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1 INTRODUCTION

Mean motion resonances (MMRs) occur when two objects’ albit
periods are close to a ratio of two integers, and a partiadarbi-
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ABSTRACT

Mean motion resonances are a common feature of both our olan Sgstem and of extraso-
lar planetary systems. Bodies can be trapped in resonaree tivhir orbital semi-major axes
change, for instance when they migrate through a prototdandisc. We use a Hamiltonian
model to thoroughly investigate the capture behaviour fst &ind second order resonances.
Using this method, all resonances of the same order can loeilokss by one equation, with
applications to specific resonances by appropriate scaliegfocus on the limit where one
body is a massless test particle and the other a massive pleaeuantify how the the prob-
ability of capture into a resonance depends on the relatigeation rate of the planet and
particle, and the particle’s eccentricity. Resonant cagfails for high migration rates, and
has decreasing probability for higher eccentricitied@lgh for certain migration rates, cap-
ture probability peaks at a finite eccentricity. More masgilanets can capture particles at
higher eccentricities and migration rates. We also caleuiaration amplitudes and the off-
set of the libration centres for captured particles, andctienge in eccentricity if capture
does not occur. Libration amplitudes are higher for largéral eccentricity. The model al-
lows for a complete description of a particle’s behaviouit asccessively encounters several
resonances. Data files containing the integration gridwwtjil be available on-line. We dis-
cuss implications for several scenarios: (i) Planet mignathrough gas discs trapping other
planets or planetesimals in resonances: We find that, wétbsadal prescriptions for Type |
migration, capture into second order resonances is noilpesand lower mass planets or
those further from the star should trap objects in first-orésonances closer to the planet
than higher mass planets or those closer to the star. Foerfastgh migration, a planet can
trap no objects into its resonances. We suggest that themgrisration amplitude of planets
may be a signature of their eccentricities at the epoch dafucapwith high libration ampli-
tudes suggesting high eccentricity (e.g., HD 128311)Rignet migration through a debris
disc: We find the resulting dynamical structure dependsigtyoboth on migration rate and
on planetesimal eccentricity. Translating this to spatalcture, we expect clumpiness to de-
crease from a significant level at<< 0.01 to non-existent a¢ > 0.1. (iii) Dust migration
through PR drag: We predict that Mars should have its owm@siring of particles captured
from the zodiacal cloud, and that the capture probabilify 5% that of the Earth, consistent
with published upper limits for its resonant ring. To sumis@rthe Hamiltonian model will
allow quick interpretation of the resonant properties df@solar planets and Kuiper Belt Ob-
jects, and will allow synthetic images of debris disc stmes to be quickly generated, which
will be useful for predicting and interpreting disc imageada with ALMA, Darwin/TPF or
similar missions.

Key words: celestial mechanics — planets and satellites: dynamicdliton and stability —
protoplanetary discs — planet—disc interactions — zotldcst

nation of orbital angles, the resonant argument, is libgatExam-
ples in the Solar System include Neptune and Pluto (3:2 eesm)

and the inner Galilean moons of Jupiter (4:2:1 Laplace rasos).
There are also now numerous examples of suspected or codfirme
MMRs in extrasolar planetary systems (e.g., GJ 876 b and c in a
2:1 resonance, Laughlin & Chambers 2001).
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Mean motion resonances also occur between planets andunderstood in the Solar System (e.g., Murray & Derrott 1989)
small dust particles, as seen in the Earth’s resonant dustsometimes neglected in studies of extrasolar planets acd.di

ring (Dermott et all 1994). Some extrasolar debris disceh s
Vega, show evidence of non-axisymmetric clumps (Hollarallet
1998;| Wilner et all 2002), and several authors have attedniate
model these as arising from a planet’s resonant perturisa(®g.,
Kuchner & Holman 2003; Wyatt 2003).

Although resonant orbits occupy only a small volume of phase
space, they are common because of a locking mechanism wdrich ¢
preserve the resonance once attained. If a particle’s oepi$aor-
bital semi-major axis changes due to non-conservativeeforihe

bodies can approach a resonance and then remain trapped ther

even under further action of the non-conservative forchs. asso-
ciated orbital angular momentum change then drives an &@cen
ity change, while the semi-major axis ratio remains appnately
fixed at the resonance.

The Hamiltonian model we use has several advantages over
N-body simulations: (1) it allows some results to be deriaadlyt-
ically; (2) it is faster to integrate numerically than thé®8ely prob-
lem; (3) all resonances of the same order reduce to a Haraiiton
of the same form, with fewer free parameters than the thoely-b
problem. Once a suite of numerical integrations of the Himil
nian model is performed, it can be applied to any system,owith
the need for running a different N-body integration everydithe
system parameters are changed.

The plan of this paper is as follows: §2 we describe the di-
mensionless Hamiltonian model. Readers interested in eteslsl
may read the Appendix which contains the mathematical deriv
tion. In § 3 we summarise how physical parameters relate to the
dimensionless parameters for test particles§ 4nwe describe the

There are many mechanisms by which such a semi-major results of our numerical integrations. % we compare the Hamil-

axis change can be driven. Early work looked at the tidalievol
tion of satellite orbits|(Goldreich 1965). In a protoplaargtdisc,
planets can migrate by tidal interaction with the gas dise (s
Chambers 2009, for a recent review), and small planetesiimal
aerodynamic drag (Weidenschilling 1977). In a gas-degldé&bris
disc, planets can migrate by gravitational scattering ahetesi-
mals (Fernandez & Ip 1984; Kirsh et al. 2009). Interplanethrst
drifts towards the Sun under the influence of Poynting-Risber
(PR) dragl(Burns et &l. 1979), and large bodies can be moved mo
slowly by the Yarkovsky effect (Bottke etlal. 2006). At thedeof

a star's main-sequence lifetime, planetesimals can expegiaero-
dynamic drag as the star loses mass (Donglet al. 2010). Mereov
for a planet orbiting the secondary component in a binariesys
formation of a disc following mass transfer from the primaryhe
secondary could trigger renewed planet migration (F2@16Q

tonian model to N-body simulations. §6 we discuss applications.
§ 7 summarises our work.

2 DESCRIPTION OF HAMILTONIAN MODEL

For most of this paper we consider the circular restrictegivody
problem with a massive planet and a massless test parthutingr

a central star with a low mutual inclination. (In the Appendive
derive suitable formulae for the case of two massive plaowtit-

ing a star, although we do not pursue this further in this page
mean motion resonance occurs when the ratio of two bodieahme
motions isj : j — k wherej andk are integers, and when the asso-
ciated resonant argumefit= jA2 — (j — k)\1 — kw is librating.
Here,\; are the mean longitudes of the inner and outer bodies, and

Resonance capture has been studied by several authors, gow i the longitude of pericentre of the test parflbi@he integerk

ing back to|l Goldreich| (1965). The regime of adiabatic migra-
tion, where the migration timescale is much longer than the
resonant argument’s libration timescale, has been stushésh-
sively analytically using a Hamiltonian model (elg.. Henia982;
Borderies & Goldreich 1984). With adiabatic migration, tap is
certain if the particle has an eccentricity below a criticalie, and
probabilistic with decreasing probability as eccentyidiicreases
beyond this. Rapid migration was studied using full N-bodydm
els byl Wyait (2003, henceforth WO03) for the case of a planet mi
grating into a planetesimal disc, and using the Hamiltomiexlel

by |Quillen (2005, henceforth Q06) for general migrationrsse
ios. Q06 obtained capture probability as a function of nmigra
rate and eccentricity for the Hamiltonian containing a kEngs-
onant term, and went on to consider the role played by aaditio
resonant terms in affecting capture probability. Such gecan be
important when the planet is eccentric.

In this paper we extend this work in a different directiondan
using the Hamiltonian model with a single resonant term we ca
culate capture probabilities, libration amplitudes antseif for
particles that are captured, and eccentricity jumps fosehthat
pass through the resonance without capture. We validatadioe|
against the numerical integrations of W03 and Q06. We asnuds
the application of the model to various migration scenadas dis-
cuss previous studies in its light, in particular those oftieet al.
(2008) who investigated capture of planetesimals by a riigya
planet, and Dermott et al. (1994) who studied the formatioihe
Earth’s resonant dust ring, both using N-body integrationg
should like to emphasize the role eccentricity can play fecting
capture probabilities and libration amplitudes, which,lesiong

is the order of the resonance; higher order resonances alewe
and often the dynamics are dominated by the low-order resasa
In this paper, we consider resonances of first and second orde

We work with the widely-used Hamiltonian model of mean
motion resonances (e.q.. Murray & Dermott 1999). This maslel
derived by taking the lowest order term in the disturbingcfion
and while suitable for low eccentricities other terms mayngor-
tant at higher eccentricity (e.@.. Lee & Péale 2002). Heresure-
marise the model and qualitatively describe its behaviReaders
interested in the mathematical derivation are referrechéoAp-
pendix. In§ 3 we summarise the mathematical results.

2.1 Absenceof migration

First we consider the case with no migration forces. A pltis
in resonance if its resonant argument is librating, typycatboutr,
rather than circulating. The evolution of the canonicallarkg6 +
) is governed by the Hamiltonian

H=J+BJ+ (=1)FJ*? cos kb, (1)

whereJ, the generalised momentum conjugatéts proportional
to the square of the particle’s eccentricity. There is onaipater,
B, which measures how far the particle is from the nominalreso
nance location. All resonances of orderof any value ofj, and

L When we refer to inner and outer bodies, their elements drscsipted
1 and 2 respectively; when we refer to a planet and a test partibleiy t
elements are subscriptggand unsubscripted respectively.



whether the particle is interior to or exterior to the plarean be
reduced to this form; the relation between the dimensisniesi-
ables and parameters and physical parameters changevghosgse
described in the next Section. For first order resonancessthialid
for coplanar systems and for low inclinations: there are rei-fi
order inclination terms in the disturbing function. For@ed order
resonances in a non-coplanar system the inclination teraysba
important, and capture into a second-order inclinationmeasace is
possible [((Murray & Dermait 1999). Capture into such reseean
can be handled using the same formalism but with inclinatadn
ing the place of eccentricity, and changes to the scalingficimats
between the Hamiltonian model and the physical variables.
Level curves of the Hamiltonian fér = 1 (i.e., first-order res-
onances) are shown in Figlrk 1. In this plot, the resonaninaegt
is measured anticlockwise from the positiveaxis, and the radius
is proportional to//J, i.e., to the particle’s eccentricity. i is con-
stant, trajectories are confined to these level curvessFor —3,
there is one fixed point close to the origin, and trajectariesilate
about this, so no resonant trajectories exist. Far —3, there are
stable fixed points both close to the origin, and removed filogn
origin atd = «. The trajectories librating about this latter point are
the resonant trajectories. They may have a larger or sniddter
tion amplitude. There are also circulating trajectoriesnaller and
larger eccentricity than the libration region. The curvendecating
these regions is the separatrix, shown as a dotted line iméfi

2.2 Presence of migration

Now we describe what can happen if there is a non-conseevativ
force acting to change the semi-major axis ratio. Migratibeither
the inner or outer body, or both, is mathematically idertioaly
the relative migration raté&; /a1 —a2/a2 matters. Note that capture
is only possible for converging orbils (Murray & Dermott Ed®e-
cause of the geometry of orbital conjunctions (Chiang £2@02),
S0 we restrict ourselves to this case.

Prior to reaching the commensurabilify,is positive, and all
trajectories are circulating as shown in the top panel ofiféifl.
Migration reduces the value @, until at 3 = —3 the separatrix
forms and libration in the resonance becomes possibled éan-
tinues to decrease, the trajectory may either become tiappee
resonant region, or continue circulating about the origin.

In the case of adiabatic migration, progress can be made ana-
lytically by exploiting the invariance of the area enclosgdhe tra-
jectory, and the criterion for capture is well understodthe initial
eccentricity is small, the separatrix forms outside thttary, and
the trajectory is then trapped inside the libration regidate that
the trajectories with small in the top panel of figurlel 1 deform con-
tinuously into those in the libration region. If the initetcentricity
is large, the separatrix forms inside the trajectory, atibity the
angle still circulates. However, continued migration eakhe area
enclosed by the separatrix to expand, while that enclosethdy
trajectory remains constant, so that soon the separatsxte tra-
jectory. Then the area enclosed by the trajectory changeshen
trajectory jumps to either the libration or the inner ciation re-
gion (Murray & Dermott 1999). Although the equations areedet
ministic, when one has no information on the phase at whieh th
separatrix meets the trajectory, capture can be treatechesba-
bilistic event, with the probability of capture decreasasthe parti-
cle’s initial eccentricity is increased (Borderies & Gadit 1984).
If the particle is captured into resonance, it remains s@ufidther
migration. If the particle is not captured into resonané@eutation
continues but with a different eccentricity (which is ahgamaller
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Figure 1. Level curves of the Hamiltonian for first-order resonant¢eshe
absence of migration, trajectories are constrained taligese curves. The
resonant argument is measured clockwise from the orightlaradial dis-
tance is proportional to the eccentriciffop: prior to resonance crossing,
with 3 positive. All trajectories circulate about the origiBottom: after
resonance crossing, withnegative. As well as trajectories where the reso-
nant argument circulates about the origin, librationalisohs are possible;
these trajectories have been captured into the resonaheeufve demar-
cating these two regimes is the separatrix (dotted lineg.tfdjectories with
smallJ in the upper panel are now those in the libration region.

for adiabatic migration). If migration continues, howewre par-
ticle may be captured into another resonance.

Following capture, the libration continues, with the paeis
eccentricity increasing as the migration moves the fixeditpfoir-
ther from the origin. The centre of libration is also offskgistly
from the case with no migration. Finally, as we show in the Ap-
pendix, the libration amplitude decreases slightly, asahgular
width of the libration region changes while the area reméiies.

If the migration force is removed, there will no longer be #iset
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of the libration centre, and the libration amplitude will lomger
vary.

The case of rapid migration has been less well explored. Q06
used this Hamiltonian model to derive capture probabdites a
function of both migration rate and initial eccentricityei¢ we ex-
tend these investigations to more thoroughly map out thempeter
space, to find the libration amplitude and offset, and to ficwka-
tricity changes if capture does not occur. This allows usuitdup
a full picture of what happens as a result of an encounter aith
resonance.

Second-order resonances show qualitatively similar iebav
to the first-order resonances.

3 SCALINGSFOR TEST PARTICLES

Here we summarise how the dimensionless variables of thalHam
tonian model relate to the physical variables and parametea
real star—planet-test particle system. The derivatiohed¢ equa-
tions is given in the Appendix.

3.1 First-order resonances
The dimensionless Hamiltonian is

H=J+pJ—J"?cosh. )

) For first-order resonances, the dimensionless quantitesd
3, and the dimensionless tintg relate to the physical parameters
as follows:

- —2/3 m. 2/3 )
r-n(e) Ge) o ©
g ooy (me) ()"
B "\ Mg Mo
apl 1/2 dg . (il
(1AU) {O‘mU/Myr 1AU/Myr} @
o g () ()T ey
J M@ M@ 1AU 1My1"

Here,« is the ratio of the planet’s and particle’s semi-major axes:
a = a/ap for an internal particle and: = api/a for an external
particle. The coefficients; andi; depend on the particular reso-
nance and are tabulated in Tallé (1). For test particlesdeutse
planet’s orbit the “e” columns are to be used; for particleside
the planet'’s orbit the “i” columns are to be used.

When capture occurs and migration continues, the eccentric
ity, libration amplitude and offset evolve with time in thalbwing

manner:
- QLJ’( apl )*1/2 £\
2k; \1AU 1 Myr
s i 1/2
{alAU/Myr - lAU/Myr} ©
A0 o 7B (7)
—1 1/2
0 L (ma ) ()
e 2gj M@ M@ 1AU
s i 1/2 . —1/2
o - e 8
1AU/Myr 1AU/Myr 1 Myr

J g; (€) k; (e) I (e) g5 (i) k; (i) L ()

2 850.788 11077.7 13.0205 3114.07 3026.51 3.08553
3 4797.66 5893.36 0.818921 6003.93 4709.31 1.02782
4 7874.86 7180.91 0.455939 9233.21 6124.49 0.535696
5 11273.1 8360.39 0.296648 12754.1 7389.62 0.336163
6 14942.3 9461.19 0.211061 16527.8 8553.59 0.233766
7 18847.9 10500.9 0.159184 20525.4 9642.71 0.173547
8 22964.5 11491.4 0.125099 247249 10673.2 0.134820
9 27272.8 12440.7 0.101368 29108.7 11656.0 0.108285
10 31757.1 13355.0 0.0841070 33662.7 12598.9 0.0892231
11  36404.7 14238.9 0.0711143 38375.3 13507.7 0.0750161

Table 1. Numerical coefficients for conversion between the physical
dimensionless variables for first order internal (i) anceexal (e) test par-
ticles. Note that the authors believe that any errata inl€uil2006) have
been corrected in this paper.

J g; (€) k; (e) 1 (e) g; () k; (i) L ()

3 457110 557561 225528 32.5896 108449 27687.7
5 128.778 81348.5 852.466 146.484 120638 1543.58
7 305.071 75601.1 253.169 332.276 124094 373.904
9 553.801 72865.1 107.555 590.374 125717 143.877
11 874950 71261.2 55.4009 920.840 126658 69.8820
13 1268.52 70206.1 32.2138 1323.69 127271  39.0819
15 173449 69459.2 20.3629 1798.92 127704 24.0293
17 2272.84 68903.7 13.6835 2346.56 128024 15.8149
19 2883.61 68472.8 9.63420 2966.61 128269 10.9566
21 3566.83 68128.8 7.03771 3659.06 128465 7.90129

Table 2. Numerical coefficients for conversion between the physical
dimensionless variables for second order internal (i) atidreal (e) test
particles.

Eccentricity is pumped up, while the libration amplitudel arffset
are reduced. Note that the value of the libration amplitiedaat
determined analytically, but its dependence on time can be.

3.2 Second-order resonances

For second-order resonances, we write the dimensionlassltida
nian

H = J* + BJ + J cos 20. 9)
The scalings fot/, [3 andt’ are then as follows:
-1
I L My ) 2
() () w0
-2 3/2
B D mpl Mk
"\ Mg Mg
apl 1/2 d2 _ dl
(1 AU) [O‘ 1AU/Myr  1AU /Myr} (11)
—1/2 -3/2 ¢
¢ = gyl (D Iol . 12
9 Ma (M@ (1AU) 1 Myr (12)

The coefficients are tabulated in Taldlg (2).

When capture occurs and migration continues, the eccentric
ity evolves according to Equatié 6; libration amplitudel arffset
evolve with time in the following manner:

A0 o t7H4 (13)



; _ 1 i (g —2/3 m. 1/6( apl )3/2
e 29\ Mg Mg TAU

. -1
1 Myr

This is similar to first-order resonances, but the time ddpane
of the libration amplitude and offset is stronger. Agairg thalue
of the libration amplitude is not determined analyticaltlyt its de-
pendence on time can be.

(14)

4 NUMERICAL INTEGRATION

4.1 Captureprobabilities
4.1.1 First order resonances

For our numerical investigations, we show plots of captuebp
ability, libration amplitude and offset, and eccentrigitynp, in a
regionlog |3| € [—3,1), log Jo € [~2,2). Here.J is the initial
value of the momenturnd. Note that higher-order terms in the dis-
turbing function will become important fer > 0.1, i.e., JJo = 1 or
100 for a Jupiter-mass or an Earth-mass planet respectivelie No
also that an eccentricity of is attained at/o ~ 100 or 10%, for
Jupiter-mass and Earth-mass planets respectively. Hersedts on
the extreme right-hand side of the following figures may retb-
curate for massive planets.

We consider the Hamiltonian given by Equatiéh (2). For the
integration we transformed to Poincaré’s canonical Gatevari-
ables (equatioln’/A45) in order to avoid a singularity in thea@pns
of motion for smallJ. The Hamiltonian is then
(z*+4%)* B

+_

H= 4 2

2 2 T
(:c +y ) 7 (15)
The equations of motion arising from this Hamiltonian =
—0H /0y, y = OH/0x) were integrated numerically with a
Runge-Kutta routine with Cash-Karp spacings and adaptisp s
size (Press et 8l. 2007). We also véghpy including the equation
B = constant to impose migration; this changes semi-major axis
without affecting eccentricity. Note that it is sufficiemt tonsider
linear variation ing since it is only the migration rate at the in-
stant of resonant passage that affects capture probalksiitiong
as the migration is sufficiently smooth. However, if the raiign
rate changes rapidly, such as if the planet is experiencirtgut
lent torques, then the model does not apply. The initial evadti
B was chosen to b&5 + 1 with a uniform random distribution.
It was found that when all particles were started from eyatté
same value off the capture probability varied in a very rapid man-
ner with.J, or 3. This appears to be related to the phase at which
particles enter the resonance; the distribution of phases dot re-
main uniform as the system evolves away from the initial anmif
distribution. While perhaps mathematically interestitigs is not
physically useful, so we randomised over this parameter.

We varied the initial momentund, and the migration raté.
For each point in parameter space we integrated 100 trajesto
with the resonant argument chosen from a uniform distrifsutiver
[0,27) and initial 8 as described above. A trajectory was classed
as a capture if all of 1000 output valueséoivere withindr /5 ra-
dians of the centre of libration. This avoids any misclasatfon:
choosing a larger libration amplitude would risk miscl&seg cir-
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culating trajectories as captures. The top panel of Figg@rsi{ows
capture probabilities as a function &§ andﬂﬁ.

In Figure[2, top panel, we see that capture into resonance is
guaranteed for small initial eccentricities and migratiates. For
low migration rates we are in the well-studied adiabatiamey
For low eccentricities capture is certain since the separfrms
around the initial trajectory. For high eccentricities geparatrix
forms inside the initial orbit and expands to meet it as thgrasi
tion continues. Capture then is probabilistic, with a plolig that
decreases as the initial eccentricity increases (Henh@sé)1

For low eccentricities, with/, < 1.3, capture is certain if the
migration rate is low and impossible if it is high. The widthtbe
transition region from capture to no capture increases agten-
tricity. In the limit of low eccentricity, the transition oars at a crit-
ical migration rate ofB| ~ 2.1. Certain capture occurs for low mi-
gration rates up tdp = 1.3. For higher eccentricities/{ > 1.3),
capture is always probabilistic, with a capture probaptli@at is not
strongly dependent of migration rate; however, if mignatiate is
too high, then capture is still impossible. Interestinghe maxi-
mum migration rate allowing capture is slightly higher faglner
eccentricities. This is because this maximum migratioa imgov-
erned by the resonant libration period, which decreasdshigher
J (Eq.[A49). For a given migration rate above the critical réte
capture probability peaks at a finite eccentricity.

Vertical line cuts through Figurkl 2, bottom panel, give the
same results as shown in figure 2 of Q06, who integrated the sam
Hamiltonian with a different integrator, providing a chemk our
numerical implementation.

In subsequent sections we shall sometimes be concerned with
particles that have dimensionless momehta> 100, for example
when considering planets of around Earth mass or lower. [toica
late the capture probabilities at these high momenta, wegodt
lated the results plotted in Figuré 2. At high momentufa £ 10)
the capture probability is independent of migration rate rfmst
of the range of migration rates considered, and a regrefisiai
ter pooling the data for/y € [3.2,100) and 3 € [0.001,4.2]
givesp = 0.499.J; %7 for the capture probability. This agrees
with the analytical results for the adiabatic case where e~3/2
(Dermott et all. 1988).

4.1.2 Second-order resonances

We used Poincaré variables and same integrator as for gte fir
order resonance to integrate the second-order Hamiltonian

(@ +v")" B+ 1e”  (B-1y
4 2 2 ’
Again we randomised the initial angle and distance to the-res
nance. The integrations were performedifar || € [—1.5, 1.5),
log Jo =€ [—9,1.6875). Higher order terms will become impor-
tant for J of several hundred. The capture probabilitiesshmvn
in Figure [2), bottom panel.
The overall picture is similar to that for first order resooest
Certain capture at low migration rate and eccentricity, ap-c
ture at high migration rate and low eccentricity, and pralistte

Y= (16)

2 The data used to create figur€]l 2 and the other other
contour plots in this paper are available on-line at
http://www.ast.cam.ac.uk/ ~ajm233/ | and the journal website

and may be used provided that this work is cited.
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Figure 2. Top: Capture probabilities for the first-order resonance, as a
function of rescaled eccentricityz{axis) and migration rateytaxis). Con-
tours are at 1%, 25%, 50%, 75% and 99% probability. Also sh(yween
crosses) are the dimensionless migration rate and eazigntior a par-
ticle with Keplerian eccentricity 0.01, migrating at 1 AU My! into ex-
terior resonances with an Earth-mass planet orbiting ar$uess star at
1AU. The 2:1 and 3:2 resonances are labelled. Note that tisecdvor-
dinates is condensed at the bottom of the plot. The bottoint Ggrner
(log Jo € [1.75,2),log B € [—3,—1)) was not integrated due to long in-
tegration timesBottom: Capture probabilities for second-order resonances.
Contours are at 1%, 25%, 50%, 75% and 99% probability.

capture at low migration rate and high eccentricity. In tligaa
batic limit, the transition from certain to probabilistieture oc-
curs atJo ~ 0.8. At high eccentricities, capture probability does
not depend strongly on migration rate for the rates consitler
and we findp = 0.867.J;,°*®, agreeing with analytical studies
(Dermott et all 1988) which give o e *. In the limit of low ec-
centricity, the transition from certain to impossible capt does

not appear to converge to any valueffunlike for first order res-
onances, being quite strongly dependent on the migratienpar-
ticularly for Jo 2 0.001. At higher eccentricities, the maximum
migration rate allowing capture increases more rapidiywithan
for first order resonances. This is due to the stronger depemrdof
the libration period o/ (Eq.[ASZ).

Vertical line cuts through Figurgl 2, bottom panel, give the
same results as shown in figure 3 of Q06.

4.2 Libration amplitudeand evolution in resonance

The analytical results in sectién A3 show that libration titagde
and offset decrease with time, so we need to specify a timbiatw
to measure the libration amplitude and offset. First we kltlee ac-
curacy of these analytical results. For first order resoagytie top
panels of FigurEl3 and Figuré 4 show the evolution of libratim-
plitude and offset respectively, for one trajectory fronslkeaorner
of parameter space/§{ = 0.1, 8 = 0.1; Jo = 0.1, 83 = 2.5;
Jo = 10, 8 = 0.1; and Jo = 10, 8 = 7.5). The points are the
numerically determined amplitudes and offsets from anreled
integration of these trajectories. For the offsets, thediare the
analytical solution given by Equatién A44. For the ampléagthe
lines have a slope of1/8 as determined analytically, and a nor-
malisation given by the relevant shorter integration frdva grid
described above. Agreement is generally good, for bothaadt
slow migration, even though the result was derived assurmilig
abatic conservation of area. This demonstrates the agcafdbe
analytical solution, and also that the output from the gfidhte-
grations is sufficient to correctly describe the long-tehdyiour.

The bottom panels of Figurés 3 ahH 4 show the analogous
plots for second order resonances (trajectories taken Jith=
0.032,6 = 0.032; Jo = 0.032, 8 = 2.4; Jo = 13, 8 = 0.032;
andJ = 13, 3 = 21). Again we see good agreement between the
analytical results and the numerical integrations.

The libration amplitudes and offsets for first and seconeord
resonances for a range g§ and 3 are shown in figureS]5 arid 6.
Note that all amplitudes and offsets are scaled to what treytdv
be at3 = —100 using the time dependence given in equations A44,

[AZ48,[A50, and'A5l. Large amplitude librations can occur as-a r

sult of either large initial momentum or, to a lesser ext&ster mi-
gration. For first order resonances, at low momentum thatiim
offset is not dependent afy and increases with migration rate, as
predicted by analytic theory (Dermott ef al. 1994). At highwo-
menta the offset decreases with increasifag although here the
data are noisy due to low numbers of particles being captiied
second order resonances the offset increases with inaggasand
as Jp increases the offset decreases, passing through a minimum
before increasing again at high.

Note that the offset is only present during migration: if the
migration force is removed, such as if a perturbing gas dia&x h
dissipated, then libration will be aboutexactly with no offset.

4.3 Failureto capture

In the event that the particle not be trapped in resonansecit
centricity changes as it passes through the resonances tage of
adiabatic migration, the eccentricity is reduced (Murrafp&moitt
1999). On the other hand, we find that when the particle faitsp-
ture due to fast migration rate, the eccentricity can chaupstan-
tially in either direction. The top panel of Figuré 7 illustes how
the eccentricities are changed when passing through aofulst-
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Figure 3. Top: Evolution of libration amplitudes (in degrees) with time,

for the first-order resonances. Lines show the analyticsliltdrom § [A3]
and points show the numerical resuBsttom: The same, for second-order

resonances.

resonance. The colour scale and solid contours show theefinal
centricity as a fraction of the initial eccentricity. We ssgreement
with adiabatic theory in the case of slow migration: all fAes’
eccentricities are driven down. In Figure 7 we also show aanst

of (mean change in momentum)/(standard deviation of chamge

momentum) to illustrate how broad the distribution of ed¢deity
changes is relative to the mean. For slow migration rateglite
tribution is very narrow, and all particles behave in the sanan-
ner. In contrast, for faster migrations and high momentunses
that not only can the average change in eccentricity beipesitut
that the distribution of changes is relatively broad, sa thany
particles lose eccentricity despite the mean being an dsereln
this case, the behaviour is highly stochastic. For fast atign and
low momentum, the particles’ eccentricities are all drivgn We
note furthermore that the actual distribution of ecceittripmps
is highly non-Gaussian, being either unimodal and strosgéwed
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Figure 4. Top: Evolution of the offset of libration centres (in degreesjwi
time, for the first-order resonanceBottom: The same for second-order
resonances

or even bimodal. Note that for low initial eccentricitiesetmean
eccentricity jump decreases as the migration rate is isexggre-
sumably because the resonance has less time to affect tiegmr
orbit before being crossed.

The bottom panel of Figur] 7 shows an analogous plot for
the second-order resonances. The behaviour is qualliasimi-
lar: with slow migration the eccentricity of all particlesdecreased
on passing through the resonance, but for fast migrationl@amd
eccentricity the eccentricity is pumped up, while at higeecen-
tricity the eccentricity may jump either up or down.

5 MODEL VALIDATION

We compared line cuts through our figures of capture probabil
ity to figures 2 and 3 of Q06, demonstrating that our integresi
of the Hamiltonian are accurate. To demonstrate that theilHam
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Figure 5. Top: Mean libration amplitudes for the first-order resonances, i
degrees. Amplitude is that @& = —100. Contours are at5°, 30°, 60°,

and 120°. Note that the axis of ordinates is condensed at the bottom of
the plot. Bottom: Mean libration amplitudes for the second-order reso-
nances, in degrees. Amplitude is that/at= —100. Contours are at
7.5°,15°,30°,60°, and120°.

tonian model itself correctly describes the behaviour ef titree
body problem, we now compare our results with the N-body sim-
ulations of W03, who considered the case where a massivetplan
was migrating outward into a disc of test particles. We candu
Monte-Carlo simulation, creating a population of partsctégth the
same distribution as in the N-body integration and comugrtheir
parameters into the dimensionless ones to determine ticeroat

of the resonance passage process. This process is very qaitk
point in Figure® represents 100 particles, so there arendrof
particles in total, and the process took only a few seconds- H
ing generated our samples we plot their capture probasiliind
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Figure 6. Top: Mean libration offsets for the first-order resonances, in de
grees. Offset is that &8 = —100. Contours are at°®,8°,16°, and24°.
The data are noisy at highy where there are few particles captured. Note
that the axis of ordinates is condensed at the bottom of thie Bbttom:
Mean libration offsets for the second-order resonancegegnees. Offset is
that at3 = —100. Contours are a.25°, 0.5°, 1°, 2°, and4°.

amplitudes and offsets against migration rate, and alsw she
empirical fitting formulae from Wyatt's N-body simulations

The top panel of Figurgl 8 shows the capture probability as a
function of planetary migration rate for the 3:2 externaamance.
Test particles were located at 60 AU, with eccentricitieth@arange
[0,0.01]. Hence the population for each point(in mp1) space is
taken form a horizontal cut through the dimensionless patam
space, up to a certain maximum value .bf The stellar mass is
2.5 Solar masses and the planet mass ranges from 1 to 300 Earth
masses. The probabilities obtained from the Hamiltoniameho
show excellent agreement with those obtained from N-bots- in
grations (see figure 1 of WO03); in particular we reproduceitihe
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Figure 7. Top: Change in eccentricity when passing through a first-order
resonance, in the event of a non-capture. Colour gradieshtagsociated
solid contours show the mean final momenturas a fraction of the initial
Jo, so that particles on the 1.00 contour experience no meargehgar-
ticles with ratio greater than 1.00 are pumped up on avemuyeparticles
with ratio less than 1.00 are cooled on average. The dottetbess show
the mean change divided by the standard deviation. At lowati@n rates
the distribution is narrow and all particles behave in esaliy the same
way—they are cooled—nbut at high migration rates there isgelapread in
eccentricity jumpsBottom: The same, for second order resonances.

creasing sharpness of the transition from certain captuceitain
failure to capture as the planet mass is increased. This@ise for
low mass planets, an eccentricity of only 0.01 is sufficientbn-
zero to affect the trapping probability, putting the pdetcin the
region of parameter space where the transition from cectgiture
to impossible capture as migration rate increases beghmsalen.
Models involving capture into resonance with low mass pisune

therefore need to pay careful attention to the initial cbads of the
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Figure 8. Top: Capture probabilities as a function of planetary migration
rate for the 3:2 external resonance. Solid lines are thedittormulae
from the N-body simulations of W03, and points are from theriit@-
nian model. From left to right, planet masses are 1, 3, 10180,and 300
times Earth’s mas8Bottom: Capture probabilities as a function of plane-
tary migration rate for the 5:3 external resonance. Safiédiare the fitting
formulae from W03, and points are from the Hamiltonian moBebm left

to right, planet masses are 30, 100, 300 and 1000 Earth’s mass

planetesimal disc, since the distribution of eccentssitieven in a
dynamically cold disc, can affect resonant trapping behaviln
contrast, capture into resonance with high mass planeitgohiw
the same behaviour for all small eccentricities.

The capture probabilities for second-order resonances, to
show excellent agreement with N-body simulations. Compiaee
bottom panel of Figurgl8 with figure 4c of W03, for the case ef th
5:3 resonance. The second order resonances are much weaker t
the first order ones, and we cover the same range of migratien r
with more massive planets: from 30 to 1000 earth masses.

In the top panels of figures 9 afid]10 we compare the off-
sets and amplitudes from the Hamiltonian model with theltesu
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Figure 9. Top: Libration offsets for the 3:2 external resonance. Solidgin
are the fitting formulae from W03, and points are from the Heamian
model. From left to right, planet masses are 1, 3, 10, 30, 1@D 300
times Earth’s mass$Bottom: Libration offsets for the 5:3 external reso-
nance. Solid lines are the fitting formulae from W03, and fsoare from
the Hamiltonian model. From left to right, planet masses3re100, 300

and 1000 times Earth’s mass.

from [Wyatt (200B), for the 3:2 external resonance. We sedi-qua
tative agreement between the Hamiltonian model and thedy-bo
fits, although quantitative agreement is not exact. We sedith
bration offset steadily increasing with migration ratehatigh that
from the model is somewhat lower. The libration amplitudes a
for planets more massive thdiMg, constant for small migration
rates before increasing at higher migration rates, althdogEarth
mass planets the amplitude is independent of migration Adta
given migration rate, capture by a less massive planet esllit in

a larger libration amplitude. The fitting formulae from Wa8s/n
on this plot were found by aggregating over all planet massethe
Hamiltonian model provides a more accurate prediction fjiven
mass. The difference between the Hamiltonian and N-bodytses
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Figure 10. Top: Libration amplitudes for the 3:2 external resonance. Solid
lines are the fitting formulae from W03, and points are from itramilto-
nian model. From left to right, planet masses are 1, 3, 10180,and 300
times Earth’'s mas8ottom: Libration amplitudes for the 5:3 external res-
onance. Solid lines are the fitting formulae from W03, andfsoare from
the Hamiltonian model. From left to right, planet masses34re100, 300

and 1000 times Earth’s mass.

may be due to W03 not using a consistent duration of migration
post capture; we have taken the migration to continue foAD.5

in all cases. We also have a semi-analytical motivation fgr W
att's finding that the libration amplitude depends in_,"*: the
libration amplitude depends on the dimensionless mignatice3,
which is in turn proportional tam_,"/* (equatioriB).

The bottom panels of Figuré$ 9 and 10 show the analogous
plots for the 5:3 resonance. Again the model reproducesubg q
itative behaviour of the N-body results, with the model ttiise
yielding slightly higher offsets, and similar differendestween the
model and N-body as in the case of first order resonancesnAgai
higher libration amplitudes result from lower planet masae a

given migration rate.



6 DISCUSSION

6.1 General comments

To summarize the previous sections, we have shown thatreaptu
into a resonance is certain at low eccentricities and mgrattes,
impossible at fast migration rates and low eccentricities] possi-
ble but not certain for high eccentricities. The criticateatricity

at which capture becomes probabilistic is lower for loweangit
masses: around 0.1 for a Jupiter mass planet and aroundod.@i f
earth mass planet, for first order resonances. Furtherabl@yer
eccentricity, the width of the transition from capture tocapture
with increasing: is also affected. The effects of this can be seen in
Figure8. Eccentricities of order 0.1 may not be uncommonanp
etesimal belts: bodies in the classical Kuiper Belt culyelnave a
mean eccentricity of about 0.1 (Luu & Jewitt 2002), and etrien
ities in planetesimal belts can be pumped up above 0.1 wten th
largest bodies grow significantly and gravitationally pesttheir
neighbours/ (Kenyon & Bromley 2008). Thus, the role of ecgent
ity cannot be neglected when investigating resonant eneosirif
capture into a resonance occurs, the resulting libratioplitude

is larger if initial eccentricity was larger, and, for smaditial ec-
centricities, also increases with increasing migratida.raibration
centre is offset by an amount dependent only on migratia mat
agreement with analytic theory, unless the dimensionlemnen-
tum is very high. If a particle fails to be captured, the et¢deity

is invariably driven down for slow migration rates, but camp up

or down for high migration rates.
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above which capture is impossible into any resonance, sitfes
eccentricity is sufficiently high. This equation holds fath exter-
nal and internal particles.

While Figurd11 is plotted for a planet at 1 AU, similar result
can be obtained for other distances: the critical migrataie for
a given resonance decreasesl(/,/ap1, from equatio B) and the
critical migration rate for capture into any stable resagahas the
same dependence. Thus, slightly lower migration rateseapgined
for planets further from the star to capture particles tHangts of
the same mass in smaller orbits. The effect of this will delpen
the migration mechanism: for Poynting—Robertson dragqtigea-
tion rate is inversely proportional @, so lowerj resonances will
capture particles when the planet is further from the starti@
other hand, for Type | migration in a disc with a MMSN power law
index, the migration rate is independentgto capture will be into
higher; resonances if the planet is further from the star.

We have ignored the effects of eccentricity in the previous
paragraph. This plays an ambiguous role: at low migratidesra
eccentricity reduces the probability of capture. For foster res-
onances, the critical eccentricity for the transition fraertain
to probabilistic capture decreases with increasingrigure[12).

me

Before discussing specific scenarios, we make some generalFor second-order resonances the critical eccentricity o de-

comments.

For any migration scenario, if migration lasts sufficiertlyg,
a succession of resonances will be encountered, if capaile f
to occur at the first resonance. For low eccentricities, ttig c
cal migration rate for capture increases wjthso a particle fail-

pend strongly onj. However, at high migration rates, higher ec-
centricity can make capture possible where capture wasssigo
ble at low migration rates; this effect is particularly metble for
second-order resonances. Furthermore, resonances cse gy
ticles’ eccentricities to change as the particles pasugiraes-

ing to capture into the 2:1 resonance may be captured into the onance and fail to be captured, and the cause of migratietf its

3:2, 4:3, etc. Indeed, the critical migration rate increasgth-
out bound agi — oo, so it would appear that ultimately a par-
ticle will be captured into a resonance very close to the gilan
However, such resonances are not stable. Close to the planet
resonances overlap, forming an unstable region of chaaic b
haviour of width~ 1.4a (mp1/m.)? " (Wisdom 1980). Thus the
closest first-order resonance which is stable is giveryoy =
18(mp1/me)~2/"(m/me)?/7. Even if particles were captured
into these resonances, they would be quickly removed. Hienee
given planet mass there is a maximynwhich will trap particles,
and conversely, for a given resonance there is a maximunefplan
mass, which is determined by the width of the chaotic zonés Th
is illustrated in Figurél1. The top and bottom panels arecém-
ture of particles exterior to and interior to the planetpesgively.
The diagonal lines show the critical migration rate for cagtinto
resonances of a givenas a function of planet mass. This figure
generalises figure 5 of W03 to resonances of highdiustrating
the power of the Hamiltonian model.

The lines in Figur&1l1 are terminated by the chaotic zone pre-
scription described above. For example] Blg planet at 1 AU
will be able to capture exterior low eccentricity particiesres-

often damps eccentricities too (Burns et al. 1979; Tanakaa&dWV
2004, although disc—planet torques may also pump ecciptric
e.g./Moorhead & Adanis 2008).

If a particle encounters a succession of resonances, tipen, i
noring changes in eccentricity due to resonant encountesther
effects, the dimensionless migration rate will decreasktha di-
mensionless momentum increase at each subsequent respnanc
simply from the changing scaling coefficients due to the givagy
of the resonance (Equatidis 3). We indicate such a Iocgsooﬁ)
on Figure[2 as green crosses, for a particle with= 0.01,a =
1 AU Myr ~! for particles encountering external resonances with an
Earth mass planet orbiting a Solar mass star at 1 AU. Hereahe p
ticle is migrating too fast to be captured into the 2:1 resoea
but is very likely to be captured into the 3:2, 4:3 and subsetu
resonances. Capture probability decreases for higher

Our treatment does not include any eccentricity belonging
to the massive planet. Correctly accounting for this rezgiin-
cluding in the Hamiltonian another resonant term for theores
nance involving the planet’s longitude of pericentre (QQ&dw-
ever/ Quillen & Faber (2006) showed that the strength ofrégs-
nant term can be reduced if the particle’s osculating Kégaeec-

onances up to the 18:17. To calculate the upper envelope, wecentricity is replaced by the free secular eccentricityichlis ap-

know that the critical dimensionless migration rategis~ 2.1
(§&I3). From tabl€]l, we find a fit ~ 5.457'%, so the rel-
evant coefficient for the innermost stable resonanck isx =~
0.0297(mp1 /ma)’ 5 (ms/me) %5, Using Equation13, we

proximately the same as the planet’s eccentricity for plesiclose
to the planet. Hence, for a first approximation, in the subsat]
discussion we consider the impact of the planet’s eccéiytris
though it were the planetesimals’.
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Figure 11. Top: Critical migration rate at 1 AU for capture of low-
eccentricity particles drifting into resonances extetma planet as a func-
tion of planet mass. Stellar mass is Solar. At migrationsréaster than this,
capture is impossible at low eccentricity. The critical natipn rates for

first order resonances are shown as solid lines. The 2:1 @n@8onances

are labelled; the higherresonances move away from these monotonically.

The line for a given resonance is terminated when that remenbecomes
unstable according to the resonance overlap criterion.|¥deshow second-
order resonances as dotted lines; only ug te 21 are shown for clarity
(8 = 0.3 was taken as the critical migration rate, although this ddpen
eccentricity; see Figufd & = 0.3 is the maximum of the envelope of the
100% capture region.). The right-hand axis of ordinatesvshtbe equiva-
lent dust grain size for migration under PR drag ($§6€3.2).Bottom: The
same, but for trapping of particles interior to a migratiignet. We show
typical migration rates for planets embedded in gas disdsAat (dashed
lines). Mass-dependent Type | migration occurs for low n@asets and
mass-independent Type Il migration for high mass planets§[6.2
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Figure 12. Critical eccentricity for certain capture of slowly migrag par-
ticles into external resonances as a function of planet nTdss star is of
Solar mass and the planet is located at 1 AU. At eccentscdieater than
this capture is possible but becomes less probable witeasange. Criti-
cal eccentricities for first order resonances are shown sdtid lines. The
2:1, 3:2, and 4:3 resonances are labelled; the highesonances move
away from the 3:2 and 4:3 monotonically. The line for a givesanance
is terminated when that resonance becomes unstable aggdodihe reso-
nance overlap criterion. Critical eccentricities for set@rder resonances
are shown as dotted lines.

6.2 Formation of resonances during planet formation

Here we discuss the capture of planets into resonances due to
gration through a gas disc. Due to the complexity of the pnobl

this Hamiltonian model can only give us a crude understandin

this scenario. We have neglected the mass of one planet, &0 wh
the planets are of comparable masses it may be necessary to in
tegrate the equations of motion for two planets (Equatiod§ A
and[A28). In spite of this limitation, the Hamiltonian modahy

give us some basic insight into the capture process.

There are several scenarios which may arise in a protoplan-
etary disc. For example, a giant planet undergoing type H mi
gration may capture planetesimals and low-mass embryes int
rior to it (e.g.,LFogg & Nelson 2007). The outer planets of our
own Solar system may have once been in a chain of resonances,
as| Morbidelli et al.[(2007) suggested for initial conditofor the
Nice model of the outer Solar System, and which Pierens &dtels
(2008) suggest may be a general outcome of migration ofelupit
and Saturn mass planets. Lower-mass super-Earths migriatin
wards can encounter the exterior resonances of a gianttflage
Podlewska & Szuszkiewidz 2009). On the other hand, there may
be a tendency for multi-planet systems to have the more weassi
planet on an external orbit (Morbidelli & Crioa 2007). Heree w
briefly discuss this latter case, where an inwardly migoafifanet
is capturing smaller planets or embryos in interior resgran

On Figured 1l (bottom panel) we have shown the typical mi-
gration rates due to Type | migration (which is mass-depet)de
and Type Il migration (mass-independent) for typical discper-
ties (MMSN, disc viscosity parametrised by= 0.01, scale height



h = 0.025) at 1 AU (Chambels 2008) We see that, for the 2:1
resonance, Type | migration at this location in this dischigagts
too rapid allow capture. Capture into the 2:1 resonancedooctur
however if the planets were located closer to the star afgheteof
capture. Although the Type | migration rate decreases wihei
mass, the critical migration rate decreases more strosglgap-
ture into this resonance is not possible with these discnpetiers.
Only more massive planets moving slowly under Type Il migrat
can capture into the 2:1 resonance, which will be an unattéda
outcome of migration in this disc if eccentricities are lamless
planets formed closer to each other than the 2:1 resonaoeesrL
mass planets can only capture into higheesonances. Indeed, we
should see lower mass planets in higheesonances than higher
mass planets if the Type | migration rate is correct. We at® s
that planets undergoing Type | migration will be migratiog fast
to capture smaller bodies into any second-order resonanwtele
planets undergoing Type Il migration will be able to capsmaller
bodies into these resonances.

Next, we remark that the present libration amplitude of res-
onant bodies might have been imprinted at the instant of cap-
ture. First we consider how to achieve high libration anojplés.
For low eccentricity, both the Hamiltonian model and full-nu
merical simulations (Rein & Papaloizou 2009) predict sriiath-
tion amplitudes!| Adams etlal. (2008) argue that turbulemca i
disc, as well as breaking resonances completely, can leegsto
onances with large libration amplitudes &f 60°, as seen in
HD 128311, HD 82943, and HD 73526. Similar results were found
by|Rein & Papaloizau (2009). Here, we have shown that large li
bration amplitudes can also arise from high eccentricitthatin-
stant of capture. For Jupiter-mass planets and first-oedenances
the critical eccentricity to achieve such libration ampdiés is of
order 0.1 (see figuld 5 and equatidn 3), and it is currentlyeanc
whether a disc could pump planetary eccentricity to thisliésee
e.g.. Moorhead & Adanis 2008, Bitsch & Kley 2010). However, fo
lower mass planets the necessary eccentricity is lowerjtandy
not be necessary to invoke turbulent fluctuations to exmdimgh
libration amplitude if such low mass resonant planets anaddo
have high amplitudes of libration.

We can also consider how to achieve very low libration am-
plitudes. GJ 876 hosts two planets in a 2:1 resonance with bot
resonant arguments having very low libration amplitudes-a3°
(Lee & Peale 2002). While Lee & Peale (2002) obtained limits o
planetary eccentricity at the time of captureegf < 0.06, ec S
0.03 for planets b and ¢ by requiring that capture into high order
resonances not occur, we suggest that it may be possiblgtowm
this: if the libration amplitude were very low at the time @ipture,
our results show that the eccentricities would have tepg 0.01,
ec <0.02.

These results ignore any subsequent evolution of the libra-
tion angle following capture. Libration amplitude decresslightly
with continued migration, but only very weaklA@ o t~'/%; see
equatiori b), so eccentricities at the moment of capturedcohave
been slightly higher, depending on the extent of the migratiVe
also note that any eccentricity damping mechanism may eeliuc

3 We restrict ourselves to classical Type | migration; the elathn be
used for the reduced or reversed migration found for exanplaon-
isothermal discs| (Kley et al. 2009) or isothermal discs ia ton-linear
regime |(Paardekooper & Papaloizou 2009), so long as a ncahen an-
alytical migration rate is known.
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bration amplitudes, and we have already mentioned thabastic
fluctuations can increase it.

There may be some caveats associated with using the simpli-
fied Hamiltonian model to model capture in a hydrodynamic.dis
However, the full hydrodynamical simulations and thosengsin
N-body integration with a prescribed migration rate givenpa-
rable results (e.g.. Kley etlal. 2004). Since we have dematest
the accuracy of our model against N-body integrations, veeilsh
not expect many significant differences between the Hamédto
model and full hydrodynamic models. We also note that a large
planet can open a gap in a disc and hence prevent other boaties f
migrating into resonances that lie in the gap (Pierens & dfels
2008;| Podlewska & Szuszkiewicz 2009), which will prevenp-ca
ture into those resonances. The capture process may alsb be a
fected by damping mechanisms such as gas drag or collisional
damping, although these may be more important before aed aft
resonance passage (for example, driving bodies towardehe
eccentricity regime prior to capture) than during capttself.

Finally, we point out that our results may be useful for plan-
etary population synthesis models which require a simptier-al
native to N-body integrations for planet—planet interaasi (e.g.,

Ida & Lin[2010).

6.3 Debrisdisc structure
6.3.1 Planetesimal discs

The non-axisymmetric structure seen in several debrissdiss
been ascribed to the migration of a planet into a planetdsiisa
(e.g., WO3|_Reche et al. 2008). We showed in the previousdect
that the Hamiltonian model reproduces well the results o8Wao
investigated this precise case.

Resonances affect the observed disc morphology because par
ticles with nonzero eccentricity trapped in a resonancedpeost
of their time at specific longitudes relative to the planetO@A
Reche et dl. 2008). This gives the appearance of clumps s¢ the
locations when the disc is imaged, with different resonamgeng
different numbers of clumps. They are seen so long as thetikior
amplitude is low enough that the clumps are not smeared but. |
libration amplitudes are too high, the resonant dust degtiappear
to form a ring, axisymmetric save for a gap where the plaest li

The Hamiltonian model is particularly useful for studyirgt
resonant signatures of planets in debris discs becausatihef
tens of thousands of particles encountering any first orrskoo-
der resonance can be quickly determined, regardless oftitgr
rates or particle eccentricities. Hence, many images abdissult-
ing from the migration of different sized planets into digtdliffer-
ent states of dynamical excitation can be easily made. Tthwi i
be particularly useful for exploring the disc structuremgmted
by a wide range of possible perturbers for comparison to @sag
expected in the near future from such projects as ALMA.

We now return to the case of a planet at around 40 AU orbiting
a star of 2.5 Solar masses. This is of interest because them@me-
ters pertain to a hypothetical planet that may be imposingtre
on the debris disc around Vega (WO03). We shall discuss whethe
the planet causes a detectable signature in the disc if itateig at
0.5 AU Myr—!, for varying planetary mass and eccentricity (as dis-
cussed above, we treat the planet’s eccentricity as thauggré the
particles’). Figuré_1I3 shows the effects of varying planasmand
eccentricity on the probability of capture and librationitude
for 2:1 resonance, which have direct relevance for disc trap
ogy. We see that libration amplitude increases signifigawith ec-
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Figure 13. Libration amplitudes in degrees (black lines) and captuobp
abilities (red lines) for planetesimals encountering thker@sonance of a
planet, orbiting a 2.5 Solar mass star, migrating outwar@sseAU Myr — 1.
Planet masses are shown in the legend.

centricity, as expected from figuré 5. The libration ampléwoes
not, however, depend strongly on planet mass. The captobapr
bility, on the other hand, does, with theand 10Mg, planet cap-
turing very few particles at any eccentricity at this migvatrate,
although capture would occur if migration were slower. Thus
can predict that d or 10Mg planet migrating at 0.5 AU Myr*
will not create a detectable signature in a disc as its resmfail
to capture particles. Higher mass planets, however, wathier sig-
natures, with the observed structure depending on the &izign
As the eccentricity increases, capture probability goesnd@-ig-
ure[2) and libration amplitude increases (figlte 5). Thudpwat
eccentricities, the planet will capture many particlesmatv libra-
tion amplitudes, which will cause well-defined clumps to shle
in the disc. At higher eccentricities, the number of pagsctap-
tured will decrease and their libration amplitudes inceséesading
to progressively weaker resonant signatures at highengacées.
This explains the results of Reche et al. (2008), who ingastid
this scenario with N-body integrations (see their figure Y09 also
note that Reche et al. (2008) found that there was littledgffice in
observed structure regardless of whether the planet orisbeper-
ticles were eccentric, further justifying us modelling thlanet’s
eccentricity as belonging to the particles.

It is worth noting that converting between the observed
dust morphology and the underlying planetesimal poputat
not a trivial problem, since the resonances can affect thig co
sional evolution of planetesimals (Wyatt 2006; Queck e2807;
Stark & Kuchner 2009), while dust grains can be liberatedanfro
a resonance by having a higher radiation pressure coeffitian
their parents| (Wyait 2006) or acquiring significant veliesitrel-
ative to their parents as a result of the collisions whichegen
ated them|(Krivov et al. 2007). A fully consistent disc moul
need to take these effects into account. Since the dynaréal
haviour of particles in the Hamiltonian model can be coreert
into physical positions and velocities, the Hamiltoniandelocan
be used to generate a collisionless seed distribution folligional
grooming algorithm to couple dynamical and collisional letion

(Stark & Kuchner 2009). Currently such models use collikdes
N-body integrations to generate the seed distributiorhdércase of
particles experiencing Poynting—Robertson drag, the Hanién
model will enable seed distributions for many particle size be
quickly generated, allowing a finer sampling of the dust sliztri-
bution.

These results may be applied in the Solar System to consider
the implications of the observed libration widths of resurt€BOs
for their eccentricities at the time of Neptune’s migratibigure
and Equationg]7 arld L3 can be used to assess individual @bject
However, a general point we can make already is that the wéxder
high libration widths|(Lvkawka & Mukéi 2007) would imply adn
level of excitation, as already suggested by Chianglet @03}p

These results can also be applied to consider the question of
whether a disc can be stirred by a planet migrating towarelslitc
but too rapidly to capture bodies, which is known to be pdseditr
diverging orbits (e.g., Chiang etlal. 2002).

6.3.2 Dust discs

For less massive debris discs, such as the Solar Systemacabd
cloud and anticipated extrasolar analogues, particlestigrate
substantial distances under PR drag before being desttyyeal-
lisions. Note that currently observed debris discs arésioll dom-
inated and so the necessary migration cannot come from RR dra
(Wyatt|2005). Here we consider the scenario where the nidgrat
is due to PR drag acting on the dust, while the planet remaded fi

As discussed previously, dust drifting under PR drag wil en
counter a succession of resonances. This is illustrateidyiméf1].
The right hand axis of ordinates shows the dust particleizee-
sponding to a particular migration rate, givenBy= 1.4L. /(pa),
with the stellar luminosityL, measured in Solar luminosities and
the dust density measured in kgm® (Wyatt et al. 199@. For
p = 2500 kgm~3, Figure[I1 predicts that AMg planet at 1 AU
will be unable to capture low eccentricity particles of diegs than
about 10 micron into any resonances, but would capturecbesti
of size 10—100 microns into highresonances, and particles of size
2 100 microns into only the 2:1 or 3:2 resonances.

In Figure[14 we show the capture probabilities for 12 micron
and 120 micron dust grains drifting under PR drag into thetHzar
and Mars’ resonances. Eccentricities were drawn from aotmif
distribution between 0 and 0.2; the particles originatehm dster-
oid belt where the mean eccentricity is 0.15 (Murray & Derimot
1999) but will have had their eccentricities excited by siog the
vg secular resonance and damped by PR drag as they migrate. Par-
ticle sizes were drawn uniformly in the ranggd, 13] microns
and[110, 130] microns; note that the size distribution of the zodi-
acal dust at 1 AU peaks at around 100 microns (Love & Brownlee
1993). As expected, more of the larger particles are trapipaal
of the smaller ones. For particles of around 12 microns, tith
eccentricity distribution, the Hamiltonian model predithat the
most populated resonances with Earth are the 5:4 and higher
with lower j resonances being less populated. This agrees qualita-
tively with the numerical study of Dermott etlal. (1994), wims
vestigated trapping of 12 micron grains originating in tseeeoid
belt into Earth’s resonances with an N-body code. They fatad

4 Note that because the PR migration rate depends on thel@ariemi-

major axis, a given migration rate corresponds to a sligitferent particle

size at different resonances. For this reason, the righd-faais shows not
particle size but size/.
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Figure 14. Capture probabilities for 12 and 120 micron dust grains atigr
ing into the Earth’s and Mars’ resonances, assuming parictentricities
are randomly distributed in the rang 0.2].

very few (< 1%) particles are captured into the 4:3 and 5:4 reso-
nances with Earth, rather more (2-3%) into the 6:5 to 10:8-res
nances, after which capture probaility decreases agamHgep4a
of IDermott et al| 1994). Our capture probabilities are sotraw
higher, which may be due to different eccentricity disttibas or
our neglect of stellar wind drag, but the picture of preféitrap-
ping intoj ~ 6 and higher is the same.

Mars, being less massive than the Earth, traps fewer pesticl
than the Earth. Typically we find it only captures around 1344
of those Earth captures, depending on particle size andaese;.
This may explain why Mars lacks an observed resonant dusticlo
while the Earth does not: too few particles are captured etdya
detectable signature. Kuchner et al. (2000) searched wtithac-
cess for a cloud trailing Mars, finding an upper limit for itad-
tional overdensity of 18% of Earth’s cloud’s overdensitgpdxly
consistent with the relative numbers of particles we fingpesd
into resonance with the two planets. If we had given padiele-
countering Earth’s resonances lower eccentricity, whiely tve ex-
pected as they have had longer to be damped by PR drag,
would capture even fewer particles relative to the Earthrtigla
capture probabilities may be further reduced due to theenfta of
the corotation resonance (WO06), since the planet’s edcintis
the same order as that of the particles. A full investigatibthis is
beyond the scope of this paper, but it seems that Mars shewlel h
a resonant ring structure similar to that of Earth, at a |évai may
be close to the limits placed by current observations.

We intend to conduct a more thorough investigation of debris
disc structure using our Hamiltonian model in a subsequapép

6.4 Limitations

We have included only one resonant term in our integrations.

Mars
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sincel Reche et all (2008) found similar results in full N-paa-
tegrations when using eccentric particles and eccentaicgs, in-
cluding the extra resonant term explicitly may not be nemsss

We have restricted our numerical integrations to the case of
single planet plus a test particle. This may not adequatelgah
two-planet systems where the planets are of comparableesmdas
this case the equations given in the Appendix.JA16[and A28hea
used. However, the increased number of free parametermailé
a numerical study with a comparable grid resolution lesstjal.

We have neglected any eccentricity damping, which can oc-
cur together with change of semi-major axis when migratmg i
gas disc or under PR drag, or experiencing dynamical friciio
a planetesimal disc. This will limit the eccentricity grawdue to
continued migration in resonance. The effect on libratiehdviour
is dependent on the precise nature of the damping (Gome§.1995

We have only taken the lowest order term in the disturbing
function, which is justified for low eccentricities. Howeyevhen
eccentricities are high during migration, or are driverhieigas mi-
gration continues after capture, higher order terms maytbec
important. This is the case for the resonance between GJ876b
and c ((Lee & Pealé 2002) and for the two libration centres of
the 2:1 resonance, seen for eccentricities abeve).03 (WO03;
Murray-Clay & Chiang 2005). While post-capture eccentyidn-
crease will not significantly affect the capture probapi(a particle
must cross a similar separatrix to enter the libration negiothe
first place) it will change the behaviour of libration ampéie and
centre following capture.

We have not considered higher order resonances such as
the 4:1, which can be important for very massive planets
(Kuchner & Holman 2003).

7 SUMMARY AND CONCLUSIONS

We have systematically investigated the Hamiltonian mddel
capture of a test particle into first and second order resmsanith
a planet. The model reduces the full complexity of the retstd
three body problem to only one degree of freedom, the resonan
angled, and two parameters, proportional to the particle’s eccen-
tricity and the migration rate. Only the relative migraticate of
the two bodies, in the form /a1 — a2 /a2, is important. External
and internal resonances behave the same way, but withetiffer
proportionality constants.
We confirmed previous work showing that capture into reso-
nance is certain at low (rescaled) eccentricities and riigraates,
possible with decreasing probability at high eccentesitiand im-
possible at low eccentricities and high migration rateseésen-
tricity increases, the transition from certain captureoat migra-
tion rate to impossible capture at high migration rate beosd At
higher eccentricities, capture is possible with fasterratign than
at lower eccentricities. This effect is more pronouncedskcond
order resonances.

We have also found the libration amplitudes and centreseof th
resulting resonant motion. The libration centres are offsen 6 =
m, the centre in the absence of migration, by an amount incrgas
with the migration rate, agreeing with previous work. In iidd,
we have found that the offset is almost independent of edcapt
for first order resonances, except at high eccentricitiézation

Holman & Murray (1996) showed that resonances can be unsta- amplitudes are small if capture occurs at low eccentriaity bw

ble when the additional resonant term associated with asnéic
planet is important, and Q06 showed that the probabilityeihdy
captured can be reduced by the additional resonant termetaw

migration rate. They are somewhat larger for migrationggist
less than critical. Very large libration amplitudes ©0°) can be
attained if the initial eccentricity was very high.



16 A J Mustill & M. C. Wyatt

We have also found the jumps in eccentricity when a particle of the Hamiltonian model such as the evolution of libratiompd-
encounters a resonance but is not captured. In the casenofrsto tude and offset with time. Although many of these results fpay

gration, the eccentricity is always driven down, in agreenweth found in the literature, we think it useful to gather themetiger
adiabatic theory. When the migration is fast and the ecidytr for reference.

low, eccentricity jumps up. However, when the migration astf First we derive the scalings to link physical variables sash
and eccentricity high, eccentricity can jump either up ardo eccentricity to the dimensionless ones such as the mome#itum

We checked the results of the model against the N-body simu- This closely follows QO06; we generalise to consider two rivass
lations of Wyait ((2003), finding excellent quantitative egment planets.

for capture probabilities, and qualitative agreement foration We use Poincaré’s canonical variables: the generalised mo

amplitudes and offsets. We found that accounting for thégbes’ menta are

eccentr_lgty is necessary to fully e_xplalnthe dependerﬁmpture A = i

probability on migration rate. While the effect of eccedityi has

long been understood in the context of the Solar Systemprits i . — A, (1 _J1- 6?) , (A1)

plications for extrasolar planets are less well explored, far low

mass planets in particular its effects are important. which are conjugate to the mean longitudesand the negative of
We have applied our model to several situations in which the |ongitudes of pericentre; respectively. Herey; = G(m, +

planet or particle migration is likely to occur. We can epsie- m;). The Keplerian part of the Hamiltonian is therefore

termine whether capture occurs for planets migrating ineTlypr - -

Type Il regimes. The pre-capture eccentricity can be cairsd Hiep = —dlL _ T2P2 (A2)

by the present libration amplitude, with higher eccentigsigiving 243 2A3

higher libration amplitudes. For planets migrating thriow gas We work with low eccentricities, so thalt /A; ~ e?/2.

disc, a non-zero eccentricity prior to capture can lead rgeldi- We now non-dimensionalise as follows. Distances are put in

bration amplitudes such as those seen in the HD 128311 system pits ofa,, the semi-major axis of the inner planet when the nom-

We find that, if planetary eccentricity can be raisedetqz 0.1 inal resonance is reached. Times are put in units of the sevef

for Jupiter-mass planets, for example by planet-discautgon, the  the mean motion of the inner planet at that point. Massestariap

resonant capture process by itself will result in high fitma am- units of the mass of the inner planet. With this choice ofgyrthe

plitudes without the need to invoke extra mechanisms sutbras  Keplerian Hamiltonian is

bulent torques. For lower mass planets the necessary eciagnt .

is lower. Also, very low libration amplitudes (e.g., GJ 8&i)g- H = 1 map 7 (A3)

gest a low eccentricity during the capture process. We alsdigt, ’ 207 207

based on classical formulae for migration rates, that lomess with primes denoting the non-dimensional quantities. e doop

planets will be found in highey first order resonances than higher  the primes, and make the approximatjon~ p; = 1, so that
mass planets, and planets migrating in the type | regime heill

3
moving too fast to capture smaller particles into any seemaer Hiep = _% — V_2, (A4)
resonance. The model may also be useful for population sgigth 201 2A%
of multi-planet systems where it is necessary to accouriléoret— whererv = mgy/m; is the ratio of the two planets’ masses.
planet interactions without recourse to full N-body intgipns. To study the dynamics as the system passes through reso-

We then discussed debris disc structure. A planet that has mi nance, we expand about the nominal resonance location where
grated into a disc will impose clumpy structure on a dynaityica A, = A; o, with A1g = 1 andAzo = V%*W, ap = [(j —
cold disc, but the clumps will be at a lower level and smeangid 0 k) /;]%/3 being the semi-major axis ratio at the nominal resonance.

for migration into excited discs. For dust migrating und& dtag, This gives the Keplerian Hamiltonian
the model can explain the structure of the Earth’s resoriagtrea- ) ) 43
sonably well. We predict that Mars has a dust ring at a I€v5% Hiep = I— §[12 +I= k[2 _3 (J_f k) v 2
that of Earth’s, consistent with observed upper limits. 2 J 2 J
The data on capture probabilities, libration amplitudes - - §Ilz 4o, — §agfl[227 (A5)
and offsets, and eccentricity jumps, are available on-late 2 2
http://www.ast.cam.ac.uk/ ~ajm233/ | and at the jour- wherel; = A; — A; o measures the distance from resonance. This
nal website and may be used provided that this work is cited. expansion assumg5a1/2/y < 1. This is satisfied for all since

I, = O(v) asv — 0. We just require the bodies to be close to
resonance in semi-major axis.
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Again, ther coefficients are functions af and regarded as con-
stant. In terms of th¢; functions, they are

ro = —v"u (\/§a5/4f31(oc) —2v2°1(2 : 1))
—V2wpafor (), (A7)

APPENDIX A: HAMILTONIAN MODEL

Here we detail the mathematical derivation of the scalimgsnf
physical variables to dimensionless variables, and sowygepties r1,1
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J a for fa1 —|—53J11/2J21/2 cos(6r — 02) +r1.1J)"% cos b,
+r1,0J3"? cos s, (A14)
2 0629961 -1.19050 1.68831
3 0.763143 -2.02523 2.48401 where
4 0.825482 -2.84043 3.28326
5  0.861774 -3.64962 4.08371 a = -3 {(1 —J)Js + —J4] + s21
6 0.885549 -4.45614 4.88470 ,
7 0902337 -5.26125 5.68601 ; Jjo
8 0914826 -6.06553 6.48749 p = -3 {(1 DIs+ =5 ‘]4] ts2
9 00924482 -6.86925 7.28909 3 ol
10 0.932170 -7.67260 8.09077 v = == {(1 )P+ = } ) (A15)
11  0.938437 -8.47572 8.89251 2 v

These six parameters we reduce to four by rescaling momentum
o= oS4 B+ (] )
+s ,]'1/2(]'1/2 cos(01 — 62) — J{l/z cos 01

Table Al. Values ofa and f; for first-order resonances.

wherel(2 : 1) = 1 for the 2:1 resonance and is zero otherwise;

L - . . . 11/2
this is from the indirect disturbing function. +r'Jy "7 cos ba, (A16)
The f; functions are tabulated for first-order resonances in Ta- where
ble (A1). , 71/3
H = - Y] H
Al First order resonances 121/3
Now we consider first-order resonances. There are two resona J; = TL Ji
anglest; andf,; we effect a point transformation to these angles: ) b Cass s
0, = j)\2 + (1 _ ]))\1 _ «a = —ar; |’Y|
ﬂ/ o —ﬂr72/3 | |71/3
02 = jla+ (1 — j))\1 — - v
03 = M\ ro= —rio/rii. (AL17)
0s = o (A8) and the new time
The new momenta satisfy = ty"3r3l0 (A18)
Q=N +J)+Js = 6L Note thaty < 0, andry,; > 0 for first-order resonances.
J(h+ ) +ds = I We may write the parameters in terms of physical quantities
S o= Ty v, b, Qo
Jo = T (A9) , 3 —1) (\/ az/az0 —+/a ) + 2vpao fo
[0 =
The Keplerian Hamiltonian is then 31/3 (l/uaofz7)2/3 [(1 e a(;/j2]1/3
) 3 )
Hip = —3(1 =) Js(S+ 1) = 5(1=5)° (1 + J2)° p 3(j—1) (\/ag/az 0— \/_) +2ual? f2
3 3a? = ] ) 1/3
= I ) - S0 (it B)’ (AL0) 3173 (vpao far)** (1 = 5)* + 22|
The resonant Hamlltonlan is o Oé(l)/4f31 _ 2048/4J1(2 1) A19
Hees = 11,0J5" " cos Oz + 7’1,1J11/2 cos 0. (Al11) vi/2 for

This reduces the system to two degrees of freedom: the mean lo
gitudesfs andé. do not appear in the equations. The momehta
and Js are therefore constants; we dropped terms involving only Migration entails varying the coefficients and3’ with time.
these momenta from Equation (A10). We simulate migration by e have:

explicitly varying the momentds and.J, with time. We have

o~
Il

’ 1/3 2/3 2 Oé(z)jz 13
377 (vua far) 1=5"+ — t (A20)

d / dﬂ/ 31/3 (d_2_d_1)

s & Iy &~ /2. A12 ca - 2 0

J3 1R a1/ (A12) Y Y ‘ o (2 i3 373 .(A21)
and 20 -1) (m_oaof”) (1 + aomz)

Jom s mvas (2=2) 7 )2 (A13)

4 v : Al2 Limiting case 1: outer test particle and zero eccentricity
planet
Al1l Reducing number of parameters We consider the limitv — 0. This is relevant for either a planet

capturing planetesimals as it migrates outwards, or dusilbpg
inwards under P.R. drag. In this case a more convenienngciali
usingri,o rather tham ;. The non-constant terms in the Hamilto-
H = ai+BJe+~Ji +2yJide +7J5 nian are

We return to the general Hamiltonian (Equatibns KI0OJA1RisT
may be written
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H = J3 + BoJy — J5 cos b, (A22)
where

3 —-1) (\/CLQ/QQO - \/_) + 2ua3/2
Bo = (A23)

1/3
{81208/ 52 [for — 2001(2: 1))}

Note that all terms in Equatiol (AP2) a@(»°). For a migrating
planet, the migration rate is given by
dBo _ 37— 1) (a2/az0 — @)
At 203 {pj [far — 2a00(2 : 1)]}°

(A24)

Al3 Limiting case 2: inner test particle and zero eccentricity
planet

The limitv — oo, u — 0, ur = ma/mo constant, is relevant
for a planet capturing planetesimals as it migrates inwarftie
Hamiltonian is

H = JP2 + ased] — J}? cosb; (A25)
where

3(7—-1) (\/az/a2 0— \/_) + 2uvag fo
Qoo = . (A26)

313 [uvao far (1 — §)1/°
All terms in Equation[[AZ5) ar& (v°
case is given by

das _  8'7(az/azo — d) (A27)

dt" 235 — 1)/3 (vpao far)*?

). The migration rate in this

A2 Second order resonances

For second order resonances there are three resonant fémmns.

scaled Hamiltoniandf. Equatior ALB) is

H = o +B T+ (S + J)?
+s (]'1/2(]/1/2 cos(01 — 02) — J1 cos 204
i I 2T cos(01 — 0) + rhJacos 205, (A28)
with the rescaled time
t' = 2uvag fast, (A29)
the rescaled momenta
3[@-5?+ 8
J = Ty, (A30)
16/1,1/()(0f45
and the parameters
3 (2= j)al’? + jaday?] + duvaofo
o = (A31)
dpvao fas
, 3 [(2—3) +Jocoa§/2] +dpay* f
B8 = (A32)
dpvag fas
’ Oéo/4f49
ho= St (A33)
1/2 27
2fs3 — I3:1
ryo= — [2f53 = Fool(3: 1] (A34)
2I/f45

The migration rate is given by

J a fas f53

3 0.480750 0.598759 1.98591
5 0.711379 3.27381 5.68728
7 0.799064 7.87052 11.3173
9 0.845740 14.3866 18.8674
11 0.874782 22.8216 28.3365
13 0.894608 33.1755 39.7246
15 0.909009 45,4473 53.0314
17 0.919944 59.6382 68.2557
19 0.928532 75.7482 85.3994
21 0.935455 93.7765 104.462

Table A2. Values ofa and f; for second-order resonances.

do’/ _dB

_3(J —2)(a2/a2 — 1)
dtr — dv '

16p21203 f1;
The values of theg/; for second-order resonances are tabulated

in Table [A2).

For an outer test particle and a planet on a circular orbit we
instead rescale by o, giving

(A35)

vo= 2 [2 Fos — 247 aol(3 : 1)} ¢ (A36)
/ 35° 2
Jp = A37
? 164 [2f35 — Zaol(3: 1)] 2 (A37)
, 3 [(2 —j)ay’” +Jozoa1/2] +4pay? o
g = = (A38)
20" " [2f53 — FLaol(3 : 1)]
dﬁl _ 3(j — 2)(az/az — a1) . (A39)
dt dadu? [2f5 — %aoE(S : 1)]

A3 Evolution in resonance
A3.1 First-order resonances

After a particle has been captured into resonance, thectoaje
continues to evolve so long as the imposed migration igstient.
An analytical description of the behaviour is possible whehis
sufficiently large. Both the amplitude and the offset of tibedtion
centre of the libration i decrease with time, while the momentum
J increases.

For first order resonances, the libration centre can be foynd
considering the equations of motion #@and.J:

6 = 2J+5_%J*1/2cose (A40)
J = JY?*sine, (A41)
whence,
6 = 2J1/zsin0+ﬂl+iJflsin90050

+%J’1/2 <2J +B8—=J "%cos 9) sin 6. (A42)

Now, the elliptical fixed point occurs at approximately, =
—p/2 for large |8], thus giving the increase in momentum. For
large|3| and smalb, EquatiorLZAZP tells us that

0 =+/—260+ 3,

so that the libration centre offset is given by

(A43)



B
V=2p
To find the evolution of the libration amplitude, we consider
the equations of motion in Cartesian coordinates, follgmhe
canonical transformation

x = Vv2Jcosb, y = V2Jsin6.

We calculate the libration amplitude by imposing a constart
on the small elliptical trajectory enclosed by the orbitrakledge
of the aspect ratio of the ellipse then suffices to deterntireatn-
plitude iny, and hencé.

We improve the estimate for the equilibrium point by a single
iteration of the Newton-Raphson metiﬂgjving

Teq ~ o+ 1/(2V20%),
wherea = /—f. Writing X = = — zq and linearising gives
X =—y/V2a, §=2d°X (A47)

to leading order inn. This describes motion in an ellipse about
0 = 0, with ratio of semi-axef\ X /Ay = 27344 ~3/2, The area
enclosed by a trajectory is thus o« a~%/?(Ay)2. SinceAd ~
Ay/x, andz ~ «, we find

(A44)

feq = —

(A45)

(A46)

A~ Co M x p71/8 (A48)

for some constant’. This constant is not determined by this anal-
ysis; we obtain it numerically ig4l.
This also gives the period of libration:

hib = 23/471’|5|71/4. (A49)

A3.2 Second-order resonances

For second-order resonances, a similar analysis gives

bua = 15, (A50)
Af o< 8711, (A51)
and

tun ~ | B2 (A52)
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