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(i) Consider a coordinate system that is centred on a star with ẑ pointing towards
the observer, so that the x̂ − ŷ plane is that of the sky, with x̂ pointing towards North.
The circular orbit of radius a of a planet around the star is defined by the inclination I
of the orbit to the sky plane, and the longitude of ascending node Ω, i.e., the angle in the
sky plane between North and where the planet passes through the sky plane while moving
towards the observer. The location of the planet within the orbit is defined by the angle
f subtended at the star between its location and the ascending node. Provide a sketch of
this coordinate system, noting the orbit and location of the planet, and the angles I, Ω
and f .

(ii) Derive expressions for the x, y, z location of the planet within this coordinate
system.

(iii) The observer sees the planet projected onto the sky plane, with observables
being the projected separation from the star Rsky and the position angle ϕ, which is
the angle subtended at the star between North and the planet’s projected location, as
measured anticlockwise from North. Give expressions for Rsky and ϕ.

(iv) If the orbit is close to edge-on, such that I = π/2− I ′, where I ′ ≪ 1, show that
to second order in I ′: tan (ϕ− Ω) ≈ I ′ tan f and Rsky ≈ [1+0.5(I ′ tan f)2] cos f . You may
use without proof that tan (A−B) = (tanA− tanB)/(1 + tanA tanB).

(v) The planet is observed in a system which also hosts an axisymmetric circum-
stellar belt of dust at radius ad. Observations constrain the position angle of the dust
belt’s ascending node as seen in projection ϕd, as well as its inclination to the sky plane
Id. Derive an expression for the mutual inclination Im between the orbital planes of the
dust belt and the planet in terms of Id, ϕd, I and Ω, and check your expression for con-
sistency (e.g., by considering special cases such as ϕd = Ω). You may use without proof
the spherical trigonometric identity cosA = cos a sinB sinC − cosB cosC, where A is the
internal angle opposite the arc of angular length a.

(vi) Derive an expression for the difference in position angles seen for the planet and
the belt, tan (ϕ− ϕd), in terms of Ω− ϕd, I and f, and give an approximation for ϕ− ϕd

for I ′ ≪ 1.

(vii) Comment on how the difference in position angle between the planet’s location
and the belt’s ascending node can be used to assess whether their orbits are coplanar.

(viii) If a ≫ ad and the planet’s orbit is misaligned with the belt (i.e., Im > 0),
comment on the expected evolution of the orbits of material within the belt.
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(i) Consider a spherical planetesimal of diameterDt and density ρ. The planetesimal
suffers a catastrophic collision such that half of its mass ends up in a single fragment
and the remaining mass is distributed into fragments with sizes between Dmin,f and
Dmax,f ≫ Dmin,f , in a size distribution such that the number of fragments with diameters
in the range Df to Df + dDf is n(Df)dDf ∝ D−αf

f , where αf is a constant in the range 3
to 4. Derive an expression for the total cross-sectional area of the fragments σtot,1.

(ii) If instead the fragments created in the collision, other than the single largest
fragment, are all of the same size Df ≪ Dt, then determine a new expression for their
total cross-sectional area, showing that this is σtot,2 ≈ (π/8)D3

tD
−1
f . Comment on the

ratio σtot,2/σtot,1.

(iii) Consider a belt of planetesimals of total mass M in which planetesimals have
sizes in the range Dmin to Dmax, drawn from a power law size distribution n(D) ∝ D−α,
where α is a constant in the range 3 to 4. The volume of the belt is V and the relative
velocity at which planetesimals collide vrel. Planetesimals can be assumed to all have
the same dispersal threshold Q∗

D, independent of size, and gravitational focussing can be
ignored. Derive an expression for the rate at which a planetesimal in the belt of diameter
Dt suffers catastrophic collisions, stating any assumptions made.

(iv) You may assume that the cross-sectional area created in all catastrophic
collisions is given by σtot,2, and that this cross-sectional area remains in a dust clump
for a fixed duration ∆t. Derive an expression for N(> σtot), the number of dust clumps
that would be expected to be present at any given time with more cross-sectional area
than a given level σtot.

(v) If the size distribution is such that α = 3.5, give and comment on the dependence
of N(> σtot) on the different parameters, one of which is N(> σtot) ∝ σ−1

tot.

(vi) Discuss the dynamical processes which might cause the clumps to disperse, and
how these might depend on the size of the fragments created, Df , and whether a fixed
duration for the clump lifetime is a reasonable assumption.
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(i) Two bodies of mass M1 and M2 ≪ M1 are on a circular orbit about their centre
of mass O. Units are chosen such that both the distance between the bodies and their
mean motion are unity. A test particle P is orbiting in the binary’s orbital plane, and its
location in this plane is given by (x, y) in the rotating frame (x̂xx, ŷyy) that is centred on O
with x̂xx pointing towards M2. Sketch the location of M1, M2 and P in an inertial frame
centred on O, and give expressions for the distances OM1, OM2, M1P and M2P in terms
of x, y, µ1 and µ2, where µi = GMi.

(ii) The test particle’s equation of motion can be written ẍ−2ẏ = F and ÿ+2ẋ = G,
where

F = µ1(1− r−3
1 )(x+ µ2) + µ2(1− r−3

2 )(x− µ1),

G = µ1(1− r−3
1 )y + µ2(1− r−3

2 )y,

and ri is the distance of the particle from body i. Explain how these equations result in
5 equilibrium points for the test particle’s motion.

(iii) The collinear L3 equilibrium point is on the opposite side of M1 from M2 at a
distance r1 = 1 + β, where |β| ≪ 1. Derive the leading order solution

β ≈ α ≡ −(7/12)µ2/µ1.

(iv) Show that the second order solution is β ≈ α+(7/12)(µ2/µ1)
2. If you wish you

may use Lagrange’s inversion method which says that if b = a+ ef(b) where e < 1 then

b = a+Σ∞
j=1

(
ej

j!

)
dj−1

daj−1
[f(a)]j .

(v) The particle is orbiting very close to L3 at y = Y and x = xL3+X, where X ≪ α
and Y ≪ α. Show that the equation of motion can be written in the form Ẋ = AX, where
the vector X = [x, y, ẋ, ẏ], and the matrix A should be given in terms of the derivatives
of the functions F and G evaluated at L3. Note that expressions for these derivatives are
not needed at this stage.

(vi) Show that ∂F/∂y = ∂G/∂x and that both are zero when evaluated at L3.
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(i) A planet of mass M1 is on a circular orbit of radius a1 around a star of mass
M⋆ ≫ M1. A planetesimal, which can be assumed to be massless, orbits in the same
plane as the planet with semimajor axis a > a1, eccentricity e and longitude of pericentre
ϖ. The planetesimal is in p + q : p mean motion resonance with the planet. Give the
semimajor axis of the planetesimal, and describe with reference to a general form of the
planetesimal’s disturbing function why its motion is expected to be dominated by the term
involving the resonant argument ϕ1 = (p+ q)λ− pλ1 − qϖ, where λ and λ1 are the mean
longitudes of the planetesimal and planet, respectively.

(ii) Ignoring the precession of the planetesimal’s pericentre, give the geometrical
explanation for the quantities ϕ1/p and ϕ1/q, and an expression for the mean time between
conjunctions in terms of the planetesimal’s orbital period T . You may find it useful to
consider the evolution of the planetesimal from a time when it is (a) at pericentre and the
planet is at a longitude λ0, and (b) at conjunction with the planet at longitude λc.

(iii) The planetesimal is in 8:5 resonance with the planet and is started at conjunc-
tion with the planetesimal at apocentre. Consider the path of the planetesimal in the
frame rotating with the planet’s mean motion. Determine how many planetesimal orbits
are required before the pattern repeats. Note the locations on the rotating frame where
the planetesimal could be at pericentre or apocentre and use this to sketch the path of
the planetesimal in this frame.

(iv) By considering the perturbations the planetesimal experiences at conjunction,
explain what value of ϕ1 this resonant argument will librate about.

(v) The planetesimal’s resonant argument ϕ1 is librating about this equilibrium value
with an amplitude of libration ∆ϕ1. Give a constraint on the planetesimal’s eccentricity
for which close encounters with the planet might be possible, depending on the value of
∆ϕ1.

(vi) Consider the parameter space of the planetesimal’s libration amplitude and
eccentricity (i.e., ∆ϕ1 vs e). Describe without detailed calculation how you would
determine the regions of parameter space on such a plot for which the planetesimal would
be expected to have close encounters with the planet.
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