
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11 µm, the wavelength at which LBTImeasurements are made. It is assumed
that the systems are at a distance of 10 pc from the Sun.
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Figure 20. Null excess predictions at 11 µm for planetesimal belts of dif-
ferent radii and stellar spectral types using the model of Wyatt (2005), for
different values of the belt optical depth τ0. The HOSTS results for the nine
stars with detected debris discs are also shown. Arrows show 3σ upper
limits for stars which had no detection.

2012; Roberge et al. 2012) for both visible coronagraphs and nulling
interferometers.

When dust mass is kept fixed, Figure 17 shows that the pre-
dicted null as a function of planetesimal belt radius shows the same
behaviour for all disc masses and spectral types. The null starts
off high for the smallest radii, and drops sharply as radius is in-
creased, before reaching a plateau for intermediate radii, then drops
off rapidly again at the largest radii. The first transition (i.e. the
beginning of the plateau) occurs when the 11 µm emission changes
from being dominated by dust in the planetesimal belt for smaller
radii, to being dominated by warm dust interior to the belt. For ex-
ample, for a disc with mass 0.01 M⊕ , half of the flux comes from
the planetesimal belt for r0 ∼ 50 au (see dotted line in Figure 14a),
and the plateau begins at around 50 au. The origin of the plateau is
evident from Figure 9, which showed that at fixed dust mass there is
little change in the levels of dust dragged into the innermost regions
when varying the belt radius. Thus the null does not vary signifi-
cantly with planetesimal belt radius when emission is due to dust
interior to the belt. However, at the largest belt radii there is a sharp
decrease in null with belt radius once more. This is due to the discs
becoming drag-dominated, such that increasing radius decreases
the density, reducing the levels of warm dust. Less of a plateau is
seen for lower mass discs, as they become drag-dominated at much
smaller radii. Many of the observed HOSTS stars appear to cluster
around the region where the high dust mass curves plateau.

It should be noted that the field of view of LBTI is 2.3" in
diameter, such that emission from a planetesimal belt at tens of au
would be outside the aperture used to observe stars in the HOSTS
survey. The radii from which emission can be detected will be
dependent upon distance to the star, and depend on other factors
such as the disc orientation, which will affect the LBTI transmission
pattern. For example, if a star is very far away, all of the dust emission
could be within the first null of the LBTI transmission pattern such
that no emission is seen. A more detailed discussion of modelling
the transmission pattern can be found inKennedy et al. (2015), and it
would be necessary to consider the specific parameters of individual
systems to fully understand the effect. Discs with outer belts at more
than ∼ 40 au will have their 11 µm emission dominated by warm
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dust in the inner regions, however the limitations of the field of view
will still reduce the observed null depth from our predictions here.

Interestingly, stellar spectral type does not significantly affect
the predicted nulls (for fixed dust mass). To investigate this further,
SEDs are shown in Figure 18 for discs around both A (top) and
G (bottom) stars, with a dust mass of 0.01 M⊕ . The main effect
of stellar spectral type is the SED shape: SEDs are mostly smooth
for discs around A stars, while some features are seen at shorter
wavelengths around F andG stars. This is because the larger blowout
size for higher-mass stars (equation 2) prevents the appearance of
the silicate feature. The 11 µm silicate feature will impact the null
depth predictions with asteroidal grains. These SEDs also show how
as radius is increased, the 11 µmflux decreases, then reaches a point
where it becomes constant, before decreasing again. The peak of the
SED moves to larger wavelengths as the planetesimal belt becomes
colder.

Grain composition plays an important role, as the optical prop-
erties of grains impose a lot of structure on the SED. The null depths
for grains which are cometary are presented in Figure 17 (bottom).
Broadly the shape of the null curves is the same for a cometary
composition, with plateaus which occur at a similar level to the
asteroidal case. Asteroidal grains exhibit a feature at 11 µm due to
the presence of silicates, which impacts predictions of mid-infrared
excesses. SEDs for cometary grains lack the 11 µm feature, but have
other features at different wavelengths. Changing the composition
therefore means that different stellar spectral types no longer give
the same null for a disc of certain parameters, however the difference
between spectral types is small, and generally less than a factor ∼ 2.

Whereas Figure 17 showed null predictions for discs when
dust mass was kept constant, Figure 19 shows the same prediction,
but keeping the disc’s fractional luminosity constant. The shape of
the curves in Figure 19 are similar to those for fixed dust mass.
However, at fixed fractional luminosity, the disc mass increases
with belt radius (Figure 14d). Therefore, rather than flattening out
the way the constant dust mass curves do, there is an upturn at larger
belt radius due to increasing dust mass causing an increased null.
Which of Figures 17 and 19 is appropriate depends onwhat is known
about the disc it is being applied to. If the disc has been observed
at sub-mm wavelengths, the dust mass can be derived, whereas if
the disc has been observed at far-infrared wavelengths, its fractional
luminosity may be known. In either case, the disc should ideally be
resolved, such that its radius is known, rather than having to infer
this from the spectrum, given the uncertainties in such an inference
(Booth et al. 2013; Pawellek et al. 2014). In general, the reader
should bear in mind that implicit with the 11 µm null predictions is
the full SED at all wavelengths (Figure 18).

Figure 20 shows the null excesses which are predicted using
the simpler analytical model of Wyatt (2005), assuming a single
grain size of β = 0.5 and black body grains, for different values of
belt optical depth τ0. More variation is seen between the spectral
types, due to the black body assumption. At fixed optical depth
τ0 there is also a weaker dependence on the belt radius than for
fixed dust mass (Figure 17) or fractional luminosity (Figure 19).
While this model gives broad trends, and can be used for an order of
magnitude estimate (e.g. Mennesson et al. 2014), the conclusions
are significantly different to the more accurate model of this paper.
Therefore, the two-dimensional model of this paper is necessary for
more detailed analysis of exozodi.

In Table 2 our model is applied to the HOSTS stars with
far-infrared excesses, based on observed dust masses Mdust and
fractional luminosities f . While detailed analysis of the SEDs of
individual systems is necessary to make precise predictions, this

application of the model gives a first approximation. Where given,
dust masses are derived from sub-mm observations of SCUBA-2
(Holland et al. 2017), using equation 5 of Wyatt (2008), assuming
an absorption opacity of κν = 45 au2 M−1

⊕ = 1.7 cm2 g−1.
The emission for σ Boo had a large offset from the star, such
that it was likely from a background source, and a 3σ upper limit
F850 < 2.7 mJy is used. Two systems, σ Boo and 110 Her, have not
been resolved, so instead their black body radii are used. To convert
to real radius, we use the power law from Pawellek&Krivov (2015),
assuming a composition of 50% astrosilicate and 50% ice, such that
Γ = r0/rBB = 5.42(L?/L�)−0.35. We can categorise the HOSTS
detections as follows:

• Despite large uncertainties, for example given the breadth of
the τ Ceti disc (6 - 52 au) and the fact that the σ Boo disc does not
have a resolved radius, our model predicts levels for the two systems
with non-detections, τ Ceti and σ Boo, which are consistent with
their 3σ upper limits. Our model suggests that they have exozodi,
but these are below the detection limits (unless there is something
preventing dust from reaching the inner system).
• 3/7 detections could potentially be explained by our P-R drag

model: Vega (α Lyr), β Leo, and ζ Lep, taking into account that we
have assumed the null depth to be half of the fractional excess, but
this will depend on the geometry of the system. Two of these systems
are believed to have additional, warm planetesimal belts closer to
the star, which could provide an additional source of exozodiacal
dust. Modelling of β Leo suggests the presence of warm dust which
is inside the outer belt but outside of the habitable zone (Stock et al.
2010; Churcher et al. 2011), and Vega is thought to have a warm belt
close to the star (Su et al. 2013).While not considered by our model,
an additional inner belt (and the dust dragged inwards from it) would
provide another contribution to the null depth. Thus this strengthens
the conclusion that these LBTI detections can be explained by dust
dragged in from known planetesimal belts, though if the warm
emission contributed by dust dragged in from these inner belts is
already large enough to explain the observations then additional
processes may be needed to prevent too much dust from reaching
the inner regions. ζ Lep has not been observed in the sub-mm,
such that there is no reliable estimate of its dust mass, and has only
been resolved in the mid-infrared. However, based on its fractional
luminosity and the mid-infrared resolved size, it is plausible that the
P-R drag scenario explains the observed null.
• 3/7 detections are much higher than expected: η Corvi, β Uma,

and ε Eri. η Corvi has a null depth which is a factor∼ 10 higher than
predicted, but Marino et al. (2017) showed that its exozodi could be
explained by inward scattering of exocomets from its cold planetes-
imal belt. β Uma may also be explained by the exocomet scenario,
though it cannot be ruled out that more accurate SED fitting would
allow the observed null depth to be explained by dust dragged in
from the outer belt by P-R drag. Mid-infrared observations with
Spitzer of ε Eri imply two warm inner belts at 3 au and 20 au (Back-
man et al. 2009), such that there could be another contribution to
its exozodi from a second belt. Indeed, Su et al. (2017) already sug-
gested that the 35 µm SOFIA/FORCAST detection towards ε Eri is
incompatible with all of its warm dust originating in the outer belt.
More detailed modelling of this system than that presented here
would be needed to assess this, as well as to consider the role of
stellar winds on the amount of dust dragged in (e.g. Reidemeister
et al. 2011).
• 110 Her has an observed null depth much higher than its pre-

dicted excess based on fractional luminosity. However, this system
has only marginal excesses from Spitzer at 70 µm (Trilling et al.
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Table 2. Comparison of predictions for null depths from the model based on dust mass Md and fractional luminosity f with measurements from the HOSTS
survey for stars with cold dust, assuming asteroidal grains.

Star Mdust f r0 Observed Null Predicted Null (Md) Predicted Null ( f )
M⊕ 10−5 au % % %

τ Ceta 2.3 × 10−4 1.2c 29h < 0.228 0.095 0.073
ε Eri 2.2 × 10−3 8c 60i 0.463 0.080 0.079
ζ Lep 8.9d 5j 3.50 5.74
β Uma < 6.4 × 10−3 1.4d 47k 1.02 < 0.157 0.119
β Leo < 1.3 × 10−3 2.2d 39k 0.470 < 0.152 0.148
η Crv 0.038 18.6e 152l 4.41 0.133 0.135
σ Booa < 5.1 × 10−4 1.4f 8b,m < 0.344 < 0.388 0.139
α Lyr 0.013 1.9d 85n 0.392 0.164 0.159
110 Her 0.07g 213b,o 0.621 0.0056

a Stars with non-detections have 3σ upper limits given. b For discs which have not been resolved, the black body radius is used, corrected by a factor from
Pawellek & Krivov (2015) to convert to real radius. c Di Folco et al. (2004) d Thureau et al. (2014) e Lebreton et al. (2016) f Sibthorpe et al.
(2018) g Eiroa et al. (2013) h Mean of Rin and Rout from MacGregor et al. (2016). i Greaves et al. (1998) j Mean of inner and outer radii from
Moerchen et al. (2007). k Matthews et al. (2010) l Marino et al. (2017) m Sibthorpe et al. (2018) n Sibthorpe et al. (2010) o Eiroa et al. (2013).

2008) and Herschel at 70 and 100 µm (Eiroa et al. 2013; Marshall
et al. 2013), and is poorly constrained both in terms of its frac-
tional luminosity and its radius. As such we cannot make strong
statements about the consistency of the observed null with P-R drag
from the known outer belt. However, our model could be used to
provide further constraints on the properties of the outer belt on the
assumption that the null arises from dust dragged inwards from that
belt (e.g. using Figure 14a).
• There are three stars in the HOSTS survey ( δ Uma, θ Boo, and

72Her)which had detections of exozodiacal dust, but no known cold
planetesimal belt. Based on our model, we suggest that they may
have planetesimal belts that lie in the shaded region of Figure 15,
such that they have cold planetesimal belts which are too faint to
be detected at longer wavelengths, but produce observable levels of
exozodiacal dust via P-R drag (see Section 6.2).

While more comprehensive modelling of individual systems
is needed, overall the model provides a good explanation for the
majority of systems observed by HOSTS with known planetesimal
belts. The levels of dust dragged in from the planetesimal belts
is expected to result in exozodiacal dust levels similar to those
observed, or compatible with the upper limits. The exceptions to
this are two systems which may have an additional contribution
from exocomets, one system which may have an additional, warmer
belt, and one system for which the outer belt is poorly constrained
by observations.

If the three HOSTS detections with no far-infrared excesses
are due to P-R drag from planetesimal belts not yet detected in the
far-infrared, this suggests that the outer belt population continues
to lower far-infrared flux levels. Based on our model (Figure 14),
discs which are just below the far-infrared detection thresholdwould
have 11 µm excesses of 0.1 − 1%. While the planetesimal belts of
the 80% of stars without far-infrared detections are not yet known,
these three HOSTS detections suggest the existence of belts below
the detection threshold, with 3/38 stars potentially having faint far-
infrared planetesimal belts that result in mid-infrared excesses of
0.2 − 0.7%. It is reasonable to assume that the distribution of outer
belts continues to even lower far-infrared flux levels, and so that
mid-infrared excesses can be expected to be present at levels below
0.1% for some stars. This means they could have exozodi at levels
above the limit tolerable by exo-Earth imaging of 10-20 zodi (e.g.
Defrère et al. 2010; Roberge et al. 2012), which would be equivalent
to a null depth of ∼ 0.02 − 0.04%. Therefore, even systems where

no planetesimal belt is detected may have exozodi levels which are
problematic for exo-Earth characterisation.

7 CONCLUSIONS

We have developed an analytical model which can predict two-
dimensional size distributions in debris discs for particle size and
radial distance, taking into account the effects of both collisional
evolution and P-R drag. This builds on previous, simpler analyti-
cal models which only considered a single dimension. Our model
provides a reasonable approximation to results from detailed numer-
ical models whilst being much faster, and can be used with realistic
grain properties to predict the thermal emission resulting from plan-
etesimal belts of different parameters around Sun-like and A stars.
Applying the model to stars where exozodiacal dust has been de-
tected allows us to determine whether their exozodi originate from
dust being dragged inwards from an outer planetesimal belt while
undergoing collisions, or whether an alternative scenario is needed.

We have shown that the effect of P-R drag transporting dust
inwards from an outer belt means that systems with known plan-
etesimal belts should have sufficient levels of exozodiacal dust to
be detectable with LBTI. Non-detections could imply the presence
of unseen planets which are accreting or ejecting dust from the
habitable zone. Further, we have shown that LBTI may be able to
detect exozodiacal dust which has been dragged inwards from outer
belts which are too faint to detect in the far-infrared, particularly for
belts with lower dust masses and small radii. Grain composition has
only a minor effect on the results, such that our conclusions remain
unchanged.

Application of our model to systems observed by HOSTS
shows that our model can provide a good explanation for the major-
ity of the detections, with the exception of two systems which are
particularly bright, potentially due to exocomets, one system which
is believed to have a warm inner belt, and one system which is
poorly constrained. This means that the scenario of P-R drag trans-
porting dust inward from an outer belt may be a viable source of
exozodiacal dust. Further, for the three exozodi detections with no
known planetesimal belt, we suggest that the source of the exozo-
diacal dust could be a faint outer belt which is not yet detectable in
the far-infrared. In the future it may be possible to use models such
as the one presented in this paper to determine whether particular
exozodi originate from P-R drag or an alternative scenario.

Future attempts to detect and characterise exo-Earths will be
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impeded by levels of exozodiacal dust even ten times that of the
solar system.We have shown that even planetesimal belts much less
massive than the bright Kuiper belt analogues which have already
been detected could produce mid-infrared excesses a few times
greater than the zodiacal cloud. While systems with known belts
are expected to have exozodiacal dust, even those where no belt has
been detected could therefore be problematic for exo-Earth imaging.
Understanding the occurrence of exozodiacal dust will therefore be
crucial to the design of these exo-Earth missions.
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