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ABSTRACT
Mean motion resonances are a common feature of both our own Solar System and of extraso-
lar planetary systems. Bodies can be trapped in resonance when their orbital semi-major axes
change, for instance when they migrate through a protoplanetary disc. We use a Hamiltonian
model to thoroughly investigate the capture behaviour for first and second order resonances.
Using this method, all resonances of the same order can be described by one equation, with
applications to specific resonances by appropriate scaling. We focus on the limit where one
body is a massless test particle and the other a massive planet. We quantify how the the prob-
ability of capture into a resonance depends on the relative migration rate of the planet and
particle, and the particle’s eccentricity. Resonant capture fails for high migration rates, and
has decreasing probability for higher eccentricities, although for certain migration rates, cap-
ture probability peaks at a finite eccentricity. More massive planets can capture particles at
higher eccentricities and migration rates. We also calculate libration amplitudes and the off-
set of the libration centres for captured particles, and thechange in eccentricity if capture
does not occur. Libration amplitudes are higher for larger initial eccentricity. The model al-
lows for a complete description of a particle’s behaviour asit successively encounters several
resonances. Data files containing the integration grid output will be available on-line. We dis-
cuss implications for several scenarios: (i) Planet migration through gas discs trapping other
planets or planetesimals in resonances: We find that, with classical prescriptions for Type I
migration, capture into second order resonances is not possible, and lower mass planets or
those further from the star should trap objects in first-order resonances closer to the planet
than higher mass planets or those closer to the star. For fastenough migration, a planet can
trap no objects into its resonances. We suggest that the present libration amplitude of planets
may be a signature of their eccentricities at the epoch of capture, with high libration ampli-
tudes suggesting high eccentricity (e.g., HD 128311). (ii)Planet migration through a debris
disc: We find the resulting dynamical structure depends strongly both on migration rate and
on planetesimal eccentricity. Translating this to spatialstructure, we expect clumpiness to de-
crease from a significant level ate . 0.01 to non-existent ate & 0.1. (iii) Dust migration
through PR drag: We predict that Mars should have its own resonant ring of particles captured
from the zodiacal cloud, and that the capture probability is. 25% that of the Earth, consistent
with published upper limits for its resonant ring. To summarise, the Hamiltonian model will
allow quick interpretation of the resonant properties of extrasolar planets and Kuiper Belt Ob-
jects, and will allow synthetic images of debris disc structures to be quickly generated, which
will be useful for predicting and interpreting disc images made with ALMA, Darwin/TPF or
similar missions.

Key words: celestial mechanics – planets and satellites: dynamical evolution and stability –
protoplanetary discs – planet–disc interactions – zodiacal dust

1 INTRODUCTION

Mean motion resonances (MMRs) occur when two objects’ orbital
periods are close to a ratio of two integers, and a particularcombi-

⋆ Email: ajm233@ast.cam.ac.uk

nation of orbital angles, the resonant argument, is librating. Exam-
ples in the Solar System include Neptune and Pluto (3:2 resonance)
and the inner Galilean moons of Jupiter (4:2:1 Laplace resonance).
There are also now numerous examples of suspected or confirmed
MMRs in extrasolar planetary systems (e.g., GJ 876 b and c in a
2:1 resonance, Laughlin & Chambers 2001).

http://lanl.arxiv.org/abs/1012.3079v1
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Mean motion resonances also occur between planets and
small dust particles, as seen in the Earth’s resonant dust
ring (Dermott et al. 1994). Some extrasolar debris discs, such as
Vega, show evidence of non-axisymmetric clumps (Holland etal.
1998; Wilner et al. 2002), and several authors have attempted to
model these as arising from a planet’s resonant perturbations (e.g.,
Kuchner & Holman 2003; Wyatt 2003).

Although resonant orbits occupy only a small volume of phase
space, they are common because of a locking mechanism which can
preserve the resonance once attained. If a particle’s or planet’s or-
bital semi-major axis changes due to non-conservative forces, the
bodies can approach a resonance and then remain trapped there
even under further action of the non-conservative forces. The asso-
ciated orbital angular momentum change then drives an eccentric-
ity change, while the semi-major axis ratio remains approximately
fixed at the resonance.

There are many mechanisms by which such a semi-major
axis change can be driven. Early work looked at the tidal evolu-
tion of satellite orbits (Goldreich 1965). In a protoplanetary disc,
planets can migrate by tidal interaction with the gas disc (see
Chambers 2009, for a recent review), and small planetesimals by
aerodynamic drag (Weidenschilling 1977). In a gas-depleted debris
disc, planets can migrate by gravitational scattering of planetesi-
mals (Fernandez & Ip 1984; Kirsh et al. 2009). Interplanetary dust
drifts towards the Sun under the influence of Poynting-Robertson
(PR) drag (Burns et al. 1979), and large bodies can be moved more
slowly by the Yarkovsky effect (Bottke et al. 2006). At the end of
a star’s main-sequence lifetime, planetesimals can experience aero-
dynamic drag as the star loses mass (Dong et al. 2010). Moreover,
for a planet orbiting the secondary component in a binary system,
formation of a disc following mass transfer from the primaryto the
secondary could trigger renewed planet migration (Perets 2010).

Resonance capture has been studied by several authors, go-
ing back to Goldreich (1965). The regime of adiabatic migra-
tion, where the migration timescale is much longer than the
resonant argument’s libration timescale, has been studiedexten-
sively analytically using a Hamiltonian model (e.g., Henrard 1982;
Borderies & Goldreich 1984). With adiabatic migration, capture is
certain if the particle has an eccentricity below a criticalvalue, and
probabilistic with decreasing probability as eccentricity increases
beyond this. Rapid migration was studied using full N-body mod-
els by Wyatt (2003, henceforth W03) for the case of a planet mi-
grating into a planetesimal disc, and using the Hamiltonianmodel
by Quillen (2006, henceforth Q06) for general migration scenar-
ios. Q06 obtained capture probability as a function of migration
rate and eccentricity for the Hamiltonian containing a single res-
onant term, and went on to consider the role played by additional
resonant terms in affecting capture probability. Such terms can be
important when the planet is eccentric.

In this paper we extend this work in a different direction, and
using the Hamiltonian model with a single resonant term we cal-
culate capture probabilities, libration amplitudes and offsets for
particles that are captured, and eccentricity jumps for those that
pass through the resonance without capture. We validate themodel
against the numerical integrations of W03 and Q06. We also discuss
the application of the model to various migration scenarios, and dis-
cuss previous studies in its light, in particular those of Reche et al.
(2008) who investigated capture of planetesimals by a migrating
planet, and Dermott et al. (1994) who studied the formation of the
Earth’s resonant dust ring, both using N-body integrations. We
should like to emphasize the role eccentricity can play in affecting
capture probabilities and libration amplitudes, which, while long

understood in the Solar System (e.g., Murray & Dermott 1999), is
sometimes neglected in studies of extrasolar planets and discs.

The Hamiltonian model we use has several advantages over
N-body simulations: (1) it allows some results to be derivedanalyt-
ically; (2) it is faster to integrate numerically than the 3-body prob-
lem; (3) all resonances of the same order reduce to a Hamiltonian
of the same form, with fewer free parameters than the three-body
problem. Once a suite of numerical integrations of the Hamilto-
nian model is performed, it can be applied to any system, without
the need for running a different N-body integration every time the
system parameters are changed.

The plan of this paper is as follows: In§2 we describe the di-
mensionless Hamiltonian model. Readers interested in the details
may read the Appendix which contains the mathematical deriva-
tion. In § 3 we summarise how physical parameters relate to the
dimensionless parameters for test particles. In§4 we describe the
results of our numerical integrations. In§5 we compare the Hamil-
tonian model to N-body simulations. In§6 we discuss applications.
§7 summarises our work.

2 DESCRIPTION OF HAMILTONIAN MODEL

For most of this paper we consider the circular restricted three body
problem with a massive planet and a massless test particle orbiting
a central star with a low mutual inclination. (In the Appendix, we
derive suitable formulae for the case of two massive planetsorbit-
ing a star, although we do not pursue this further in this paper.) A
mean motion resonance occurs when the ratio of two bodies’ mean
motions isj : j− k wherej andk are integers, and when the asso-
ciated resonant argumentθ = jλ2 − (j − k)λ1 − k̟ is librating.
Here,λi are the mean longitudes of the inner and outer bodies, and
̟ is the longitude of pericentre of the test particle1. The integerk
is the order of the resonance; higher order resonances are weaker
and often the dynamics are dominated by the low-order resonances.
In this paper, we consider resonances of first and second order.

We work with the widely-used Hamiltonian model of mean
motion resonances (e.g., Murray & Dermott 1999). This modelis
derived by taking the lowest order term in the disturbing function
and while suitable for low eccentricities other terms may beimpor-
tant at higher eccentricity (e.g., Lee & Peale 2002). Here wesum-
marise the model and qualitatively describe its behaviour.Readers
interested in the mathematical derivation are referred to the Ap-
pendix. In§ 3 we summarise the mathematical results.

2.1 Absence of migration

First we consider the case with no migration forces. A particle is
in resonance if its resonant argument is librating, typically aboutπ,
rather than circulating. The evolution of the canonical angle k(θ +
π) is governed by the Hamiltonian

H = J2 + βJ + (−1)kJk/2 cos kθ, (1)

whereJ , the generalised momentum conjugate toθ, is proportional
to the square of the particle’s eccentricity. There is one parameter,
β, which measures how far the particle is from the nominal reso-
nance location. All resonances of orderk, of any value ofj, and

1 When we refer to inner and outer bodies, their elements are subscripted
1 and 2 respectively; when we refer to a planet and a test particle, their
elements are subscriptedpl and unsubscripted respectively.
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whether the particle is interior to or exterior to the planet, can be
reduced to this form; the relation between the dimensionless vari-
ables and parameters and physical parameters changes, however, as
described in the next Section. For first order resonances this is valid
for coplanar systems and for low inclinations: there are no first-
order inclination terms in the disturbing function. For second order
resonances in a non-coplanar system the inclination terms may be
important, and capture into a second-order inclination resonance is
possible (Murray & Dermott 1999). Capture into such resonances
can be handled using the same formalism but with inclinationtak-
ing the place of eccentricity, and changes to the scaling coefficients
between the Hamiltonian model and the physical variables.

Level curves of the Hamiltonian fork = 1 (i.e., first-order res-
onances) are shown in Figure 1. In this plot, the resonant argument
is measured anticlockwise from the positivex-axis, and the radius
is proportional to

√
J , i.e., to the particle’s eccentricity. Ifβ is con-

stant, trajectories are confined to these level curves. Forβ > −3,
there is one fixed point close to the origin, and trajectoriescirculate
about this, so no resonant trajectories exist. Forβ < −3, there are
stable fixed points both close to the origin, and removed fromthe
origin atθ = π. The trajectories librating about this latter point are
the resonant trajectories. They may have a larger or smallerlibra-
tion amplitude. There are also circulating trajectories atsmaller and
larger eccentricity than the libration region. The curve demarcating
these regions is the separatrix, shown as a dotted line in Figure 1.

2.2 Presence of migration

Now we describe what can happen if there is a non-conservative
force acting to change the semi-major axis ratio. Migrationof either
the inner or outer body, or both, is mathematically identical: only
the relative migration ratėa1/a1−ȧ2/a2 matters. Note that capture
is only possible for converging orbits (Murray & Dermott 1999) be-
cause of the geometry of orbital conjunctions (Chiang et al.2002),
so we restrict ourselves to this case.

Prior to reaching the commensurability,β is positive, and all
trajectories are circulating as shown in the top panel of Figure 1.
Migration reduces the value ofβ, until at β = −3 the separatrix
forms and libration in the resonance becomes possible. Asβ con-
tinues to decrease, the trajectory may either become trapped in the
resonant region, or continue circulating about the origin.

In the case of adiabatic migration, progress can be made ana-
lytically by exploiting the invariance of the area enclosedby the tra-
jectory, and the criterion for capture is well understood: if the initial
eccentricity is small, the separatrix forms outside the trajectory, and
the trajectory is then trapped inside the libration region.Note that
the trajectories with smallJ in the top panel of figure 1 deform con-
tinuously into those in the libration region. If the initialeccentricity
is large, the separatrix forms inside the trajectory, and initially the
angle still circulates. However, continued migration causes the area
enclosed by the separatrix to expand, while that enclosed bythe
trajectory remains constant, so that soon the separatrix hits the tra-
jectory. Then the area enclosed by the trajectory changes and the
trajectory jumps to either the libration or the inner circulation re-
gion (Murray & Dermott 1999). Although the equations are deter-
ministic, when one has no information on the phase at which the
separatrix meets the trajectory, capture can be treated as aproba-
bilistic event, with the probability of capture decreasingas the parti-
cle’s initial eccentricity is increased (Borderies & Goldreich 1984).
If the particle is captured into resonance, it remains so under further
migration. If the particle is not captured into resonance, circulation
continues but with a different eccentricity (which is always smaller

Figure 1. Level curves of the Hamiltonian for first-order resonances.In the
absence of migration, trajectories are constrained to lie on these curves. The
resonant argument is measured clockwise from the origin, and the radial dis-
tance is proportional to the eccentricity.Top: prior to resonance crossing,
with β positive. All trajectories circulate about the origin.Bottom: after
resonance crossing, withβ negative. As well as trajectories where the reso-
nant argument circulates about the origin, librational solutions are possible;
these trajectories have been captured into the resonance. The curve demar-
cating these two regimes is the separatrix (dotted line). The trajectories with
smallJ in the upper panel are now those in the libration region.

for adiabatic migration). If migration continues, however, the par-
ticle may be captured into another resonance.

Following capture, the libration continues, with the particle’s
eccentricity increasing as the migration moves the fixed point fur-
ther from the origin. The centre of libration is also offset slightly
from the case with no migration. Finally, as we show in the Ap-
pendix, the libration amplitude decreases slightly, as theangular
width of the libration region changes while the area remainsfixed.
If the migration force is removed, there will no longer be an offset
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of the libration centre, and the libration amplitude will nolonger
vary.

The case of rapid migration has been less well explored. Q06
used this Hamiltonian model to derive capture probabilities as a
function of both migration rate and initial eccentricity. Here we ex-
tend these investigations to more thoroughly map out the parameter
space, to find the libration amplitude and offset, and to find eccen-
tricity changes if capture does not occur. This allows us to build up
a full picture of what happens as a result of an encounter witha
resonance.

Second-order resonances show qualitatively similar behaviour
to the first-order resonances.

3 SCALINGS FOR TEST PARTICLES

Here we summarise how the dimensionless variables of the Hamil-
tonian model relate to the physical variables and parameters of a
real star–planet–test particle system. The derivation of these equa-
tions is given in the Appendix.

3.1 First-order resonances

The dimensionless Hamiltonian is

H = J2 + βJ − J1/2 cos θ. (2)

For first-order resonances, the dimensionless quantitiesJ and
β̇, and the dimensionless timet′, relate to the physical parameters
as follows:

J = kj

(

mpl

M⊕

)−2/3 (
m⋆

M⊙

)2/3

e2, (3)

β̇ = −lj

(

mpl

M⊕

)−4/3 (
m⋆

M⊙

)5/6

( apl

1AU

)1/2
[

α
ȧ2

1AU/Myr
− ȧ1

1AU/Myr

]

(4)

t′ = gj

(

mpl

M⊕

)2/3 (
m⋆

M⊙

)−1/6
( apl

1AU

)−3/2 t

1Myr
. (5)

Here,α is the ratio of the planet’s and particle’s semi-major axes:
α = a/apl for an internal particle andα = apl/a for an external
particle. The coefficientskj and lj depend on the particular reso-
nance and are tabulated in Table (1). For test particles outside the
planet’s orbit the “e” columns are to be used; for particles inside
the planet’s orbit the “i” columns are to be used.

When capture occurs and migration continues, the eccentric-
ity, libration amplitude and offset evolve with time in the following
manner:

e =

√

gjlj
2kj

( apl

1AU

)−1/2
(

t

1Myr

)1/2

[

α
ȧ2

1AU/Myr
− ȧ1

1AU/Myr

]1/2

(6)

∆θ ∝ t−1/8 (7)

θeq =

√

lj
2gj

(

mpl

M⊕

)−1 (
m⋆

M⊙

)1/2
( apl

1AU

)

[

α
ȧ2

1AU/Myr
− ȧ1

1AU/Myr

]1/2 (
t

1Myr

)−1/2

(8)

j gj (e) kj (e) lj (e) gj (i) kj (i) lj (i)

2 850.788 11077.7 13.0205 3114.07 3026.51 3.08553
3 4797.66 5893.36 0.818921 6003.93 4709.31 1.02782
4 7874.86 7180.91 0.455939 9233.21 6124.49 0.535696
5 11273.1 8360.39 0.296648 12754.1 7389.62 0.336163
6 14942.3 9461.19 0.211061 16527.8 8553.59 0.233766
7 18847.9 10500.9 0.159184 20525.4 9642.71 0.173547
8 22964.5 11491.4 0.125099 24724.9 10673.2 0.134820
9 27272.8 12440.7 0.101368 29108.7 11656.0 0.108285
10 31757.1 13355.0 0.0841070 33662.7 12598.9 0.0892231
11 36404.7 14238.9 0.0711143 38375.3 13507.7 0.0750161

Table 1. Numerical coefficients for conversion between the physicaland
dimensionless variables for first order internal (i) and external (e) test par-
ticles. Note that the authors believe that any errata in Quillen (2006) have
been corrected in this paper.

j gj (e) kj (e) lj (e) gj (i) kj (i) lj (i)

3 4.57110 557561 225528 32.5896 108449 27687.7
5 128.778 81348.5 852.466 146.484 120638 1543.58
7 305.071 75601.1 253.169 332.276 124094 373.904
9 553.801 72865.1 107.555 590.374 125717 143.877
11 874.950 71261.2 55.4009 920.840 126658 69.8820
13 1268.52 70206.1 32.2138 1323.69 127271 39.0819
15 1734.49 69459.2 20.3629 1798.92 127704 24.0293
17 2272.84 68903.7 13.6835 2346.56 128024 15.8149
19 2883.61 68472.8 9.63420 2966.61 128269 10.9566
21 3566.83 68128.8 7.03771 3659.06 128465 7.90129

Table 2. Numerical coefficients for conversion between the physicaland
dimensionless variables for second order internal (i) and external (e) test
particles.

Eccentricity is pumped up, while the libration amplitude and offset
are reduced. Note that the value of the libration amplitude is not
determined analytically, but its dependence on time can be.

3.2 Second-order resonances

For second-order resonances, we write the dimensionless Hamilto-
nian

H = J2 + βJ + J cos 2θ. (9)

The scalings forJ , β̇ andt′ are then as follows:

J = kj

(

mpl

M⊕

)−1 (
m⋆

M⊙

)

e2, (10)

β̇ = −lj

(

mpl

M⊕

)−2 (
m⋆

M⊙

)3/2

( apl

1AU

)1/2
[

α
ȧ2

1AU/Myr
− ȧ1

1AU/Myr

]

(11)

t′ = gj
mpl

M⊕

(

m⋆

M⊙

)−1/2
( apl

1AU

)−3/2 t

1Myr
. (12)

The coefficients are tabulated in Table (2).
When capture occurs and migration continues, the eccentric-

ity evolves according to Equation 6; libration amplitude and offset
evolve with time in the following manner:

∆θ ∝ t−1/4 (13)
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θeq =
1

4
g−1
j

(

mpl

M⊕

)−2/3 (
m⋆

M⊙

)1/6
( apl

1AU

)3/2

(

t

1Myr

)−1

(14)

This is similar to first-order resonances, but the time dependence
of the libration amplitude and offset is stronger. Again, the value
of the libration amplitude is not determined analytically,but its de-
pendence on time can be.

4 NUMERICAL INTEGRATION

4.1 Capture probabilities

4.1.1 First order resonances

For our numerical investigations, we show plots of capture prob-
ability, libration amplitude and offset, and eccentricityjump, in a
region log |β̇| ∈ [−3, 1), log J0 ∈ [−2, 2). HereJ0 is the initial
value of the momentumJ . Note that higher-order terms in the dis-
turbing function will become important fore & 0.1, i.e.,J0 & 1 or
100 for a Jupiter-mass or an Earth-mass planet respectively. Note
also that an eccentricity of1 is attained atJ0 ∼ 100 or 104, for
Jupiter-mass and Earth-mass planets respectively. Hence,results on
the extreme right-hand side of the following figures may not be ac-
curate for massive planets.

We consider the Hamiltonian given by Equation (2). For the
integration we transformed to Poincaré’s canonical Cartesian vari-
ables (equation A45) in order to avoid a singularity in the equations
of motion for smallJ . The Hamiltonian is then

H =

(

x2 + y2
)2

4
+

β

2

(

x2 + y2
)

− x√
2
. (15)

The equations of motion arising from this Hamiltonian (ẋ =
−∂H/∂y, ẏ = ∂H/∂x) were integrated numerically with a
Runge-Kutta routine with Cash-Karp spacings and adaptive step
size (Press et al. 2007). We also varyβ by including the equation
β̇ = constant to impose migration; this changes semi-major axis
without affecting eccentricity. Note that it is sufficient to consider
linear variation inβ since it is only the migration rate at the in-
stant of resonant passage that affects capture probability, so long
as the migration is sufficiently smooth. However, if the migration
rate changes rapidly, such as if the planet is experiencing turbu-
lent torques, then the model does not apply. The initial value of
β was chosen to be15 ± 1 with a uniform random distribution.
It was found that when all particles were started from exactly the
same value ofβ the capture probability varied in a very rapid man-
ner withJ0 or β̇. This appears to be related to the phase at which
particles enter the resonance; the distribution of phases does not re-
main uniform as the system evolves away from the initial uniform
distribution. While perhaps mathematically interesting,this is not
physically useful, so we randomised over this parameter.

We varied the initial momentumJ0 and the migration ratėβ.
For each point in parameter space we integrated 100 trajectories,
with the resonant argument chosen from a uniform distribution over
[0, 2π) and initialβ as described above. A trajectory was classed
as a capture if all of 1000 output values ofθ were within4π/5 ra-
dians of the centre of libration. This avoids any misclassification:
choosing a larger libration amplitude would risk misclassifying cir-

culating trajectories as captures. The top panel of Figure (2) shows
capture probabilities as a function ofJ0 andβ̇2.

In Figure 2, top panel, we see that capture into resonance is
guaranteed for small initial eccentricities and migrationrates. For
low migration rates we are in the well-studied adiabatic regime.
For low eccentricities capture is certain since the separatrix forms
around the initial trajectory. For high eccentricities theseparatrix
forms inside the initial orbit and expands to meet it as the migra-
tion continues. Capture then is probabilistic, with a probability that
decreases as the initial eccentricity increases (Henrard 1982).

For low eccentricities, withJ0 < 1.3, capture is certain if the
migration rate is low and impossible if it is high. The width of the
transition region from capture to no capture increases witheccen-
tricity. In the limit of low eccentricity, the transition occurs at a crit-
ical migration rate of|β̇| ≈ 2.1. Certain capture occurs for low mi-
gration rates up toJ0 ≈ 1.3. For higher eccentricities (J0 > 1.3),
capture is always probabilistic, with a capture probability that is not
strongly dependent of migration rate; however, if migration rate is
too high, then capture is still impossible. Interestingly,the maxi-
mum migration rate allowing capture is slightly higher for higher
eccentricities. This is because this maximum migration rate is gov-
erned by the resonant libration period, which decreases with higher
J (Eq. A49). For a given migration rate above the critical rate, the
capture probability peaks at a finite eccentricity.

Vertical line cuts through Figure 2, bottom panel, give the
same results as shown in figure 2 of Q06, who integrated the same
Hamiltonian with a different integrator, providing a checkon our
numerical implementation.

In subsequent sections we shall sometimes be concerned with
particles that have dimensionless momentaJ0 > 100, for example
when considering planets of around Earth mass or lower. To calcu-
late the capture probabilities at these high momenta, we extrapo-
lated the results plotted in Figure 2. At high momentum (J0 & 10)
the capture probability is independent of migration rate for most
of the range of migration rates considered, and a regressionfit af-
ter pooling the data forJ0 ∈ [3.2, 100) and β̇ ∈ [0.001, 4.2]
givesp = 0.499J−0.725

0 for the capture probability. This agrees
with the analytical results for the adiabatic case wherep ∝ e−3/2

(Dermott et al. 1988).

4.1.2 Second-order resonances

We used Poincaré variables and same integrator as for the first-
order resonance to integrate the second-order Hamiltonian

H =

(

x2 + y2
)2

4
+

(β + 1)x2

2
+

(β − 1)y2

2
. (16)

Again we randomised the initial angle and distance to the reso-
nance. The integrations were performed forlog |β̇| ∈ [−1.5, 1.5),
log J0 =∈ [−9, 1.6875). Higher order terms will become impor-
tant for J of several hundred. The capture probabilities areshown
in Figure (2), bottom panel.

The overall picture is similar to that for first order resonances:
Certain capture at low migration rate and eccentricity, no cap-
ture at high migration rate and low eccentricity, and probabilistic

2 The data used to create figure 2 and the other other
contour plots in this paper are available on-line at
http://www.ast.cam.ac.uk/ ˜ ajm233/ and the journal website
and may be used provided that this work is cited.

http://www.ast.cam.ac.uk/~ajm233/
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1st order 2:1

3:2

2nd order

Figure 2. Top: Capture probabilities for the first-order resonance, as a
function of rescaled eccentricity (x-axis) and migration rate (y-axis). Con-
tours are at 1%, 25%, 50%, 75% and 99% probability. Also shown(green
crosses) are the dimensionless migration rate and eccentricity for a par-
ticle with Keplerian eccentricity 0.01, migrating at 1 AU Myr−1 into ex-
terior resonances with an Earth-mass planet orbiting a Solar-mass star at
1 AU. The 2:1 and 3:2 resonances are labelled. Note that the axis of or-
dinates is condensed at the bottom of the plot. The bottom right corner
(log J0 ∈ [1.75, 2), log β̇ ∈ [−3,−1)) was not integrated due to long in-
tegration times.Bottom: Capture probabilities for second-order resonances.
Contours are at 1%, 25%, 50%, 75% and 99% probability.

capture at low migration rate and high eccentricity. In the adia-
batic limit, the transition from certain to probabilistic capture oc-
curs atJ0 ≈ 0.8. At high eccentricities, capture probability does
not depend strongly on migration rate for the rates considered,
and we findp = 0.867J−0.48

0 , agreeing with analytical studies
(Dermott et al. 1988) which givep ∝ e−1. In the limit of low ec-
centricity, the transition from certain to impossible capture does

not appear to converge to any value ofβ̇, unlike for first order res-
onances, being quite strongly dependent on the migration rate, par-
ticularly for J0 & 0.001. At higher eccentricities, the maximum
migration rate allowing capture increases more rapidly withJ than
for first order resonances. This is due to the stronger dependence of
the libration period onJ (Eq. A52).

Vertical line cuts through Figure 2, bottom panel, give the
same results as shown in figure 3 of Q06.

4.2 Libration amplitude and evolution in resonance

The analytical results in section A3 show that libration amplitude
and offset decrease with time, so we need to specify a time at which
to measure the libration amplitude and offset. First we check the ac-
curacy of these analytical results. For first order resonances, the top
panels of Figure 3 and Figure 4 show the evolution of libration am-
plitude and offset respectively, for one trajectory from each corner
of parameter space (J0 = 0.1, β̇ = 0.1; J0 = 0.1, β̇ = 2.5;
J0 = 10, β̇ = 0.1; andJ0 = 10, β̇ = 7.5). The points are the
numerically determined amplitudes and offsets from an extended
integration of these trajectories. For the offsets, the lines are the
analytical solution given by Equation A44. For the amplitudes, the
lines have a slope of−1/8 as determined analytically, and a nor-
malisation given by the relevant shorter integration from the grid
described above. Agreement is generally good, for both fastand
slow migration, even though the result was derived assumingadi-
abatic conservation of area. This demonstrates the accuracy of the
analytical solution, and also that the output from the grid of inte-
grations is sufficient to correctly describe the long-term behaviour.

The bottom panels of Figures 3 and 4 show the analogous
plots for second order resonances (trajectories taken withJ0 =
0.032,β̇ = 0.032; J0 = 0.032, β̇ = 2.4; J0 = 13, β̇ = 0.032;
andJ0 = 13, β̇ = 21). Again we see good agreement between the
analytical results and the numerical integrations.

The libration amplitudes and offsets for first and second order
resonances for a range ofJ0 and β̇ are shown in figures 5 and 6.
Note that all amplitudes and offsets are scaled to what they would
be atβ = −100 using the time dependence given in equations A44,
A48, A50, and A51. Large amplitude librations can occur as a re-
sult of either large initial momentum or, to a lesser extent,faster mi-
gration. For first order resonances, at low momentum the libration
offset is not dependent onJ0 and increases with migration rate, as
predicted by analytic theory (Dermott et al. 1994). At higher mo-
menta the offset decreases with increasingJ0, although here the
data are noisy due to low numbers of particles being captured. For
second order resonances the offset increases with increasing β̇, and
asJ0 increases the offset decreases, passing through a minimum
before increasing again at highJ0.

Note that the offset is only present during migration: if the
migration force is removed, such as if a perturbing gas disc has
dissipated, then libration will be aboutπ exactly with no offset.

4.3 Failure to capture

In the event that the particle not be trapped in resonance, its ec-
centricity changes as it passes through the resonance. In the case of
adiabatic migration, the eccentricity is reduced (Murray &Dermott
1999). On the other hand, we find that when the particle fails to cap-
ture due to fast migration rate, the eccentricity can changesubstan-
tially in either direction. The top panel of Figure 7 illustrates how
the eccentricities are changed when passing through a first-order
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Figure 3. Top: Evolution of libration amplitudes (in degrees) with time,
for the first-order resonances. Lines show the analytical result from § A3
and points show the numerical results.Bottom: The same, for second-order
resonances.

resonance. The colour scale and solid contours show the finalec-
centricity as a fraction of the initial eccentricity. We seeagreement
with adiabatic theory in the case of slow migration: all particles’
eccentricities are driven down. In Figure 7 we also show contours
of (mean change in momentum)/(standard deviation of changein
momentum) to illustrate how broad the distribution of eccentricity
changes is relative to the mean. For slow migration rates thedis-
tribution is very narrow, and all particles behave in the same man-
ner. In contrast, for faster migrations and high momentum wesee
that not only can the average change in eccentricity be positive, but
that the distribution of changes is relatively broad, so that many
particles lose eccentricity despite the mean being an increase. In
this case, the behaviour is highly stochastic. For fast migration and
low momentum, the particles’ eccentricities are all drivenup. We
note furthermore that the actual distribution of eccentricity jumps
is highly non-Gaussian, being either unimodal and stronglyskewed

Figure 4. Top: Evolution of the offset of libration centres (in degrees) with
time, for the first-order resonances.Bottom: The same for second-order
resonances

or even bimodal. Note that for low initial eccentricities the mean
eccentricity jump decreases as the migration rate is increased, pre-
sumably because the resonance has less time to affect the particle’s
orbit before being crossed.

The bottom panel of Figure 7 shows an analogous plot for
the second-order resonances. The behaviour is qualitatively simi-
lar: with slow migration the eccentricity of all particles is decreased
on passing through the resonance, but for fast migration andlow
eccentricity the eccentricity is pumped up, while at highereccen-
tricity the eccentricity may jump either up or down.

5 MODEL VALIDATION

We compared line cuts through our figures of capture probabil-
ity to figures 2 and 3 of Q06, demonstrating that our integrations
of the Hamiltonian are accurate. To demonstrate that the Hamil-
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Figure 5. Top: Mean libration amplitudes for the first-order resonances, in
degrees. Amplitude is that atβ = −100. Contours are at15◦, 30◦, 60◦,
and 120◦. Note that the axis of ordinates is condensed at the bottom of
the plot. Bottom: Mean libration amplitudes for the second-order reso-
nances, in degrees. Amplitude is that atβ = −100. Contours are at
7.5◦, 15◦, 30◦, 60◦, and120◦.

tonian model itself correctly describes the behaviour of the three
body problem, we now compare our results with the N-body sim-
ulations of W03, who considered the case where a massive planet
was migrating outward into a disc of test particles. We conduct a
Monte-Carlo simulation, creating a population of particles with the
same distribution as in the N-body integration and converting their
parameters into the dimensionless ones to determine the outcome
of the resonance passage process. This process is very quick: each
point in Figure 8 represents 100 particles, so there are around 106

particles in total, and the process took only a few seconds. Hav-
ing generated our samples we plot their capture probabilities and

1st order

4

4
8

8
16

24

2nd order

Figure 6. Top: Mean libration offsets for the first-order resonances, in de-
grees. Offset is that atβ = −100. Contours are at4◦, 8◦, 16◦, and24◦.
The data are noisy at highJ0 where there are few particles captured. Note
that the axis of ordinates is condensed at the bottom of the plot. Bottom:
Mean libration offsets for the second-order resonances, indegrees. Offset is
that atβ = −100. Contours are at0.25◦, 0.5◦, 1◦, 2◦, and4◦.

amplitudes and offsets against migration rate, and also show the
empirical fitting formulae from Wyatt’s N-body simulations.

The top panel of Figure 8 shows the capture probability as a
function of planetary migration rate for the 3:2 external resonance.
Test particles were located at 60 AU, with eccentricities inthe range
[0,0.01]. Hence the population for each point in(ȧ,mpl) space is
taken form a horizontal cut through the dimensionless parameter
space, up to a certain maximum value ofJ . The stellar mass is
2.5 Solar masses and the planet mass ranges from 1 to 300 Earth
masses. The probabilities obtained from the Hamiltonian model
show excellent agreement with those obtained from N-body inte-
grations (see figure 1 of W03); in particular we reproduce thein-
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Figure 7. Top: Change in eccentricity when passing through a first-order
resonance, in the event of a non-capture. Colour gradient and associated
solid contours show the mean final momentumJ as a fraction of the initial
J0, so that particles on the 1.00 contour experience no mean change, par-
ticles with ratio greater than 1.00 are pumped up on average,and particles
with ratio less than 1.00 are cooled on average. The dotted contours show
the mean change divided by the standard deviation. At low migration rates
the distribution is narrow and all particles behave in essentially the same
way—they are cooled—but at high migration rates there is a large spread in
eccentricity jumps.Bottom: The same, for second order resonances.

creasing sharpness of the transition from certain capture to certain
failure to capture as the planet mass is increased. This is because for
low mass planets, an eccentricity of only 0.01 is sufficiently non-
zero to affect the trapping probability, putting the particles in the
region of parameter space where the transition from certaincapture
to impossible capture as migration rate increases begins tobroaden.
Models involving capture into resonance with low mass planets will
therefore need to pay careful attention to the initial conditions of the

Figure 8. Top: Capture probabilities as a function of planetary migration
rate for the 3:2 external resonance. Solid lines are the fitting formulae
from the N-body simulations of W03, and points are from the Hamilto-
nian model. From left to right, planet masses are 1, 3, 10, 30,100 and 300
times Earth’s mass.Bottom: Capture probabilities as a function of plane-
tary migration rate for the 5:3 external resonance. Solid lines are the fitting
formulae from W03, and points are from the Hamiltonian model. From left
to right, planet masses are 30, 100, 300 and 1000 Earth’s mass.

planetesimal disc, since the distribution of eccentricities, even in a
dynamically cold disc, can affect resonant trapping behaviour. In
contrast, capture into resonance with high mass planets will follow
the same behaviour for all small eccentricities.

The capture probabilities for second-order resonances, too,
show excellent agreement with N-body simulations. Comparethe
bottom panel of Figure 8 with figure 4c of W03, for the case of the
5:3 resonance. The second order resonances are much weaker than
the first order ones, and we cover the same range of migration rates
with more massive planets: from 30 to 1000 earth masses.

In the top panels of figures 9 and 10 we compare the off-
sets and amplitudes from the Hamiltonian model with the results
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Figure 9. Top: Libration offsets for the 3:2 external resonance. Solid lines
are the fitting formulae from W03, and points are from the Hamiltonian
model. From left to right, planet masses are 1, 3, 10, 30, 100 and 300
times Earth’s mass.Bottom: Libration offsets for the 5:3 external reso-
nance. Solid lines are the fitting formulae from W03, and points are from
the Hamiltonian model. From left to right, planet masses are30, 100, 300
and 1000 times Earth’s mass.

from Wyatt (2003), for the 3:2 external resonance. We see quali-
tative agreement between the Hamiltonian model and the N-body
fits, although quantitative agreement is not exact. We see the li-
bration offset steadily increasing with migration rate, although that
from the model is somewhat lower. The libration amplitudes are,
for planets more massive than1M⊕, constant for small migration
rates before increasing at higher migration rates, although for Earth
mass planets the amplitude is independent of migration rate. At a
given migration rate, capture by a less massive planet will result in
a larger libration amplitude. The fitting formulae from W03 shown
on this plot were found by aggregating over all planet masses, so the
Hamiltonian model provides a more accurate prediction for agiven
mass. The difference between the Hamiltonian and N-body results

Figure 10. Top: Libration amplitudes for the 3:2 external resonance. Solid
lines are the fitting formulae from W03, and points are from the Hamilto-
nian model. From left to right, planet masses are 1, 3, 10, 30,100 and 300
times Earth’s mass.Bottom: Libration amplitudes for the 5:3 external res-
onance. Solid lines are the fitting formulae from W03, and points are from
the Hamiltonian model. From left to right, planet masses are30, 100, 300
and 1000 times Earth’s mass.

may be due to W03 not using a consistent duration of migration
post capture; we have taken the migration to continue for 0.5AU
in all cases. We also have a semi-analytical motivation for Wy-
att’s finding that the libration amplitude depends onȧm−1.3

pl : the

libration amplitude depends on the dimensionless migration rateβ̇,
which is in turn proportional tȯam−4/3

pl (equation 3).
The bottom panels of Figures 9 and 10 show the analogous

plots for the 5:3 resonance. Again the model reproduces the qual-
itative behaviour of the N-body results, with the model thistime
yielding slightly higher offsets, and similar differencesbetween the
model and N-body as in the case of first order resonances. Again,
higher libration amplitudes result from lower planet masses at a
given migration rate.
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6 DISCUSSION

6.1 General comments

To summarize the previous sections, we have shown that capture
into a resonance is certain at low eccentricities and migration rates,
impossible at fast migration rates and low eccentricities,and possi-
ble but not certain for high eccentricities. The critical eccentricity
at which capture becomes probabilistic is lower for lower planet
masses: around 0.1 for a Jupiter mass planet and around 0.01 for an
earth mass planet, for first order resonances. Furthermore,at lower
eccentricity, the width of the transition from capture to nocapture
with increasingȧ is also affected. The effects of this can be seen in
Figure 8. Eccentricities of order 0.1 may not be uncommon in plan-
etesimal belts: bodies in the classical Kuiper Belt currently have a
mean eccentricity of about 0.1 (Luu & Jewitt 2002), and eccentric-
ities in planetesimal belts can be pumped up above 0.1 when the
largest bodies grow significantly and gravitationally perturb their
neighbours (Kenyon & Bromley 2008). Thus, the role of eccentric-
ity cannot be neglected when investigating resonant encounters. If
capture into a resonance occurs, the resulting libration amplitude
is larger if initial eccentricity was larger, and, for smallinitial ec-
centricities, also increases with increasing migration rate. Libration
centre is offset by an amount dependent only on migration rate, in
agreement with analytic theory, unless the dimensionless momen-
tum is very high. If a particle fails to be captured, the eccentricity
is invariably driven down for slow migration rates, but can jump up
or down for high migration rates.

Before discussing specific scenarios, we make some general
comments.

For any migration scenario, if migration lasts sufficientlylong,
a succession of resonances will be encountered, if capture fails
to occur at the first resonance. For low eccentricities, the criti-
cal migration rate for capture increases withj, so a particle fail-
ing to capture into the 2:1 resonance may be captured into the
3:2, 4:3, etc. Indeed, the critical migration rate increases with-
out bound asj → ∞, so it would appear that ultimately a par-
ticle will be captured into a resonance very close to the planet.
However, such resonances are not stable. Close to the planetthe
resonances overlap, forming an unstable region of chaotic be-
haviour of width≈ 1.4apl(mpl/m⋆)

2/7 (Wisdom 1980). Thus the
closest first-order resonance which is stable is given byjmax =
18(mpl/m⊕)

−2/7(m⋆/m⊙)
2/7. Even if particles were captured

into these resonances, they would be quickly removed. Hencefor a
given planet mass there is a maximumj which will trap particles,
and conversely, for a given resonance there is a maximum planet
mass, which is determined by the width of the chaotic zone. This
is illustrated in Figure 11. The top and bottom panels are forcap-
ture of particles exterior to and interior to the planet, respectively.
The diagonal lines show the critical migration rate for capture into
resonances of a givenj as a function of planet mass. This figure
generalises figure 5 of W03 to resonances of higherj, illustrating
the power of the Hamiltonian model.

The lines in Figure 11 are terminated by the chaotic zone pre-
scription described above. For example, a1M⊕ planet at 1 AU
will be able to capture exterior low eccentricity particlesin res-
onances up to the 18:17. To calculate the upper envelope, we
know that the critical dimensionless migration rate isβ̇ ≈ 2.1
(§4.1.1). From table 1, we find a fitlj ≈ 5.4j−1.8 , so the rel-
evant coefficient for the innermost stable resonance islj,max ≈
0.0297(mpl/m⊕)

0.514(m⋆/m⊙)−0.514. Using Equation 3, we

therefore have

[

α
ȧ2

AUMyr−1 − ȧ1

AUMyr−1

]

crit

≈ 70

(

mpl

m⊕

)0.8 (
m⋆

m⊙

)−0.3

( apl

AU

)−1/2

, (17)

above which capture is impossible into any resonance, unless the
eccentricity is sufficiently high. This equation holds for both exter-
nal and internal particles.

While Figure 11 is plotted for a planet at 1 AU, similar results
can be obtained for other distances: the critical migrationrate for
a given resonance decreases (∝ 1/

√
apl, from equation 3) and the

critical migration rate for capture into any stable resonance has the
same dependence. Thus, slightly lower migration rates are required
for planets further from the star to capture particles than planets of
the same mass in smaller orbits. The effect of this will depend on
the migration mechanism: for Poynting–Robertson drag, themigra-
tion rate is inversely proportional toa, so lowerj resonances will
capture particles when the planet is further from the star. On the
other hand, for Type I migration in a disc with a MMSN power law
index, the migration rate is independent ofa, so capture will be into
higherj resonances if the planet is further from the star.

We have ignored the effects of eccentricity in the previous
paragraph. This plays an ambiguous role: at low migration rates
eccentricity reduces the probability of capture. For first-order res-
onances, the critical eccentricity for the transition fromcertain
to probabilistic capture decreases with increasingj (Figure 12).
For second-order resonances the critical eccentricity does not de-
pend strongly onj. However, at high migration rates, higher ec-
centricity can make capture possible where capture was impossi-
ble at low migration rates; this effect is particularly noticeable for
second-order resonances. Furthermore, resonances can cause par-
ticles’ eccentricities to change as the particles pass through res-
onance and fail to be captured, and the cause of migration itself
often damps eccentricities too (Burns et al. 1979; Tanaka & Ward
2004, although disc–planet torques may also pump eccentricity,
e.g., Moorhead & Adams 2008).

If a particle encounters a succession of resonances, then, ig-
noring changes in eccentricity due to resonant encounters or other
effects, the dimensionless migration rate will decrease and the di-
mensionless momentum increase at each subsequent resonance,
simply from the changing scaling coefficients due to the changingj
of the resonance (Equations 3). We indicate such a locus of(J0, β̇)
on Figure 2 as green crosses, for a particle withe = 0.01, ȧ =
1AU Myr−1 for particles encountering external resonances with an
Earth mass planet orbiting a Solar mass star at 1 AU. Here the par-
ticle is migrating too fast to be captured into the 2:1 resonance,
but is very likely to be captured into the 3:2, 4:3 and subsequent
resonances. Capture probability decreases for higherj.

Our treatment does not include any eccentricity belonging
to the massive planet. Correctly accounting for this requires in-
cluding in the Hamiltonian another resonant term for the reso-
nance involving the planet’s longitude of pericentre (Q06). How-
ever, Quillen & Faber (2006) showed that the strength of thisreso-
nant term can be reduced if the particle’s osculating Keplerian ec-
centricity is replaced by the free secular eccentricity, which is ap-
proximately the same as the planet’s eccentricity for particles close
to the planet. Hence, for a first approximation, in the subsequent
discussion we consider the impact of the planet’s eccentricity as
though it were the planetesimals’.
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Figure 11. Top: Critical migration rate at 1 AU for capture of low-
eccentricity particles drifting into resonances exteriorto a planet as a func-
tion of planet mass. Stellar mass is Solar. At migration rates faster than this,
capture is impossible at low eccentricity. The critical migration rates for
first order resonances are shown as solid lines. The 2:1 and 3:2 resonances
are labelled; the higherj resonances move away from these monotonically.
The line for a given resonance is terminated when that resonance becomes
unstable according to the resonance overlap criterion. We also show second-
order resonances as dotted lines; only up toj = 21 are shown for clarity
(β̇ = 0.3 was taken as the critical migration rate, although this depends on
eccentricity; see Figure 2.̇β = 0.3 is the maximum of the envelope of the
100% capture region.). The right-hand axis of ordinates shows the equiva-
lent dust grain size for migration under PR drag (see§6.3.2).Bottom: The
same, but for trapping of particles interior to a migrating planet. We show
typical migration rates for planets embedded in gas discs at1 AU (dashed
lines). Mass-dependent Type I migration occurs for low massplanets and
mass-independent Type II migration for high mass planets; see§ 6.2

Figure 12. Critical eccentricity for certain capture of slowly migrating par-
ticles into external resonances as a function of planet mass. The star is of
Solar mass and the planet is located at 1 AU. At eccentricities greater than
this capture is possible but becomes less probable with increasinge. Criti-
cal eccentricities for first order resonances are shown withsolid lines. The
2:1, 3:2, and 4:3 resonances are labelled; the higherj resonances move
away from the 3:2 and 4:3 monotonically. The line for a given resonance
is terminated when that resonance becomes unstable according to the reso-
nance overlap criterion. Critical eccentricities for second order resonances
are shown as dotted lines.

6.2 Formation of resonances during planet formation

Here we discuss the capture of planets into resonances due tomi-
gration through a gas disc. Due to the complexity of the problem,
this Hamiltonian model can only give us a crude understanding of
this scenario. We have neglected the mass of one planet, so when
the planets are of comparable masses it may be necessary to in-
tegrate the equations of motion for two planets (Equations A16
and A28). In spite of this limitation, the Hamiltonian modelmay
give us some basic insight into the capture process.

There are several scenarios which may arise in a protoplan-
etary disc. For example, a giant planet undergoing type II mi-
gration may capture planetesimals and low-mass embryos inte-
rior to it (e.g., Fogg & Nelson 2007). The outer planets of our
own Solar system may have once been in a chain of resonances,
as Morbidelli et al. (2007) suggested for initial conditions for the
Nice model of the outer Solar System, and which Pierens & Nelson
(2008) suggest may be a general outcome of migration of Jupiter
and Saturn mass planets. Lower-mass super-Earths migrating in-
wards can encounter the exterior resonances of a giant planet (e.g.,
Podlewska & Szuszkiewicz 2009). On the other hand, there may
be a tendency for multi-planet systems to have the more massive
planet on an external orbit (Morbidelli & Crida 2007). Here we
briefly discuss this latter case, where an inwardly migrating planet
is capturing smaller planets or embryos in interior resonances.

On Figure 11 (bottom panel) we have shown the typical mi-
gration rates due to Type I migration (which is mass-dependent)
and Type II migration (mass-independent) for typical disc proper-
ties (MMSN, disc viscosity parametrised byα = 0.01, scale height
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h = 0.025) at 1 AU (Chambers 2009)3. We see that, for the 2:1
resonance, Type I migration at this location in this disc is always
too rapid allow capture. Capture into the 2:1 resonance could occur
however if the planets were located closer to the star at the epoch of
capture. Although the Type I migration rate decreases with planet
mass, the critical migration rate decreases more strongly,so cap-
ture into this resonance is not possible with these disc parameters.
Only more massive planets moving slowly under Type II migration
can capture into the 2:1 resonance, which will be an unavoidable
outcome of migration in this disc if eccentricities are low,unless
planets formed closer to each other than the 2:1 resonance. Lower
mass planets can only capture into higherj resonances. Indeed, we
should see lower mass planets in higherj resonances than higher
mass planets if the Type I migration rate is correct. We also see
that planets undergoing Type I migration will be migrating too fast
to capture smaller bodies into any second-order resonances, while
planets undergoing Type II migration will be able to capturesmaller
bodies into these resonances.

Next, we remark that the present libration amplitude of res-
onant bodies might have been imprinted at the instant of cap-
ture. First we consider how to achieve high libration amplitudes.
For low eccentricity, both the Hamiltonian model and full nu-
merical simulations (Rein & Papaloizou 2009) predict smalllibra-
tion amplitudes. Adams et al. (2008) argue that turbulence in a
disc, as well as breaking resonances completely, can lead tores-
onances with large libration amplitudes of& 60◦, as seen in
HD 128311, HD 82943, and HD 73526. Similar results were found
by Rein & Papaloizou (2009). Here, we have shown that large li-
bration amplitudes can also arise from high eccentricity atthe in-
stant of capture. For Jupiter-mass planets and first-order resonances
the critical eccentricity to achieve such libration amplitudes is of
order 0.1 (see figure 5 and equation 3), and it is currently unclear
whether a disc could pump planetary eccentricity to this level (see
e.g., Moorhead & Adams 2008, Bitsch & Kley 2010). However, for
lower mass planets the necessary eccentricity is lower, andit may
not be necessary to invoke turbulent fluctuations to explaina high
libration amplitude if such low mass resonant planets are found to
have high amplitudes of libration.

We can also consider how to achieve very low libration am-
plitudes. GJ 876 hosts two planets in a 2:1 resonance with both
resonant arguments having very low libration amplitudes of∼ 5◦

(Lee & Peale 2002). While Lee & Peale (2002) obtained limits on
planetary eccentricity at the time of capture ofeb . 0.06, ec .

0.03 for planets b and c by requiring that capture into high order
resonances not occur, we suggest that it may be possible to improve
this: if the libration amplitude were very low at the time of capture,
our results show that the eccentricities would have to beeb . 0.01,
ec . 0.02.

These results ignore any subsequent evolution of the libra-
tion angle following capture. Libration amplitude decreases slightly
with continued migration, but only very weakly (∆θ ∝ t−1/8; see
equation 6), so eccentricities at the moment of capture could have
been slightly higher, depending on the extent of the migration. We
also note that any eccentricity damping mechanism may reduce li-

3 We restrict ourselves to classical Type I migration; the model can be
used for the reduced or reversed migration found for examplein non-
isothermal discs (Kley et al. 2009) or isothermal discs in the non-linear
regime (Paardekooper & Papaloizou 2009), so long as a numerical or an-
alytical migration rate is known.

bration amplitudes, and we have already mentioned that stochastic
fluctuations can increase it.

There may be some caveats associated with using the simpli-
fied Hamiltonian model to model capture in a hydrodynamic disc.
However, the full hydrodynamical simulations and those using an
N-body integration with a prescribed migration rate give compa-
rable results (e.g., Kley et al. 2004). Since we have demonstrated
the accuracy of our model against N-body integrations, we should
not expect many significant differences between the Hamiltonian
model and full hydrodynamic models. We also note that a large
planet can open a gap in a disc and hence prevent other bodies from
migrating into resonances that lie in the gap (Pierens & Nelson
2008; Podlewska & Szuszkiewicz 2009), which will prevent cap-
ture into those resonances. The capture process may also be af-
fected by damping mechanisms such as gas drag or collisional
damping, although these may be more important before and after
resonance passage (for example, driving bodies towards thelow-
eccentricity regime prior to capture) than during capture itself.

Finally, we point out that our results may be useful for plan-
etary population synthesis models which require a simple alter-
native to N-body integrations for planet–planet interactions (e.g.,
Ida & Lin 2010).

6.3 Debris disc structure

6.3.1 Planetesimal discs

The non-axisymmetric structure seen in several debris discs has
been ascribed to the migration of a planet into a planetesimal disc
(e.g., W03, Reche et al. 2008). We showed in the previous Section
that the Hamiltonian model reproduces well the results of W03 who
investigated this precise case.

Resonances affect the observed disc morphology because par-
ticles with nonzero eccentricity trapped in a resonance spend most
of their time at specific longitudes relative to the planet (W03;
Reche et al. 2008). This gives the appearance of clumps at these
locations when the disc is imaged, with different resonances giving
different numbers of clumps. They are seen so long as the libration
amplitude is low enough that the clumps are not smeared out. If
libration amplitudes are too high, the resonant dust particles appear
to form a ring, axisymmetric save for a gap where the planet lies.

The Hamiltonian model is particularly useful for studying the
resonant signatures of planets in debris discs because the fate of
tens of thousands of particles encountering any first or second or-
der resonance can be quickly determined, regardless of migration
rates or particle eccentricities. Hence, many images of discs result-
ing from the migration of different sized planets into discsin differ-
ent states of dynamical excitation can be easily made. Thus it will
be particularly useful for exploring the disc structures generated
by a wide range of possible perturbers for comparison to images
expected in the near future from such projects as ALMA.

We now return to the case of a planet at around 40 AU orbiting
a star of 2.5 Solar masses. This is of interest because these parame-
ters pertain to a hypothetical planet that may be imposing structure
on the debris disc around Vega (W03). We shall discuss whether
the planet causes a detectable signature in the disc if it migrates at
0.5 AU Myr−1, for varying planetary mass and eccentricity (as dis-
cussed above, we treat the planet’s eccentricity as though it were the
particles’). Figure 13 shows the effects of varying planet mass and
eccentricity on the probability of capture and libration amplitude
for 2:1 resonance, which have direct relevance for disc morphol-
ogy. We see that libration amplitude increases significantly with ec-
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Figure 13. Libration amplitudes in degrees (black lines) and capture prob-
abilities (red lines) for planetesimals encountering the 2:1 resonance of a
planet, orbiting a 2.5 Solar mass star, migrating outwards at 0.5AU Myr−1.
Planet masses are shown in the legend.

centricity, as expected from figure 5. The libration amplitude does
not, however, depend strongly on planet mass. The capture proba-
bility, on the other hand, does, with the1 and10M⊕ planet cap-
turing very few particles at any eccentricity at this migration rate,
although capture would occur if migration were slower. Thus, we
can predict that a1 or 10M⊕ planet migrating at 0.5 AU Myr−1

will not create a detectable signature in a disc as its resonances fail
to capture particles. Higher mass planets, however, will create sig-
natures, with the observed structure depending on the eccentricity.
As the eccentricity increases, capture probability goes down (Fig-
ure 2) and libration amplitude increases (figure 5). Thus, atlow
eccentricities, the planet will capture many particles with low libra-
tion amplitudes, which will cause well-defined clumps to be visible
in the disc. At higher eccentricities, the number of particles cap-
tured will decrease and their libration amplitudes increase, leading
to progressively weaker resonant signatures at higher eccentricities.
This explains the results of Reche et al. (2008), who investigated
this scenario with N-body integrations (see their figure 10). We also
note that Reche et al. (2008) found that there was little difference in
observed structure regardless of whether the planet or the disc par-
ticles were eccentric, further justifying us modelling theplanet’s
eccentricity as belonging to the particles.

It is worth noting that converting between the observed
dust morphology and the underlying planetesimal population is
not a trivial problem, since the resonances can affect the colli-
sional evolution of planetesimals (Wyatt 2006; Queck et al.2007;
Stark & Kuchner 2009), while dust grains can be liberated from
a resonance by having a higher radiation pressure coefficient than
their parents (Wyatt 2006) or acquiring significant velocities rel-
ative to their parents as a result of the collisions which gener-
ated them (Krivov et al. 2007). A fully consistent disc modelwill
need to take these effects into account. Since the dynamicalbe-
haviour of particles in the Hamiltonian model can be converted
into physical positions and velocities, the Hamiltonian model can
be used to generate a collisionless seed distribution for a collisional
grooming algorithm to couple dynamical and collisional evolution

(Stark & Kuchner 2009). Currently such models use collisionless
N-body integrations to generate the seed distribution. In the case of
particles experiencing Poynting–Robertson drag, the Hamiltonian
model will enable seed distributions for many particle sizes to be
quickly generated, allowing a finer sampling of the dust sizedistri-
bution.

These results may be applied in the Solar System to consider
the implications of the observed libration widths of resonant KBOs
for their eccentricities at the time of Neptune’s migration. Figure 5
and Equations 7 and 13 can be used to assess individual objects.
However, a general point we can make already is that the observed
high libration widths (Lykawka & Mukai 2007) would imply a high
level of excitation, as already suggested by Chiang et al. (2003).

These results can also be applied to consider the question of
whether a disc can be stirred by a planet migrating towards the disc
but too rapidly to capture bodies, which is known to be possible for
diverging orbits (e.g., Chiang et al. 2002).

6.3.2 Dust discs

For less massive debris discs, such as the Solar System’s zodiacal
cloud and anticipated extrasolar analogues, particles canmigrate
substantial distances under PR drag before being destroyedby col-
lisions. Note that currently observed debris discs are collision dom-
inated and so the necessary migration cannot come from PR drag
(Wyatt 2005). Here we consider the scenario where the migration
is due to PR drag acting on the dust, while the planet remains fixed.

As discussed previously, dust drifting under PR drag will en-
counter a succession of resonances. This is illustrated in Figure 11.
The right hand axis of ordinates shows the dust particle sizecorre-
sponding to a particular migration rate, given byD = 1.4L⋆/(ρȧ),
with the stellar luminosityL⋆ measured in Solar luminosities and
the dust densityρ measured in kg m−3 (Wyatt et al. 1999)4. For
ρ = 2500 kg m−3, Figure 11 predicts that a1M⊕ planet at 1 AU
will be unable to capture low eccentricity particles of sizeless than
about 10 micron into any resonances, but would capture particles
of size 10–100 microns into highj resonances, and particles of size
& 100 microns into only the 2:1 or 3:2 resonances.

In Figure 14 we show the capture probabilities for 12 micron
and 120 micron dust grains drifting under PR drag into the Earth’s
and Mars’ resonances. Eccentricities were drawn from a uniform
distribution between 0 and 0.2; the particles originate in the aster-
oid belt where the mean eccentricity is 0.15 (Murray & Dermott
1999) but will have had their eccentricities excited by crossing the
ν6 secular resonance and damped by PR drag as they migrate. Par-
ticle sizes were drawn uniformly in the ranges[11, 13] microns
and[110, 130] microns; note that the size distribution of the zodi-
acal dust at 1 AU peaks at around 100 microns (Love & Brownlee
1993). As expected, more of the larger particles are trappedthan
of the smaller ones. For particles of around 12 microns, withthis
eccentricity distribution, the Hamiltonian model predicts that the
most populated resonances with Earth are the 5:4 and higherj,
with lower j resonances being less populated. This agrees qualita-
tively with the numerical study of Dermott et al. (1994), whoin-
vestigated trapping of 12 micron grains originating in the asteroid
belt into Earth’s resonances with an N-body code. They foundthat

4 Note that because the PR migration rate depends on the particle’s semi-
major axis, a given migration rate corresponds to a slightlydifferent particle
size at different resonances. For this reason, the right-hand axis shows not
particle size but size/α.
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Figure 14. Capture probabilities for 12 and 120 micron dust grains migrat-
ing into the Earth’s and Mars’ resonances, assuming particle eccentricities
are randomly distributed in the range[0, 0.2].

very few (. 1%) particles are captured into the 4:3 and 5:4 reso-
nances with Earth, rather more (2–3%) into the 6:5 to 10:9 reso-
nances, after which capture probaility decreases again (see Fig 4a
of Dermott et al. 1994). Our capture probabilities are somewhat
higher, which may be due to different eccentricity distributions or
our neglect of stellar wind drag, but the picture of preferential trap-
ping intoj ≈ 6 and higher is the same.

Mars, being less massive than the Earth, traps fewer particles
than the Earth. Typically we find it only captures around 10–40%
of those Earth captures, depending on particle size and resonancej.
This may explain why Mars lacks an observed resonant dust cloud
while the Earth does not: too few particles are captured to yield a
detectable signature. Kuchner et al. (2000) searched without suc-
cess for a cloud trailing Mars, finding an upper limit for its frac-
tional overdensity of 18% of Earth’s cloud’s overdensity, broadly
consistent with the relative numbers of particles we find trapped
into resonance with the two planets. If we had given particles en-
countering Earth’s resonances lower eccentricity, which may be ex-
pected as they have had longer to be damped by PR drag, Mars
would capture even fewer particles relative to the Earth. Martian
capture probabilities may be further reduced due to the influence of
the corotation resonance (W06), since the planet’s eccentricity is
the same order as that of the particles. A full investigationof this is
beyond the scope of this paper, but it seems that Mars should have
a resonant ring structure similar to that of Earth, at a levelthat may
be close to the limits placed by current observations.

We intend to conduct a more thorough investigation of debris
disc structure using our Hamiltonian model in a subsequent paper.

6.4 Limitations

We have included only one resonant term in our integrations.
Holman & Murray (1996) showed that resonances can be unsta-
ble when the additional resonant term associated with an eccentric
planet is important, and Q06 showed that the probability of being
captured can be reduced by the additional resonant term. However,

since Reche et al. (2008) found similar results in full N-body in-
tegrations when using eccentric particles and eccentric planets, in-
cluding the extra resonant term explicitly may not be necessary.

We have restricted our numerical integrations to the case ofa
single planet plus a test particle. This may not adequately model
two-planet systems where the planets are of comparable masses. In
this case the equations given in the Appendix, A16 and A28, can be
used. However, the increased number of free parameters willmake
a numerical study with a comparable grid resolution less practical.

We have neglected any eccentricity damping, which can oc-
cur together with change of semi-major axis when migrating in a
gas disc or under PR drag, or experiencing dynamical friction in
a planetesimal disc. This will limit the eccentricity growth due to
continued migration in resonance. The effect on libration behaviour
is dependent on the precise nature of the damping (Gomes 1995).

We have only taken the lowest order term in the disturbing
function, which is justified for low eccentricities. However, when
eccentricities are high during migration, or are driven higher as mi-
gration continues after capture, higher order terms may become
important. This is the case for the resonance between GJ 876 b
and c (Lee & Peale 2002) and for the two libration centres of
the 2:1 resonance, seen for eccentricities above∼ 0.03 (W03;
Murray-Clay & Chiang 2005). While post-capture eccentricity in-
crease will not significantly affect the capture probability (a particle
must cross a similar separatrix to enter the libration region in the
first place) it will change the behaviour of libration amplitude and
centre following capture.

We have not considered higher order resonances such as
the 4:1, which can be important for very massive planets
(Kuchner & Holman 2003).

7 SUMMARY AND CONCLUSIONS

We have systematically investigated the Hamiltonian modelfor
capture of a test particle into first and second order resonances with
a planet. The model reduces the full complexity of the restricted
three body problem to only one degree of freedom, the resonant
angleθ, and two parameters, proportional to the particle’s eccen-
tricity and the migration rate. Only the relative migrationrate of
the two bodies, in the forṁa1/a1 − ȧ2/a2, is important. External
and internal resonances behave the same way, but with different
proportionality constants.

We confirmed previous work showing that capture into reso-
nance is certain at low (rescaled) eccentricities and migration rates,
possible with decreasing probability at high eccentricities, and im-
possible at low eccentricities and high migration rates. Aseccen-
tricity increases, the transition from certain capture at low migra-
tion rate to impossible capture at high migration rate broadens. At
higher eccentricities, capture is possible with faster migration than
at lower eccentricities. This effect is more pronounced forsecond
order resonances.

We have also found the libration amplitudes and centres of the
resulting resonant motion. The libration centres are offset from θ =
π, the centre in the absence of migration, by an amount increasing
with the migration rate, agreeing with previous work. In addition,
we have found that the offset is almost independent of eccentricity
for first order resonances, except at high eccentricities. Libration
amplitudes are small if capture occurs at low eccentricity and low
migration rate. They are somewhat larger for migration rates just
less than critical. Very large libration amplitudes (& 90◦) can be
attained if the initial eccentricity was very high.
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We have also found the jumps in eccentricity when a particle
encounters a resonance but is not captured. In the case of slow mi-
gration, the eccentricity is always driven down, in agreement with
adiabatic theory. When the migration is fast and the eccentricity
low, eccentricity jumps up. However, when the migration is fast
and eccentricity high, eccentricity can jump either up or down.

We checked the results of the model against the N-body simu-
lations of Wyatt (2003), finding excellent quantitative agreement
for capture probabilities, and qualitative agreement for libration
amplitudes and offsets. We found that accounting for the particles’
eccentricity is necessary to fully explain the dependence of capture
probability on migration rate. While the effect of eccentricity has
long been understood in the context of the Solar System, its im-
plications for extrasolar planets are less well explored, and for low
mass planets in particular its effects are important.

We have applied our model to several situations in which
planet or particle migration is likely to occur. We can easily de-
termine whether capture occurs for planets migrating in Type I or
Type II regimes. The pre-capture eccentricity can be constrained
by the present libration amplitude, with higher eccentricities giving
higher libration amplitudes. For planets migrating through a gas
disc, a non-zero eccentricity prior to capture can lead to large li-
bration amplitudes such as those seen in the HD 128311 system.
We find that, if planetary eccentricity can be raised toe & 0.1
for Jupiter-mass planets, for example by planet-disc interaction, the
resonant capture process by itself will result in high libration am-
plitudes without the need to invoke extra mechanisms such astur-
bulent torques. For lower mass planets the necessary eccentricity
is lower. Also, very low libration amplitudes (e.g., GJ 876)sug-
gest a low eccentricity during the capture process. We also predict,
based on classical formulae for migration rates, that lowermass
planets will be found in higherj first order resonances than higher
mass planets, and planets migrating in the type I regime willbe
moving too fast to capture smaller particles into any second-order
resonance. The model may also be useful for population synthesis
of multi-planet systems where it is necessary to account forplanet–
planet interactions without recourse to full N-body integrations.

We then discussed debris disc structure. A planet that has mi-
grated into a disc will impose clumpy structure on a dynamically
cold disc, but the clumps will be at a lower level and smeared out
for migration into excited discs. For dust migrating under PR drag,
the model can explain the structure of the Earth’s resonant ring rea-
sonably well. We predict that Mars has a dust ring at a level. 25%
that of Earth’s, consistent with observed upper limits.

The data on capture probabilities, libration amplitudes
and offsets, and eccentricity jumps, are available on-lineat
http://www.ast.cam.ac.uk/ ˜ ajm233/ and at the jour-
nal website and may be used provided that this work is cited.
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APPENDIX A: HAMILTONIAN MODEL

Here we detail the mathematical derivation of the scalings from
physical variables to dimensionless variables, and some properties

of the Hamiltonian model such as the evolution of libration ampli-
tude and offset with time. Although many of these results maybe
found in the literature, we think it useful to gather them together
for reference.

First we derive the scalings to link physical variables suchas
eccentricity to the dimensionless ones such as the momentumJ .
This closely follows Q06; we generalise to consider two massive
planets.

We use Poincaré’s canonical variables: the generalised mo-
menta are

Λi = mi
√
µiai

Γi = Λi

(

1−
√

1− e2i

)

, (A1)

which are conjugate to the mean longitudesλi and the negative of
the longitudes of pericentre̟ i respectively. Here,µi = G(m⋆ +
mi). The Keplerian part of the Hamiltonian is therefore

Hkep = −m3
1µ

2
1

2Λ2
1

− m3
2µ

2
2

2Λ2
2

. (A2)

We work with low eccentricities, so thatΓi/Λi ∼ e2i /2.
We now non-dimensionalise as follows. Distances are put in

units ofa0, the semi-major axis of the inner planet when the nom-
inal resonance is reached. Times are put in units of the inverse of
the mean motion of the inner planet at that point. Masses are put in
units of the mass of the inner planet. With this choice of units, the
Keplerian Hamiltonian is

H′

kep = − 1

2Λ′2
1

− m′3
2 µ

′2
2

2Λ′2
2

, (A3)

with primes denoting the non-dimensional quantities. We now drop
the primes, and make the approximationµ2 ≈ µ1 = 1, so that

Hkep = − 1

2Λ2
1

− ν3

2Λ2
2

, (A4)

whereν = m2/m1 is the ratio of the two planets’ masses.
To study the dynamics as the system passes through reso-

nance, we expand about the nominal resonance location where
Λi = Λi,0, with Λ1,0 = 1 andΛ2,0 = να

−1/2
0 , α0 = [(j −

k)/j]2/3 being the semi-major axis ratio at the nominal resonance.
This gives the Keplerian Hamiltonian

Hkep = I1 −
3

2
I21 +

j − k

j
I2 −

3

2

(

j − k

j

)4/3

ν−1I22

= I1 − 3

2
I21 + α

3/2
0 I2 − 3

2
α2
0ν

−1I22 , (A5)

whereIi = Λi − Λi,0 measures the distance from resonance. This
expansion assumesI2α1/2/ν ≪ 1. This is satisfied for allν since
I2 = O(ν) asν → 0. We just require the bodies to be close to
resonance in semi-major axis.

From the disturbing function we retain the relevant resonant
terms. The resonant Hamiltonian is

Hres =

k
∑

p=0

rk,pΓ
p/2
1 Γ

(k−p)/2
2

× cos [jλ2 − (j − k)λ1 − p̟1 − (k − p)̟2] . (A6)

Again, ther coefficients are functions ofα and regarded as con-
stant. In terms of thefi functions, they are

r1,0 = −ν1/2µ
(√

2α5/4f31(α)− 2
√
2α9/4

I(2 : 1)
)

r1,1 = −
√
2νµαf27(α), (A7)

http://www.ast.cam.ac.uk/~ajm233/
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j α f27 f31

2 0.629961 -1.19050 1.68831
3 0.763143 -2.02523 2.48401
4 0.825482 -2.84043 3.28326
5 0.861774 -3.64962 4.08371
6 0.885549 -4.45614 4.88470
7 0.902337 -5.26125 5.68601
8 0.914826 -6.06553 6.48749
9 0.924482 -6.86925 7.28909
10 0.932170 -7.67260 8.09077
11 0.938437 -8.47572 8.89251

Table A1. Values ofα andfi for first-order resonances.

whereI(2 : 1) = 1 for the 2:1 resonance and is zero otherwise;
this is from the indirect disturbing function.

Thefi functions are tabulated for first-order resonances in Ta-
ble (A1).

A1 First order resonances

Now we consider first-order resonances. There are two resonant
anglesθ1 andθ2; we effect a point transformation to these angles:

θ1 = jλ2 + (1− j)λ1 −̟1

θ2 = jλ2 + (1− j)λ1 −̟2

θ3 = λ1

θ4 = λ2. (A8)

The new momenta satisfy

(1− j)(J1 + J2) + J3 = I1

j(J1 + J2) + J4 = I2

J1 = Γ1

J2 = Γ2. (A9)

The Keplerian Hamiltonian is then

Hkep = −3(1− j)J3(J1 + J2)−
3

2
(1− j)2(J1 + J2)

2

−3jα2

ν
J4(J1 + J2)−

3α2

2ν
j2(J1 + J2)

2. (A10)

The resonant Hamiltonian is

Hres = r1,0J
1/2
2 cos θ2 + r1,1J

1/2
1 cos θ1. (A11)

This reduces the system to two degrees of freedom: the mean lon-
gitudesθ3 andθ4 do not appear in the equations. The momentaJ3

andJ4 are therefore constants; we dropped terms involving only
these momenta from Equation (A10). We simulate migration by
explicitly varying the momentaJ3 andJ4 with time. We have

J̇3 ≈ İ1 ≈ ȧ1/2. (A12)

and

J̇4 ≈ İ2 ≈ νȧ2

(

j − 1

j

)1/3

/2. (A13)

A1.1 Reducing number of parameters

We return to the general Hamiltonian (Equations A10–A11). This
may be written

H = αJ1 + βJ2 + γJ2
1 + 2γJ1J2 + γJ2

2

+s3J
1/2
1 J

1/2
2 cos(θ1 − θ2) + r1,1J

1/2
1 cos θ1

+r1,0J
1/2
2 cos θ2, (A14)

where

α = −3

[

(1− j)J3 +
jα2

0

ν
J4

]

+ s21

β = −3

[

(1− j)J3 +
jα2

0

ν
J4

]

+ s22

γ = −3

2

[

(1− j)2 +
α2
0j

2

ν

]

. (A15)

These six parameters we reduce to four by rescaling momentum:

H′ = α′J ′

1 + β′J ′

2 + (J ′

1 + J ′

2)
2

+s′J
′1/2
1 J

′1/2
2 cos(θ1 − θ2)− J

′1/2
1 cos θ1

+r′J
′1/2
2 cos θ2, (A16)

where

H′ = −
∣

∣

∣

∣

∣

γ1/3

r
4/3
1,1

∣

∣

∣

∣

∣

H

J ′

i =

∣

∣

∣

∣

γ

r1,1

∣

∣

∣

∣

2/3

Ji

α′ = −αr
−2/3
1,1 |γ|−1/3

β′ = −βr
−2/3
1,1 |γ|−1/3

r′ = −r1,0/r1,1. (A17)

and the new time

t′ = tγ1/3r
2/3
1,1 . (A18)

Note thatγ < 0, andr1,1 > 0 for first-order resonances.
We may write the parameters in terms of physical quantities

ν, µ, α0:

α′ =
3(j − 1)

(

√

a2/a2,0 −
√
a1

)

+ 2νµα0f2

31/3 (νµα0f27)
2/3

[

(1− j)2 +
α2

0
j2

ν

]1/3

β′ =
3(j − 1)

(

√

a2/a2,0 −
√
a1

)

+ 2µα
3/2
0 f2

31/3 (νµα0f27)
2/3

[

(1− j)2 +
α2

0
j2

ν

]1/3

r′ = −α
1/4
0 f31 − 2α

5/4
0 I(2 : 1)

ν1/2f27
. (A19)

t′ = 31/3 (νµα0f27)
2/3

[

(1− j)2 +
α2
0j

2

ν

]1/3

t (A20)

Migration entails varying the coefficientsα′ andβ′ with time.
We have:

dα′

dt′
=

dβ′

dt′
=

31/3
(

ȧ2

a2
− ȧ1

a1

)

2(j − 1)1/3
(

m2

m0

α0f27
)4/3 (

1 + m1

α0m2

)2/3
.(A21)

A1.2 Limiting case 1: outer test particle and zero eccentricity
planet

We consider the limitν → 0. This is relevant for either a planet
capturing planetesimals as it migrates outwards, or dust spiralling
inwards under P. R. drag. In this case a more convenient scaling is
usingr1,0 rather thanr1,1. The non-constant terms in the Hamilto-
nian are
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H′ = J ′2
2 + β0J

′

2 − J
′1/2
2 cos θ2, (A22)

where

β0 =
3(j − 1)

(

√

a2/a2,0 −
√
a1

)

+ 2µα
3/2
0 f2

{

3µ2α
9/2
0 j2 [f31 − 2α0I(2 : 1)]2

}1/3
. (A23)

Note that all terms in Equation (A22) areO(ν0). For a migrating
planet, the migration rate is given by

dβ0

dt′
=

31/3(j − 1) (ȧ2/a2,0 − ȧ1)

2α3
0 {µj [f31 − 2α0I(2 : 1)]}4/3

. (A24)

A1.3 Limiting case 2: inner test particle and zero eccentricity
planet

The limit ν → ∞, µ → 0, µν = m2/m0 constant, is relevant
for a planet capturing planetesimals as it migrates inwards. The
Hamiltonian is

H′ = J ′2
1 + α∞J ′

1 − J
′1/2
1 cos θ1 (A25)

where

α∞ =
3(j − 1)

(

√

a2/a2,0 −
√
a1

)

+ 2µνα0f2

31/3 [µνα0f27(1− j)]2/3
. (A26)

All terms in Equation (A25) areO(ν0). The migration rate in this
case is given by

dα∞

dt′
=

31/3(ȧ2/a2,0 − ȧ1)

2(j − 1)1/3 (νµα0f27)
4/3

. (A27)

A2 Second order resonances

For second order resonances there are three resonant terms.The
scaled Hamiltonian (cf. Equation A16) is

H′ = α′J ′

1 + β′J ′

2 + (J ′

1 + J ′

2)
2

+s′J
′1/2
1 J

′1/2
2 cos(θ1 − θ2)− J1 cos 2θ1

+r′1J
′1/2
1 J

′1/2
2 cos(θ1 − θ2) + r′2J2 cos 2θ2, (A28)

with the rescaled time

t′ = 2µνα0f45t, (A29)

the rescaled momenta

J ′

i =
3
[

(2− j)2 +
α2

0
j2

ν

]

16µνα0f45
Γi, (A30)

and the parameters

α′ =
3
[

(2− j)a
1/2
1 + jα2

0a
1/2
2

]

+ 4µνα0f2

4µνα0f45
(A31)

β′ =
3
[

(2− j)a
1/2
1 + jα2

0a
1/2
2

]

+ 4µα
3/2
0 f2

4µνα0f45
(A32)

r′1 = −α
1/4
0 f49

ν1/2f45
(A33)

r′2 = −α
1/2
0

[

2f53 − 27
4
α0I(3 : 1)

]

2νf45
. (A34)

The migration rate is given by

j α f45 f53

3 0.480750 0.598759 1.98591
5 0.711379 3.27381 5.68728
7 0.799064 7.87052 11.3173
9 0.845740 14.3866 18.8674
11 0.874782 22.8216 28.3365
13 0.894608 33.1755 39.7246
15 0.909009 45.4473 53.0314
17 0.919944 59.6382 68.2557
19 0.928532 75.7482 85.3994
21 0.935455 93.7765 104.462

Table A2. Values ofα andfi for second-order resonances.

dα′

dt′
=

dβ′

dt′
= −3(j − 2)(ȧ2/a2 − ȧ1)

16µ2ν2α2
0f

2
45

. (A35)

The values of thefi for second-order resonances are tabulated
in Table (A2).

For an outer test particle and a planet on a circular orbit we
instead rescale byr2,0, giving

t′ = α
3/2
0 µ

[

2f53 − 27

4
α0I(3 : 1)

]

t (A36)

J ′

2 =
3j2

16µ
[

2f53 − 27
4
α0I(3 : 1)

]e22 (A37)

β′ =
3
[

(2− j)a
1/2
1 + jα2

0a
1/2
2

]

+ 4µα
3/2
0 f2

2α
3/2
0 µ

[

2f53 − 27
4
α0I(3 : 1)

]
(A38)

dβ′

dt′
=

3(j − 2)(ȧ2/a2 − ȧ1)

4α3
0µ

2
[

2f53 − 27
4
α0I(3 : 1)

]2
. (A39)

A3 Evolution in resonance

A3.1 First-order resonances

After a particle has been captured into resonance, the trajectory
continues to evolve so long as the imposed migration is stillpresent.
An analytical description of the behaviour is possible when|β| is
sufficiently large. Both the amplitude and the offset of the libration
centre of the libration inθ decrease with time, while the momentum
J increases.

For first order resonances, the libration centre can be foundby
considering the equations of motion forθ andJ :

θ̇ = 2J + β − 1

2
J−1/2 cos θ (A40)

J̇ = J1/2 sin θ, (A41)

whence,

θ̈ = 2J1/2 sin θ + β̇ +
1

4
J−1 sin θ cos θ

+
1

2
J−1/2

(

2J + β − 1

2
J−1/2 cos θ

)

sin θ. (A42)

Now, the elliptical fixed point occurs at approximatelyJeq =
−β/2 for large |β|, thus giving the increase in momentum. For
large|β| and smallθ, Equation A42 tells us that

θ̈ =
√

−2βθ + β̇, (A43)

so that the libration centre offset is given by
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θeq = − β̇√
−2β

. (A44)

To find the evolution of the libration amplitude, we consider
the equations of motion in Cartesian coordinates, following the
canonical transformation

x =
√
2J cos θ, y =

√
2J sin θ. (A45)

We calculate the libration amplitude by imposing a constantarea
on the small elliptical trajectory enclosed by the orbit; a knowledge
of the aspect ratio of the ellipse then suffices to determine the am-
plitude iny, and henceθ.

We improve the estimate for the equilibrium point by a single
iteration of the Newton-Raphson method,5 giving

xeq ∼ α+ 1/(2
√
2α2), (A46)

whereα =
√−β. Writing X = x− xeq and linearising gives

Ẋ = −y/
√
2α, ẏ = 2α2X (A47)

to leading order inα. This describes motion in an ellipse about
θ = 0, with ratio of semi-axes∆X/∆y = 2−3/4α−3/2. The area
enclosed by a trajectory is thusA ∝ α−3/2(∆y)2. Since∆θ ∼
∆y/x, andx ∼ α, we find

∆θ ∼ Cα−1/4 ∝ β−1/8 (A48)

for some constantC. This constant is not determined by this anal-
ysis; we obtain it numerically in§4.

This also gives the period of libration:

tlib = 23/4π|β|−1/4. (A49)

A3.2 Second-order resonances

For second-order resonances, a similar analysis gives

θeq =
β̇

4β
, (A50)

∆θ ∝ |β|−1/4, (A51)

and

tlib ≈ π|β|−1/2. (A52)
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