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ABSTRACT

Resolved observations of millimetre-sized dust, tracing larger planetesimals, have pinpointed the location of 26

Edgeworth-Kuiper belt analogs. We report that a belt’s distance R to its host star correlates with the star’s luminosity

L?, following R ∝ L0.19
? with a low intrinsic scatter of ∼17%. Remarkably, our Edgeworth-Kuiper belt in the Solar

System and the two CO snow lines imaged in protoplanetary disks lie close to this R-L? relation, suggestive of an

intrinsic relationship between protoplanetary disk structures and belt locations. To test the effect of bias on the relation,

we use a Monte Carlo approach and simulate uncorrelated model populations of belts. We find that observational bias

could produce the slope and intercept of the R-L? relation, but is unable to reproduce its low scatter. We then repeat

the simulation taking into account the collisional evolution of belts, following the steady state model that fits the

belt population as observed through infrared excesses. This significantly improves the fit by lowering the scatter of

the simulated R-L? relation; however, this scatter remains only marginally consistent with the one observed. The

inability of observational bias and collisional evolution alone to reproduce the tight relationship between belt radius

and stellar luminosity could indicate that planetesimal belts form at preferential locations within protoplanetary disks.

The similar trend for CO snow line locations would then indicate that the formation of planetesimals and/or planets

in the outer regions of planetary systems is linked to the volatility of their building blocks, as postulated by planet

formation models.

Keywords: submillimetre: planetary systems – planetary systems – circumstellar matter – Kuiper belt:

general – protoplanetary disks – stars: individual (HD 377, HD 8907, 49 Ceti, τ Ceti, HD

15115, HD 21997, ε Eridani, β Pictoris, HD 61005, HD 95086, HD 104860, HD 107146, η
Corvi, HD 111520, 61 Vir, HD 121617, HD 131488, HD 131835, HD 138813, HD 145560,

HD 146181, HD 146897, HD 181327, AU Microscopii, Fomalhaut A, HR 8799).

luca.matra@cfa.harvard.edu

∗ Submillimeter Array (SMA) Fellow

ar
X

iv
:1

80
4.

01
09

4v
1 

 [
as

tr
o-

ph
.E

P]
  3

 A
pr

 2
01

8

http://orcid.org/0000-0003-4705-3188
mailto: luca.matra@cfa.harvard.edu


2 Matrà et al.

1. INTRODUCTION

The ubiquity of gas-poor, optically thin dust disks,

known as debris disks, around main sequence stars tells

us that belts of planetesimals are a likely outcome of

the planet formation process (for a review, see Matthews

et al. 2014). Planetesimal belts may form in the younger,

dust- and gas-rich environments of protoplanetary disks,

where the bulk of planet formation is thought to take

place, but may also be produced after gas dispersal as a

by-product of terrestrial planet formation. Formation in

protoplanetary disks is likely for extrasolar Kuiper belts

in the outer regions of planetary systems, as indicated by

the increasing number of detections of large amounts of

gas in young (. few tens of Myr), cold (& 10 au) debris

disks (e.g. Greaves et al. 2016; Lieman-Sifry et al. 2016;

Moór et al. 2017). However, why and how planetesimal

belts arise remains largely unknown, and observations of

individual systems provide few constraints on this pro-

cess (Wyatt et al. 2015).

One aspect of planetesimal belts that can be linked

to their formation mechanism is their location, which

should remain unchanged over long timescales once the

planets have formed and settled to a stable configura-

tion. This is particularly true given that the observed

evolution of belt masses (at least around A stars) ar-

gues for the majority of the belt population being narrow

rings (Kennedy & Wyatt 2010). The presence of a plan-

etesimal belt in a planetary system tells us that, at that

location, grain growth must have been efficient enough

to form planetesimals, although some mechanism must

have also been in place to either prevent further growth

into planets, or to remove planets from these regions fast

enough to produce a second generation of planetesimals

before the gas-rich protoplanetary disk dissipated. Can

these conditions arise anywhere in a planetary system?

Or are there specific locations where these mechanisms

giving rise to planetesimal belts preferentially act?

Current planet and planetesimal formation theories

predict that planet and/or planetesimal formation ef-

ficiency is a function of distance to the central star.

In the core accretion scenario, this naturally arises

from timescale and temperature arguments (e.g. Lis-

sauer 1987; Lewis 1974). We focus on distances of tens of

au, where most known planetesimal belts are observed.

Growth timescales increase further away from the star,

so for a given protoplanetary disk lifetime, planets may

only have enough time to form out to a certain dis-

tance, leaving a planetesimal belt beyond. At the same

time, temperatures decrease with distance to the central

star, creating several compositional transitions, or snow

lines, beyond which gas species of increasing volatility

can freeze out onto solid grains (e.g. Cuzzi & Zahnle

2004). This can affect growth in different ways, for ex-

ample through the sticking and fragmentation efficiency

of particles (e.g. Wada et al. 2009; Okuzumi et al. 2016),

but also by creating pressure gradients in the gas af-

fecting particle concentrations (e.g. Stevenson & Lunine

1988). In general, theory would therefore suggest that

the presence of a planetesimal belt, be it caused by failed

growth to planets or enhanced planetesimal formation,

should relate to distance to the central star. This moti-

vates studies that observationally constrain the location

of planetesimal belts as a population, and that test its

dependence with host star properties - such as mass and

luminosity - which directly affect the radial dependence

of planet and/or planetesimal formation efficiency.

Such studies have so far been limited by the fact that,

for the vast majority of belts, we only have unresolved

IR multiband photometry constraining the dust tem-

perature T of the small grains. This gives us a rough

idea of a belt’s location under the assumption that the

grains emit as blackbodies, giving us their blackbody ra-

dius RBB. Several studies have analyzed the dependence

of dust temperature on host star properties (e.g. Chen

et al. 2014; Jang-Condell et al. 2015), with Ballering

et al. (2013) for example finding that the temperature

of outer belts correlates with the temperature of the

host star. However, it is well established that the small

grains traced by the temperature of the spectral energy

distribution are generally hotter than blackbody by an

amount that is dependent on the grain properties and

the size distribution; this means that RBB only truly

gives us a lower limit to a belt’s location R (e.g. Booth

et al. 2013).

Studies such as that of Ballering et al. (2017) alleviate

this effect by accounting for the dust’s optical proper-

ties, assuming all belts share the same composition, and

finding that the radial location of warm, inner belts in-

creases around stars with increasing masses, once again

with a large scatter. In addition, Herschel marginally

resolved a considerable number of cold dust disks (e.g.

Morales et al. 2016; Kennedy et al. 2015; Moór et al.

2015) mostly at 70-100µm wavelengths where its resolu-

tion was 5′′-7′′, corresponding to 100-700 au at distances

between 20 and 100 pc from Earth where the bulk of

the observed population lies. However, Herschel studies

were limited by 1) the accuracy of radius determination,

due to the poor spatial resolution and stellar emission

contaminating the disk’s inner regions, 2) observational

bias due to the inability to resolve disks smaller than the

resolution quoted above, and 3) the fact that IR obser-

vations probe small grains that are dynamically affected

by radiation forces (e.g. Burns et al. 1979; Strubbe &
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Chiang 2006) and may therefore not directly trace the

location of the parent planetesimals.

A solution to these issues is to resolve belts through

millimetre wavelength interferometry, where the star is

in most cases too faint to be detected, the resolution is

sufficiently high to resolve even the smallest disks, and

mm-sized grains are not subject to radiation forces, re-

maining in the same low eccentricity orbits as the plan-

etesimals they are created from (e.g. Wyatt 2006). We

here present a first population study of planetesimal

belt locations derived through millimeter wavelength in-

terferometric observations. In §2 we introduce the full

sample of interferometrically resolved planetesimal belts

from the literature, showing that the distance of a belt

from its host star (i.e. its radius) correlates with the

star’s luminosity. In §3 we qualitatively and quantita-

tively analyse the impact of observational bias, showing

its importance in assessing the nature of correlations

obtained from biased datasets. Having established the

likely presence of an underlying correlation, in §4 we

proceed to interpret the correlation in the context of

both the collisional evolution and the formation loca-

tion of planetesimal belts, and consider its potential im-

plications for planetesimal and planet formation at large

orbital separations. We conclude with a summary of our

findings in §5.

2. RESULTS

We collected all resolved Submillimeter Array (SMA)

and Atacama Large Millimeter/submillimeter Array

(ALMA) interferometric observations of planetesimal

belts at millimetre/submillimetre wavelength published

to date, to form a final sample of 26. Table 1 shows their

belt and host star properties, as obtained from resolved

observations in the literature and spectral energy distri-

bution (SED) fitting (where the latter constrained the

stellar luminosity, blackbody radius, and belt fractional

luminosity, as described in Kennedy & Wyatt 2014).

We note that, for the less well resolved objects in our

literature sample, SED and visibility fitting were used

simultaneously to constrain the disk’s surface density

distribution (e.g. Steele et al. 2016).

We choose the belt location (radius) R to be repre-

sented by either the average between the best-fit inner

and outer belt radii (for models with a power law ra-

dial surface density distribution and abrupt cut-offs),

or by the best-fit centroid in the case of models with a

Gaussian surface density dependence on radius. We con-

servatively assume our uncertainty dR to be represented

by half the best-fit radial width of the belt ∆R for cases

where the width is well resolved, and by half the upper

limit on ∆R for the three cases where the widths are

10 1 100 101
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Figure 1. Observed planetesimal belt radii vs stellar lumi-
nosities. The black bars represent the measured extent of
debris belts in case belt widths are resolved, and an up-
per limit to the extent in case they are unresolved (from
Table 1). The shaded region represent the range of power
laws with likelihood within ±1σ of the best-fit, including the
intrinsic scatter as well as the uncertainty on the derived
parameters. The orange error bars represent the observed lo-
cation of the CO snow line in the two protoplanetary discs
(TW Hydrae and HD 163296, Schwarz et al. 2016; Qi et al.
2013, 2015) and the red error bar represents the radial ex-
tent of the Kuiper belt (30-50 AU, Stern & Colwell 1997).
We assume a main-sequence luminosity of 0.16 and 34 L�
for TW Hydrae and HD 163296, respectively, based on their
estimated stellar masses of 0.6−0.8 and 2.3 M�, respectively
(Webb et al. 1999; Natta et al. 2004).

unresolved (marked by the ? symbol in Table 1). As con-

sidered later in §3.4, this choice of R and dR inevitably

affects our analysis, but not our main conclusions. We

determine the stellar luminosity L? as the integral of the

observed stellar intensity across all wavelengths.

As shown in Fig. 1, we find a correlation between

belt radii and the luminosity of their host star. The

correlation is well represented by a power law model

where the belt locations Ri (in au) are linked to their

host star luminosities L?,i (in L�) through the form

Ri = R1L�L
α
?,i + εi, where εi represents the intrin-

sic scatter of the distribution, which we assume to fol-

low a Gaussian distribution with standard deviation

σintr = f∆RRi. Assuming this power law model, we take

an uninformative uniform prior on the free parameters

R1L� , α and f∆R, and a likelihood function described

by Eq. 24 in Kelly (2007), assuming Gaussian errors on

radii and taking into account the intrinsic scatter f∆R.

We use these to sample the posterior probability dis-

tribution of our 3 parameters through a Markov-chain
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Table 1. Properties of the sample of planetesimal belts resolved at mm wavelengths

HD name Name d SpT L? M? Age R ∆R RBB f Ref.

(pc) (L�) (M�) (Myr) (au) (au) (au)

HD 377 39.1 G2V 1.2 1.1 220 63.0 32.0 31.4 3.6e-04 1

HD 8907 34.8 F8 2.0 1.2 200 80.0 52.0 46.5 2.3e-04 1

HD 9672 49 Ceti 59.4 A1V 15.8 1.9 40 228.0 310.0 85.4 7.2e-04 2

HD 10700 τ Ceti 3.7 G8.5V 0.5 0.9 5800 29.1 45.8 7.0 1.3e-05 3

HD 15115 45.2 F4IV 3.6 1.3 23 78.2 69.6 55.1 4.6e-04 4

HD 21997 71.9 A3IV/V 9.9 1.7 30 106.0 88.0 65.4 5.6e-04 5

HD 22049 ε Eri 3.2 K2Vk: 0.3 0.8 600 69.4 11.4 19.5 4.0e-05 6

HD 39060 β Pic 19.4 A6V 8.1 1.6 23 100.0 100.0 24.3 2.1e-03 7

HD 61005 35.3 G8Vk 0.7 0.9 40 66.4 23.6 21.0 2.3e-03 8

HD 95086 90.4 A8III 6.1 1.7 15 204.0 176.0 46.5 1.4e-03 17

HD 104860 45.5 F8 1.2 1.0 250 164.0 108.0 44.5 5.3e-04 1

HD 107146 27.5 G2V 1.0 1.0 200 88.6 126.8 37.8 8.6e-04 9

HD 109085 η Crv 18.3 F2V 5.0 1.4 1400 152.0 46.0 52.9 2.9e-05 10

HD 111520 108.6 F5/6V 3.0 1.3 15 96.0 90.0? 58.5 1.1e-03 11

HD 115617 61 Vir 8.6 G7V 0.8 1.0 6300 91.5 123.0 22.2 2.4e-05 12

HD 121617 128.2 A1V 17.3 1.9 16 82.5 54.8 30.0 4.9e-03 18

HD 131488 147.7 A1V 13.1 1.8 16 84.0 44.0 35.6 2.2e-03 18

HD 131835 122.7 A2IV 11.4 2.0 16 91.0 140.0 57.0 2.2e-03 11

HD 138813 150.8 A0V 16.7 2.2 10 105.0 70.0 69.6 6.0e-04 11

HD 145560 133.7 F5V 3.2 1.4 16 88.0 70.0 22.0 2.1e-03 11

HD 146181 146.2 F6V 2.6 1.3 16 93.0 50.0? 17.0 2.2e-03 11

HD 146897 128.4 F2/3V 3.1 1.5 10 81.0 50.0? 15.6 8.2e-03 11

HD 181327 51.8 F6V 2.9 1.3 23 86.0 23.2 50.1 2.1e-03 13

HD 197481 AU Mic 9.9 M1Ve 0.1 0.6 23 24.6 31.6 11.9 3.3e-04 14

HD 216956 Fomalhaut 7.7 A4V 16.1 1.9 440 143.1 13.6 72.2 7.5e-05 15

HD 218396 HR 8799 39.4 F0V 5.5 1.5 30 287.0 284.0 123.6 2.5e-04 16

Stellar luminosities L?, fractional luminosities f and blackbody radii RBB obtained from spectral energy distribution (SED)
fitting as described in Kennedy & Wyatt (2014), except for ε Eri, for which we use the fractional luminosity and blackbody

radius of the cold belt from Greaves et al. (2014). Stellar masses M? are derived assuming stars have reached the
main-sequence, using tabulated values from Pecaut & Mamajek (2013), for all stars older than 20 Myr except low-mass AU
Mic, which is still pre-main sequence and for which we adopt the mass value from Boccaletti et al. (2015). For stars younger

than 20 Myr, we use values from Pecaut et al. (2012) except for HD95086 (where we adopt the value from Meshkat et al. 2013)
and HD138813 (Hernández et al. 2005). For HD121617 and HD131488 we found no literature value, which led us to adopt
main-sequence values after verifying that the stars are close to reaching the main sequence (using tracks from Baraffe et al.

2015). Ages are derived, where possible, from membership to Sco-Cen subregions (Pecaut & Mamajek 2016), β Pic (Mamajek
& Bell 2014), Columba and Argus moving groups (Zuckerman et al. 2011). For HD377, HD8907, HD104860, HD107146, ages
are from Sierchio et al. (2014) and references therein, for τ Ceti the age is from Mamajek & Hillenbrand (2008), for ε Eri we

adopt an average value in the range reported by Janson et al. (2015), for η Corvi the age is from Casagrande et al. (2011), for
61 Vir from Valenti & Fischer (2005), and for Fomalhaut from Mamajek (2012). References for belt radius measurements: 1)
Steele et al. (2016): uniform surface density as a function of radius assumed. 2) Hughes et al. (2017): single power law model,
γ = −1.29. 3) MacGregor et al. (2016a): single power law model, γ = −0.3. 4) MacGregor et al. (2015): single power law model,
γ = −0.5. 5) Moór et al. (2013): single power law model, γ = −2.4. 6) Booth et al. (2017): Gaussian model. 7) Dent et al.

(2014): deprojected non-parametric dust distribution. 8) Olofsson et al. (2016): double power law model, ∆R measured as full
width at half maximum (FWHM). 9) Ricci et al. (2015), single power law model, γ = 0.74. 10) Marino et al. (2017b), Gaussian
model. 11) Lieman-Sifry et al. (2016), single power law model with γ = −1.0 assumed (∆R values marked by ? were reported

as upper limits). 13) Marino et al. (2017a), single power law model, γ = 0.1. 13) Marino et al. (2016), Gaussian model. 14)
MacGregor et al. (2013), single power law model, γ = 2.3. 15) MacGregor et al. (2017), eccentric ring model. 16) Booth et al.

(2016), single power law model, γ = −1.0. 17) Su et al. (2017), Gaussian model. 18) Moór et al. (2017), Gaussian model.
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Figure 2. Marginalised posterior probability distributions of
the power law parameters (slope α, intercept R1L� , and frac-
tional intrinsic scatter f∆R)fitted to our observed data points
(Fig. 1). These were sampled through MCMC methods as de-
scribed in the main text. 1D histograms represent probability
distributions of each parameter marginalised over the other
two, whereas contour maps represent 2D probability distri-
butions of different pairs of parameters, marginalised over
the third. Contours represent the central [68.3, 95.5, 99.73]
% of the distributions. Note that this fit does not take into
account observational selection effects in [R,L?] space.

Monte Carlo (MCMC) approach. We implement the lat-

ter through the emcee package (Foreman-Mackey et al.

2013) and using the affine-invariant sampler of Good-

man & Weare (2010). Taking the 50+34
−34 percentiles of

the posterior distributions for our parameters (shown in

Fig. 2), we can set 1σ constraints on R1L� = 73+6
−6 au,

α = 0.19+0.04
−0.04 and f∆R = 0.17+0.08

−0.07.

3. BIAS ANALYSIS

While the tight constraints on the power law param-

eters are indicative of a significant correlation, we need

to consider whether our sample has been selected in an

unbiased way within the [R,L?] parameter space consid-

ered here, which we will show not to be the case. In this

Section, we therefore aim to verify and quantify whether

selection effects applied to an uncorrelated population

could have led to the observed R− L? relation.

3.1. Selection criteria

Three selection criteria determine whether a belt will

appear on our [R,L?] plot: 1) detection of excess flux

due to dust at infrared (IR) wavelengths, the discovery

method for planetesimal belts; 2) detection of the same

excess flux at millimeter wavelengths, and 3) resolvabil-

ity of the belt with currently available mm-wavelength

interferometric facilities. We here describe our treatment

of these effects.

3.1.1. Infrared detectability

For IR excess detection, we require a belt to be

brighter than 3 times the typical sensitivity of Spitzer

MIPS surveys (e.g. Su et al. 2006) at 24 µm (taken

as the largest between 0.3mJy and 2% of the star’s 24

µm flux) and 70 µm (5mJy and 5%). If the belt is not

detectable by Spitzer, we check whether it would have

been selected and detected by the Herschel DEBRIS

(e.g. Phillips et al. 2010) and DUNES (e.g. Eiroa et al.

2013) surveys at 100 µm (1.5 mJy, 5%) and 160 µm (3.5

mJy, 5%). When considering detectability, if a belt of ra-

dius R is spatially resolved at any wavelength, we take

into account that the sensitivity to a belt’s total flux

density becomes different from the telescope’s surface

brightness sensitivity. This is because the flux density of

the belt is spread over Nres resolution elements, which

means that the uncertainty on the flux density becomes

the telescope surface brightness sensitivity multiplied by√
Nres. We calculate Nres as the number of resolution el-

ements covering the belt’s circumference, assuming the

belt is viewed face-on and its width is unresolved. Al-

though we take this effect into account, we find that it

does not have a major effect on our results in the follow-

ing Sections, as only a very small fraction of belts that

are detectable are also faint and/or nearby and/or large

enough to not pass this selection criterion.

3.1.2. Millimetre single-dish detectability

For a belt to have been targeted for resolved mil-

limeter observations, we require it to have an 850 µm

flux that would have been detectable by the JCMT

through the SONS survey (sensitivity of ∼1 mJy, Hol-

land et al. 2017). Previous millimetre detection by single

dish telescopes with similar sensitivities was the main

selection criterion for most of the belts in our sample

(18/26), the majority of which were detected by the

SONS survey itself. The remaining 8 were detected at

mm wavelengths for the first time and at the same time

resolved by ALMA. Of these 8, six were resolved by

Lieman-Sifry et al. (2016), who selected them to have

a bright fractional 70 µm excess of at least 100, and two

were resolved by Moór et al. (2017), who selected them

to be cold (Tdust <140 K), high-fractional luminosity

(f > 5 × 10−4) belts around A stars. We use these dif-

ferent criteria when evaluating the bias in our sample

on a star-by-star basis, but use single dish detectability

when considering our stellar sample globally.
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In general, while we acknowledge that the adopted

telescope sensitivities may be slightly better or worse

for part of the observed population, we adopt them as

a close approximation to the detection bias introduced,

on average, for the majority of the population of belts

in the Solar neighbourhood.

3.1.3. Millimetre interferometric resolvability

In order to allow a radius measurement, we also re-

quire that a belt is resolvable over at least two resolu-

tion elements for the highest resolution achievable with

the ALMA interferometer at the wavelength that is most

sensitive to dust emission with a millimetre slope typical

of nearby planetesimal belts. This corresponds to 0.′′028

at 870 µm, and sets a hard lower limit on the radius of

a belt that we are able to resolve.

In practice, another aspect to take into account when

assessing a belt’s resolvability is whether the signal to

noise ratio per resolution element (or in other words,

the surface brightness sensitivity) is sufficient for accu-

rate determination of a belt’s radius. In that context, we

consider the fractional accuracy dR/R achieved when

measuring the location R of a narrow ring whose width

is unresolved (as we are assuming here). The uncer-

tainty dR can be estimated as ∼ FWHM/SNR where

SNR is the signal to noise ratio achieved over one reso-

lution element of size FWHM (in au) covering the ring

width radially. Assuming the belt location is resolved

(R > FWHM), that the ring is face-on, and employ-

ing azimuthal averaging to boost the SNR, we can write

SNR ∼ Fν/(σres

√
Nres), where Fν is the total flux den-

sity of the belt (where ν ∼ 345 GHz), σres is the sensitiv-

ity per resolution element of the instrument and Nres is

the number of resolution elements across the ring’s cir-

cumference (Nres = 2πR/FWHM). We therefore derive

that dR/R ∝
√

FWHM/R× σres/Fν .
We already required that R > FWHM and that a belt

is detectable by single-dish facilities at millimeter wave-

lengths (F850µm > 3 mJy). Noting that ALMA’s surface

brightness sensitivity is much better than this single-

dish detectability threshold (σres � F850µm), it follows

from the expression above that ALMA can accurately

determine the radius of any belt that is detectable by

single dish facilities. Therefore, the only requirement we

adopt for resolvability is that a belt is large enough for

its diameter to be resolved over at least two resolution

elements with ALMA at 870 µm (R > 0.028′′).

3.1.4. Optical thickness of small disks

Finally, we consider whether a belt has a small enough

radius and/or high enough mass for its dust emission to

become optically thick (see derivations in Appendix A).

The optical depth to the line of sight τ can be simply

estimated for a face-on belt as the total cross sectional

area in small grains divided by the on-sky area of the

belt, resulting in the optical depth being proportional

to the belt’s fractional luminosity f = Ldust/L? (as, for

example, in Jura 1991; Artymowicz & Clampin 1997).

In particular, face-on belts with an assumed fractional

width ∆R/R of 0.5 only become optically thick along

the line of sight (τ > 1) if they have a fractional lu-

minosity f > 2.5 × 10−1.We also consider an edge-on

geometry, assuming a uniform density ring with ∆R/R

of 0.5 and a scale height H/R of 0.1. In this case, their

maximum optical depth along the line of sight reaches

values > 1 for fractional luminosities f > 7.1 × 10−3.

Since only few of the most massive belts that we con-

sider in the following subsections (and only one of our

observed belts) are affected, this effect is largely negli-

gible for our population study.

3.2. Understanding the bias in [R,L?] space

We here test the hypothesis that these selection ef-

fects alone applied to a population uncorrelated in

[R,L?] space could reproduce our data. We use a Monte

Carlo approach, drawing a large population of model

belts uniformly in log10([R,L?]) space and passing them

through our selection criteria (§3.1). However, assessing

detectability and resolvability requires a model connect-

ing a belt’s [R,L?] to its belt and host star’s flux as ob-

served from Earth at several wavelengths. We derive the

host star’s flux at a given wavelength assuming black-

body emission, and deriving all other stellar properties

from L? assuming it has reached the main sequence,

interpolating tabulated values of Pecaut & Mamajek

(2013)1.

To derive a disk’s flux from [R,L?] we use a simple,

narrow belt model as described in Wyatt (2008), whose

SED is described by a modified blackbody characterised

by a temperature T , a fractional luminosity f , and a

flux density (Fν) falling off as a power law with slope

(−2− β) at wavelengths larger then a given λ0. We re-

mind the reader that a blackbody grain of temperature

T derived from the SED would lie at a distance from the

star equal to RBB, the so-called blackbody radius (see

Eq. 3 in Wyatt 2008). In practice, small grains dominat-

ing the SED are always hotter than blackbody, meaning

that the true radius R of a belt as determined by re-

solved mm-wavelength observations is always greater or

equal to RBB. Throughout this work, we will use RBB

as an equivalent measure of temperature in order to cal-

culate the belt flux. Thus, calculating the flux of a belt

1 http://www.pas.rochester.edu/~emamajek/EEM_dwarf_

UBVIJHK_colors_Teff.txt

http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt
http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt


An Empirical Planetesimal Belt Radius - Stellar Luminosity Relation 7

Figure 3. Selection probability (%) per log10([R,L?]) bin
of a simulated population of belts drawn assuming a log-
uniform distribution of fractional luminosities f between
[10−7, 10−2], a uniform distribution of R/RBB between
[1.2, 5.5], of λ0 between [29.4, 592.0] µm, and of β between
[0.2, 1.9]. Belt distances from Earth are drawn from an
isotropic distribution (N(d) ∝ d2) out to 150 pc. White ver-
tical bars represent our sample of belts currently resolved at
millimeter wavelengths from Fig. 1.

of known [R,L?] requires introducing extra free param-

eters RBB/R, f , λ0, β, as well as d, the distance to the

star from Earth.

This means that we have to make assumptions for

these parameters that will impact the detectability of

belts and hence affect the observational bias. We will test

the effect of changing these assumptions in Appendix C,

and here show results for our ‘fiducial’ model. For the

latter, we assume a prior log-uniform distribution for

f , a linearly uniform distribution for R/RBB, λ0 and

β, and log-uniform distributions for R and L? which

are not correlated with one another. The boundaries of

the distributions of log10([R,L?]) are the same as the

plot boundaries in Fig. 3. For the other parameters, we

resort to empirical evidence from the extremes within

our resolved belt sample to set our prior boundaries for

f between [10−7, 10−2], for R/RBB between [1.2, 5.5], for

λ0 between [29.4, 592.0] µm, and for β between [0.2, 1.9].

Note that we will refer to this as a ‘static’ model, as (at

least initially) we do not consider a belt’s evolution with

time and its effect on these observables.

For each of the L? columns in Fig. 3 we synthesize a

population of 4× 105 belts, 104 for each radius R sam-

pled in the vertical direction. Each of these belts is then

assigned a set of parameters [f,R/RBB, λ0, β] drawn

from the assumed distributions described in the previous

paragraph, and a distance from Earth d drawn assuming

a spherically isotropic distribution of stars (N(d) ∝ d2)

out to a distance of 150pc, which is approximately the

distance to the furthest star in our observed sample.

Then, Fig. 3 displays the fraction of the population of

104 belts simulated in each log10[R,L?] bin that would

pass our selection criteria derived in §3.1.

We find that the region where belt radii would have

been selected has a triangular shape in [R,L?] space.

The upper and lower limits to selected radii are domi-

nated, respectively, by the disk’s detectability at 70 and

850 µm. This is because at any given stellar luminosity

L?, for a fixed fractional luminosity f , belts increasingly

further from the star quickly become too cold for 70 µm

detection (due to the steep short-wavelength slope of the

blackbody function). On the other hand, once again for

a fixed fractional luminosity f , belts increasingly closer

to the star more slowly become too warm for 850 µm

detection (due to the shallower long-wavelength slope of

the modified blackbody function). We remind the reader

that the fact that belts can become too warm for sub-

millimeter detection is because for a constant fractional

luminosity, as assumed here, the dust mass is not con-

stant but increases with radius (Mdust ∝ R2), hence

decreasing with temperature.

We highlight the fact that the colour map of Fig. 3

shows how the selection probability per bin varies in

[R,L?] space; this significantly differs from the number

of selected stars per bin, which we present and discuss in

Appendix B. Therefore, the colour map in Fig. 3 should

not be compared with the density of observed points.

Rather, we are interested in how vertical cuts in the

colour map at a given L? compare with the radius R of

our observed belts.

3.3. Can the R− L? relation be explained by selection

bias alone?

The question we aim to answer is ‘Given our observed

population of 26 stars, using our simple belt model with

its assumptions and taking into account selection effects,

what is the probability of having found our R−L? cor-

relation if no correlation was present?’. For each star in

our sample of 26 resolved belts, we therefore take its

known luminosity L? and distance d from Earth and

create a population of 106 belts, with the same fiducial

model assumptions as employed in §3.2. For each star,

we evaluate the fraction of belts that would be selected

as a function of radius following our selection criteria.

This yields a selection probability distribution of radii

for each of our 26 stars (vertical color strips in Fig. 4,

left).

From each star’s probability distribution, we draw a

single radius and fit a power law model to the simu-
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Static

Figure 4. Results of Monte Carlo simulations of static model belt populations. Left: Vertical color strips represent the normalized
selection probability of belts in log10(R) space for each of the stars in our sample, given their luminosity L? and distance from
Earth d. White vertical bars represent our sample of belts currently resolved at millimeter wavelengths from Fig. 1. Right:
Marginalised probability distributions analogous to Fig. 2, showing the results from fitting the data in blue). For comparison,
red histograms and contours represent marginalised probabilities of randomly drawing a given set of parameters from an
uncorrelated population of model belts, after accounting for observational selection effects

lated R−L? dependence through MCMC fitting, as done

for the observed data (§2). Using this approach requires

assigning an uncertainty dR to the simulated radii R

drawn for each L?. As this uncertainty affects the de-

rived intrinsic scatter of the relation (§2), given that

we want to ensure fair comparison between the scatter

of the simulated and observed populations, we assume

each drawn radius at a given stellar luminosity to have

the same fractional uncertainty dR/R as that of the cor-

responding observed belt.

We repeat this MCMC fitting for 105 simulations of

the [R − L?] relation, and each time retrieve the set
of best-fit parameters R1L� , α and f∆R. This allows us

to obtain a 3D probability distribution of drawing the

3 observed power-law parameters from an uncorrelated

[R,L?] population, which we show in Fig. 4, right. These

simulated probability distributions (shown in red) can

then be compared with the posterior probability distri-

butions of the 3 parameters inferred from our observed

data (blue, as derived in §2).

The probability distributions for our fiducial model

in Fig. 4 indicate that there is a modest probability of

drawing a power law slope and intercept similar to the

ones observed. Both the increasing upper envelope of

IR detectability and the fact that more luminous stars

in our sample tend to lie at larger distances d from

Earth (increasing their smallest detectable radius) con-

tribute to the result. On the other hand, we find that

the marginalised probability (over all slopes and inter-

cepts) of finding an intrinsic scatter f∆R within ±1σ of

our observed value (0.17+0.08
−0.07) is below our capability

to sample (< 10−5). In other words, none of our 105

simulated [R−L?] relations displays an intrinsic scatter

within ±1σ of our observed median value. This indicates

that randomly drawing a highly correlated dataset such

as ours from an uncorrelated population after taking bi-

ases into account is very unlikely. This is mainly driven

by the spread of our observed data points about the

best-fit power law being much smaller than we would

obtain from an underlying uncorrelated population.

Of course, this conclusion is dependent upon our as-

sumptions for the set of parameters [f , R/RBB, λ0,

β] characterising the belt population. In Appendix C,

we examine the effect that changing each of these pa-

rameters has on our conclusion above. In summary, we

find that while we cannot fully rule out that a specific

combination of parameter assumptions may explain the

observed R − L? relation, none of our reasonable sets

of assumptions (informed by our observed sample and

previous IR population studies) can reproduce the ob-

served population. In particular, the formal probability

of drawing a relation consistent with ours from an uncor-

related underlying population remains exceedingly low

for all our tested assumptions, even for model popula-

tions with R/RBB, λ0 and β fixed to a constant value

rather than drawn randomly from a range of values. This

is mainly driven, in all cases, by the observed scatter be-

ing much lower than predicted for an underlying uncor-
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related [R,L?] population, which indicates that a true

R−L? relation in the underlying population of belt radii

is likely necessary to explain our observed trend.

3.4. On the definition of the radius uncertainty dR

We note that our choice of uncertainties dR on the

observed radii being equal to half the belt widths af-

fects the derived parameters and their uncertainties.

Nonetheless, we made this choice in light of two funda-

mental issues. First, true uncertainties on the belt radius

and width, which should be independently quantifiable,

are not measured in a consistent way in different lit-

erature works. The difficulty lies in the problem that

most belts were fitted independently using a variety of

parametrizations (see caption of Table 1), resulting in

parameter uncertainties that do not easily translate to

a radius uncertainty dR. Second, the choice of radius is

itself dependent on which part of a belt is most rele-

vant for its formation, which depends on which theory

we are trying to test (see discussion in §4). Although

our choice of R as the ‘middle’ radius is somewhat arbi-

trary, we deem it a more robust representation of where

most of the dust is located than, for example, an inner or

outer radius. The choice of radius of course also affects

its own uncertainty, as well as our derived power law

parameters. A major effort in consistently reanalyzing

all archival datasets, which is beyond the scope of this

paper, would be needed to enable us to change the defi-

nition of radius and measure its associated uncertainty.

Our main conclusion on the significance of the correla-

tion stems from the fact that the scatter in the observed

radii is small, and in particular smaller than would be

expected from an underlying uncorrelated population.

In other words, measured radii don’t fill the detectable

[R,L?] space as well as expected from an uncorrelated

model population. This is despite the conservatively

large uncertainties dR that we assumed. Then, assuming

smaller uncertainties would increase the inconsistency of

the data with the model expectations, since observations

would fill even less of the [R,L?] parameter space.

Investigating this issue more carefully, we can compare

the intrinsic scatter f∆R of our measurement with that

expected from a randomly drawn, uncorrelated model

belt population, as done in §3.3 above. This time, we

test the effect of our assumption on dR by recalculat-

ing probability distributions after fixing dR/R=0.1 for

both observed and simulated belt populations, for any

stellar luminosity. These are shown as dotted lines in

Fig. 8, top right, where the top row of Fig. 8 is oth-

erwise equivalent to Fig. 4. As expected, this less con-

servative choice for the uncertainties dR (i.e., smaller

uncertainties) increases the intrinsic scatter needed to

fit the data. However, the same change applies to the

model population, leaving the comparison between the

two, and therefore our conclusion on the existence of

an underlying R − L? relation, unaffected. Practically,

this is because the observed scatter of the data and the

‘observed’ scatter of the model population result from

a combination of the intrinsic scatter and the assumed

uncertainties dR. Then, changing the uncertainties in

the same way for both the data and the model will only

cause the derived intrinsic scatter to compensate in the

same way for both, making the comparison largely in-

dependent of the choice of uncertainties dR.

3.5. Quantifying the effect of selection bias on the

uncertainty on derived power law parameters

Having concluded that an underlying correlation be-

tween belt radii and their host star’s luminosity is likely

necessary to explain the data, we here aim to quantify

how selection bias affects the [R1L� , α, f∆R] parameters

derived through our power law fit to the R−L? relation

in §2, and in particular their uncertainties. We adopt the

same MCMC fitting approach as in §2, but this time we

modify the likelihood function of the power law parame-

ters given the data to include selection effects, following

the Bayesian method described in §5 of Kelly (2007). In

summary, this acts by assigning higher probabilities to

belts that are harder to detect, by weighting the contri-

bution of the likelihood function from each belt radius by

the inverse of the selection probability at that radius, as

derived above in §3. This effectively counterbalances our

selection effects and debiases our inference on the model

parameters. Of course, our debiasing method remains

dependent on the same assumptions for [f , R/RBB, λ0

and β] as considered in the previous subsections.

We here make the assumption of a belt population

with log-uniform fractional luminosity and with fixed

R/RBB, λ0 and β. Note that as demonstrated in Ap-

pendix C, fixing these values rather than drawing them

from a distribution does not change the result signifi-

cantly compared to the fiducial model. We find R1L� =

66.8+7.7
−11.8, α = 0.19+0.05

−0.06 and f∆R = 0.23+0.27
−0.10, where

these new debiased parameters are consistent with the

biased ones. As expected, the uncertainties on the de-

rived parameters increased because this debiased fitting

takes into account that some undetected belts may lie in

regions of low selection fraction. These debiased param-

eters represent the properties of the underlying popula-

tion after taking biases into account. Therefore, the fact

that these parameters are inconsistent with the expecta-

tion of an uncorrelated population (e.g. α = 0 and large

f∆R), and that they are well constrained within their un-

certainties confirms that the radius-luminosity relation
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Figure 5. Selection probability (%) per log10([R,L?]) bin of
a simulated population of belts whose dust mass has been
evolved according to the model and best-fit parameters of
Wyatt et al. (2007) and Sibthorpe et al. (2018). For a star of a
given luminosity, an age is drawn from a uniform distribution
up to the smallest between its main-sequence lifetime and the
age of the universe. Belt distances from Earth are randomly
drawn from an isotropic distribution (N(d) ∝ d2) out to
150 pc. White vertical bars represent our sample of belts
currently resolved at millimeter wavelengths from Fig. 1.

and the derived slope are robust against observational

biases, at least for the fiducial population assumptions

considered here.

4. DISCUSSION

Throughout §3, we analysed the effect of observational

biases on the belt radius - stellar luminosity relation and

demonstrated that it is likely that the observed rela-

tion is caused by a true underlying correlation between
the two parameters. We now analyse what the origin of

this R − L? relation may be and whether it could con-

strain the belts’ formation location within protoplane-

tary disks. In order to do that, we need to consider the

effect of the collisional evolution over the belts’ lifetime.

4.1. Steady-state collisional evolution

A clear outcome of our bias analysis in §3 was that,

regardless of the assumptions in our model, the sim-

ulated populations after considering observational bias

showed a scatter in radii that is much larger than ob-

served. Under the log-uniform fractional luminosity as-

sumption, the model prediction is that a large number

of belts should have been detected and resolved at larger

and smaller radii than the observed sample (as shown

in Fig. 4, left). On the other hand, models with a log-

uniform distribution of belt mass (see Appendix C and

Fig. 8, bottom row) do a significantly better job of re-

producing the lack of radii much larger than observed,

but does a significantly worse job at reproducing the lack

of belts with radii much smaller than observed. Overall,

the distribution of dust masses (or fractional luminosi-

ties) is the parameter that most significantly affects the

scatter of the simulated belt populations.

What our static model of §3 did not consider is that

belts are known to deplete and grind down over time,

causing a decrease of their mass and fractional luminos-

ity (e.g. Spangler et al. 2001). This decrease is faster for

belts that have smaller radii and that have a higher mass

stellar host, due to their planetesimals colliding at higher

velocities. Therefore, for the same initial belt mass and

radius at the beginning of collisional evolution, if we let

belts around different stars evolve to the same system

age, belts around low-luminosity stars and further from

the star will be more massive than belts around higher

luminosity stars and closer to the star. This implies that

at a given system age, belts closer to the star and around

more luminous stars will be less detectable. Conversely,

we also need to consider that more luminous stars have

a shorter main-sequence lifetime and are therefore on

average observed at a younger age.

To test these effects expected from collisional evolu-

tion, we once again resort to Monte Carlo methods and

simulate the belt population predicted by the steady

state collisional evolution model described in Wyatt

(2008). We assume that belts initiate collisional evolu-

tion within protoplanetary disks, and therefore that they

have been collisionally evolving for the entire lifetime of

the star. The evolution of belt mass according to this

model is almost flat up to an age roughly corresponding

to the collision timescale of the largest bodies within the

belt, after which the mass decreases with time t follow-

ing 1/t.
This steady state collisional cascade model fits the ob-

served evolution of IR excesses around both A and FGK

stars (Wyatt et al. 2007; Kains et al. 2011; Sibthorpe

et al. 2018), given some reasonable assumptions and

other fitted parameters, which were found to differ for

the two spectral type categories. We here adopt exactly

the same assumptions and best-fit parameters to exam-

ine the effect collisional evolution has on the observed

belt population in [R,L?] space. In particular, for both

spectral type categories, the model assumes a universal

belt fractional width of ∆R/R = 0.5, a grain density

typical of silicates (ρ=2700 kg m−3), a proper eccentric-

ity of e = 0.05, an initial blackbody radius distribution

of the belt population following N(RBB) ∝ RγBB, and an

initial belt mass that follows a log-normal distribution
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with a fitted centroid Mmid and a standard deviation of

1.14 dex.

The distributions of both radii and initial masses are

independent of stellar properties within each of the two

spectral categories. For A (FGK) stars, fitted parame-

ters with their best-fit values were γ = −0.8 (γ = −1.7),

Mmid = 10 M⊕ (Mmid = 2.1 M⊕), with the maximum

planetesimal size Dc = 60 km (Dc = 450 km) and dis-

persal threshold planetesimal strength Q∗D = 150 J kg−1

(Q∗D = 500 J kg−1) setting the time evolution. As no

constraints are present to date for M stars, we assume

the same parameters as for the FGK population. Fi-

nally, since the model works by evolving belts located

at their blackbody radii (which is consistent with the

fact that the model was fitted to blackbody radii rather

than true radii at IR wavelengths), we still need to make

an assumption for the R/RBB distribution of the pop-

ulation. As in our fiducial model of §3, we assume a

uniform distribution of R/RBB between the minimum

and maximum of our observed belt population.

Informed by this collisional evolution model, we once

again simulate a population of 106 belts with the distri-

bution of initial masses and radii that best fits the IR

population. We evolve belts around each star to a ran-

dom age drawn from a uniform distribution up to the

lowest between the star’s main sequence lifetime and the

age of the universe. In Fig. 5 we show the selection frac-

tion per [R,L?] bin (analogously to Fig. 3), assuming an

isotropic stellar population out to a distance of 150 pc.

The main difference between Fig. 5 and Fig. 3 is

that a new lower envelope of detectability appears at

a larger radius than before, as belts that are closer to

the star evolve faster and have their mass and hence

flux dropping below detectability at any given age. If all

belts were evolved to the same age, the dependence of

this lower envelope on the stellar luminosity would be

R ∝ L0.12
? (combining Eq. 6, 14, 15, and 16 from Wyatt

2008, and taking the approximation L? ∝ M4
? ). How-

ever, including the effect that less luminous stars are,

on average, older than more luminous ones causes this

lower envelope of detectability to be nearly flat. At the

same time, this effect produces a steep dropoff in the

number of detectable belts around stars of increasingly

lower luminosity, as most of these belts have evolved

for longer and hence depleted below detectability. The

sharp discontinuity in the color map at high luminosi-

ties is caused by the difference in the best-fit parameters

fitted to the A and FGK star population at IR wave-

lengths, which suggests that A stars evolve at a faster

rate, but also start with more massive belts.

As mentioned for Fig. 3 in §3.2, we underline that the

colour map in Fig. 5 does not consider the luminosity

function N(L?) in the Solar neighbourhood and there-

fore should not be interpreted as the number of stars in

[R,L?] space, which we show and discuss in Appendix

B. Once again, this is because we are not interested in

reproducing the population density in [R,L?] space, but

the our observed R(L?) relation given our sample of

stars, with their luminosities, masses and ages.

We therefore proceed to quantify whether this steady

state collisional evolution model for planetesimal belts

can explain our observed trend as in §3.3, by quanti-

fying the selection probability for each of the stars in

our sample (see Fig. 6, left), given their L? and dis-

tance to Earth d. We evolve their belt mass to their

observed age (choosing best-fit values reported in the

literature, see Table 1), taking into account the distri-

bution of belt radii from the collisional evolution model

(N(RBB) ∝ RγBB). We then sample each of these prob-

ability distributions 105 times and calculate the slope,

intercept and intrinsic scatter of the simulated R − L?
relations. The simulated probability distributions of the

3 power law parameters are shown in Fig. 6 (right, red),

where they can once again be compared to the proba-

bility distributions derived from the data (blue).

We find that the steady state collisional evolution ap-

plied to a population of belt radii that is not correlated

with their host star’s luminosity is likely to produce a

R−L? relation with a slope and intercept close to those

shown by the data. Compared to our static belt model,

the probability of drawing a dataset with an intrinsic

scatter within ±1σ of that observed (for any slope and

intercept) increases significantly from the < 10−5 de-

rived from Fig. 4 (right) to 2.6 × 10−3. This confirms

the qualitative result of Fig. 6 (left), showing that col-

lisional evolution coupled to observational bias can re-

produce the observed R−L? relation much better than

a static model (Fig. 4, left). Despite the improvement,

however, the probability of drawing an intrinsic scatter

as low as that of the observed population remains quite

low. If we formally consider the chance of drawing, at the

same time, a slope, intercept and intrinsic scatter within

±1σ of the observed values, the probability drops to an

even lower value of 10−4.

This indicates that one or more of the assumptions of

the evolutionary model may not accurately describe the

observed population. For example, the radii at which

planetesimal belts form may not be well represented by

a simple power law distribution as a function of black-

body radius (N(RBB) ∝ RγBB), as the comparison be-

tween the data and our simulations suggests that belts

may not form as far out and/or as close in as we could

have detected them. A larger sample of resolved belts

and a simultaneous fit of the collisional evolution model
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Collisionally evolved

Figure 6. Results of Monte Carlo simulations of model belt populations, whose mass has been evolved according to the model
and best-fit parameters of Wyatt et al. (2007) and Sibthorpe et al. (2018). For both columns, lines and symbols have the same
meaning as in Fig. 4.

to both the population of resolved radii and IR excesses

as a function of age is necessary to establish whether dif-

ferent combinations of model parameters may quantita-

tively reproduce the observed low scatter of the R− L?
relation.

4.2. A preferential formation location for planetesimal

belts in protoplanetary disks?

An alternative explanation for the low scatter ob-

served in the belt radii is that planetesimal belt loca-

tions could be clustered at radii that depend on their

host star’s luminosity. This would indicate a preferential

location for planetesimal belt formation in protoplane-

tary disks. This hypothesis is further supported by the

location of the Edgeworth-Kuiper belt in our own Solar

System (∼30-50 au, Stern & Colwell 1997) being close to

the expectation from the R−L? relation seen in Fig. 1,

especially when considering that it does not suffer from

the observational biases discussed in this work.

The question then arises as to what could cause plan-

etesimal belts to form at a specific range of radii that

correlate with the host star’s luminosity. As mentioned

in §1, planetesimal belt formation requires grain growth

to lead to the formation of planetesimals, but also a

mechanism to either stop these planetesimals growing

further to form planets, or to grow them into planets

rapidly enough that several generations of planetesimals

may be produced. Below, we consider possible scenarios

that may fulfil these requirements for planetesimal belt

formation.

4.2.1. Planetesimal formation and the CO snow line

It is now well established that formation of planetesi-

mals from µm-sized interstellar grains requires overcom-

ing several growth barriers that are dictated by colli-

sional physics and the interaction between solids and gas

in protoplanetary disks. Collisional bouncing, fragmen-

tation and erosion all act to slow the growth timescale of

solids to the point they are lost to the star via radial drift

before they can grow any further (for a review, see Birn-

stiel et al. 2016, and references therein). A promising

way to overcome these barriers is through particle over-

densities leading to gravitational collapse, where such

concentrations in the forms of disk substructure have re-

cently started being discovered through high-resolution

dust imaging of protoplanetary disks (e.g. van der Marel

et al. 2013; Casassus et al. 2013; Marino et al. 2015;

ALMA Partnership et al. 2015; Andrews et al. 2016;

Isella et al. 2016; Loomis et al. 2017; Fedele et al. 2017).

These overdensities can be caused by different physi-

cal mechanisms; we direct the reader to Johansen et al.

(2015) for a review. We here focus on the CO snow

line and its role in planetesimal formation; this is moti-

vated by the fact that the radial location of the only two

observationally-inferred CO snow lines (Qi et al. 2013,

2015; Schwarz et al. 2016) lies close to our [R−L?] rela-

tion (Fig. 1). It has been theoretically demonstrated that

snow lines can affect planetesimal formation in three

ways. 1) Icy particles show increased sticking, favouring

dust growth beyond the snow line location (e.g. Wada

et al. 2009; Okuzumi et al. 2012). However, CO has a

lower dipole moment compared to more polar ices such

as H2O, which could actually lead to decreased sticking

and growth beyond the CO snow line (e.g. Pinilla et al.
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2017). 2) Particles drifting inwards through the snow

line lose their surface ice, causing a higher dust-to-gas

ratio outside compared to just interior to the snow line

(e.g. Stevenson & Lunine 1988; Cuzzi & Zahnle 2004).

The evaporated gas may then diffuse beyond the snow

line and freeze out onto incoming grains, leading to sig-

nificantly enhanced growth at that location (Ros & Jo-

hansen 2013), though further studies question the ef-

fectiveness of the latter process at the CO snow line

(Stammler et al. 2017). 3) Sintering of icy particles can

lead to enhanced fragmentation and, conversely, reduce

growth just beyond an snow line (e.g. Okuzumi et al.

2016).

On the observational side, the emergence and abun-

dance of concentric rings in recent observations of pro-

toplanetary disks may indicate a variation in dust opac-

ities at the snow line location of different species. How-

ever, this has been interpreted both ways as a sign

of enhanced growth (Zhang et al. 2015) or fragmenta-

tion (Okuzumi et al. 2016). Overall, it remains unclear

whether the CO snow line would lead to an enhanced,

reduced, or unchanged effectiveness of planetesimal for-

mation.

The tentative association between planetesimal belt

locations and CO snow lines reported here could there-

fore indicate either of two scenarios. 1) Planetesimal for-

mation is enhanced at the CO snow line location, and

is followed by rapid planet formation and inward migra-

tion. This mechanism could continue efficiently until the

gas is dissipated, at which point the planetary system

would be left with a belt of planetesimals that did not

have time to further develop into planets just beyond the

location of the CO snow line at the time of disk disper-

sal. A similar scenario has been proposed to explain the

composition of Uranus and Neptune in the Solar Sys-

tem (Ali-Dib et al. 2014). 2) Planetesimal formation is

inefficient beyond the CO snow line location, leading to

longer growth timescales which eventually allow plan-

etesimals, but not planets, to form at these locations

before the gas disk is dissipated.

Regardless of whether the R − L? relation for plan-

etesimal belts is related to planetesimal formation at

the CO snow line specifically, the similarity in slope be-

tween planetesimal belt and the two observed CO snow

line locations would indicate that volatility of solids in

protoplanetary disks plays a crucial role in planetesimal

and/or planet formation. In turn, this could imply a

broad similarity in cometary compositions across plan-

etary systems, explaining ice abundances being so far

consistent between exocomets and Solar System comets

(Matrà et al. 2017a,b, 2018).

4.2.2. Inefficient planet formation

Another approach to understanding the origin of plan-

etesimal belts is to consider why planetesimals did not

go on to form planets, rather than why planetesimal

themselves formed at specific locations in planetary sys-

tems. Given the known presence of planetary or brown

dwarf mass companions interior to planetesimal belts

(e.g. Marois et al. 2008; Lagrange et al. 2009; Rameau

et al. 2013; Macintosh et al. 2015; Milli et al. 2017),

and even a potential correlation between the two (Wy-

att et al. 2012; Kennedy et al. 2015), a reasonable ques-

tion to pose is whether planet formation simply did not

have sufficient time to take place in the outer regions

of planetary systems, where the mass budget is lower,

and the orbital timescales are longer. If that were to be

the case, given that both the solid masses increase (e.g.

Andrews et al. 2013) and the orbital periods shorten as

function of stellar mass, it would make sense that plan-

etesimal belts - which would be representative of the

outer edge of planet formation - are observed to lie at

larger radii around more massive (luminous) stars. Us-

ing masses from Table 1, our R−L? relation translates

in a similarly correlated R−M? relation. Neglecting the

effect of observational biases and collisional evolution,

we find a power law dependence with slope αM?
∼ 1.0

(i.e. R ∝MαM?
? ).

Then, a simplified way to understand whether planet

formation timescales could set this relation is to con-

sider the accretion timescale for a protoplanet to reach

a mass Mpl and radius Rpl through core accretion from

a disk of planetesimals, and its dependence on M?. Fol-

lowing Kenyon & Bromley (2008), this timescale can

be estimated as t ∝ 1
ΣΩ , where Σ is the local surface

density of planetesimals and Ω is the Keplerian angu-

lar frequency, where Ω ∝ R−3/2M
1/2
? . We assume a

typical power-law planetesimal surface density profile

(Σ(R) ∝ (M/Ry+2
out )Ry) with total mass in planetes-

imals M and extending from the star out to radius

Rout. We assume that the disk’s average surface den-

sity is constant (R2
out ∝ M , as found for dust in pro-

toplanetary disks, Tripathi et al. 2017), which implies

(Σ ∝M−0.5yRy). We can then connect the total mass in

planetesimals M to the mass of the central star, assum-

ing this dependence to be the same as observed for the

dust mass in protoplanetary disks (where Mdust ∝ Mx
? ,

with x ∼ 1.5− 1.9, Pascucci et al. 2016).

Thus, if planetesimal accretion successfully produced

planets out to a radius set by this accretion timescale,

we would expect this radius to scale as R ∝M
0.5(1−xy)

1.5−y
? .

If we assume a minimum mass solar nebula (MMSN)

surface density profile with y = −3/2 (Weidenschilling
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1977; Hayashi 1981), the expectation would be that

R ∝ M0.54−0.64
? , which is shallower than the slope we

reported here (αM? ∼1.0).

This simple calculation goes in the right direction to

show that our result that planetesimal belt radii in-

crease around stars of increasing mass qualitatively fol-

lows the expectation from a planet formation timescale

perspective, although it produces a slope slightly shal-

lower than observed. Furthermore, the timescales would

not be quick enough, as this core accretion model can-

not produce Uranus and Neptune in situ within the life-

time of the Solar Nebula (e.g. Goldreich et al. 2004).

A likely solution to several problems with this simple

planetesimal accretion model has more recently been

found through the pebble accretion model, where the

growth rate is significantly sped up by the accretion

of inward-drifting pebbles (e.g. Lambrechts & Johansen

2012; Bitsch et al. 2015). Then, the timescale issue is

overcome and several embryos can rapidly form in the

outer regions of the Solar Nebula, and by extension in

other planetary systems. In terms of the R −M? rela-

tion for planetesimal belts, pebble accretion would act

to explain planet formation out to the inner edge of our

observed relation in a shorter timescale. The pebble ac-

cretion rate and consequent planet formation timescale

is highly dependent on the assumed protoplanetary disk

parameters, making detailed comparison difficult.

Given our main result that the scatter (rather than

the slope or intercept) of resolved planetesimal belts is

unlikely to be reproduced by current collisional evolu-

tion models and observational bias, perhaps a more im-

portant aspect to consider is how planet formation can

reproduce such scatter. We speculate that this may be

related to the range of timescales for planet formation

in different planetary systems. If we let this timescale

vary in the simple core accretion calculation above, we

find R ∝ t1/(1.5−y), where assuming y = −3/2 as for

the MMSN yields R ∝ t1/3. The ±1σ scatter in radii

found across the R − L? relation (grey region in Fig.

1) implies that R+1σ/R−1σ ≈ 1.5, which would imply a

variation in planet formation timescales of ∼ 3.4. This

would make sense if gas-rich protoplanetary disks pro-

ducing detectable debris disks survived, for example, be-

tween ∼3-10 Myr, where these numbers are comparable

to the observed decay in disk fraction in star-forming

regions (e.g. Hernández et al. 2008).

Regardless of the details of the potential formation

scenarios discussed here, confirming that there is a pref-

erential formation location for planetesimal belts that

is correlated with the host star’s mass and luminosity

would be important to provide one of the first extraso-

lar constraints to such planet formation models at large

orbital separations. While confirmation requires expan-

sion of the observational sample and a more complete

model effort in the multi-dimensional parameter space

of planetesimal belt observables, explaining its origin re-

quires planet formation models and simulations to pro-

vide more specific predictions on the fate of planetesi-

mals at large orbital separations, across a range of host

star properties. At the same time, increasing the num-

ber of resolved snow lines in young protoplanetary disks,

particularly across a range of stellar hosts, will also em-

pirically contribute to confirming the potential link pro-

posed here.

5. CONCLUSIONS AND SUMMARY

In this work, we collected radius measurements from

all 26 extrasolar planetesimal belts resolved at millime-

tre wavelengths to date, and analysed their dependence

on host star properties. We report the discovery of a sta-

tistically significant correlation between belt radii and

host star luminosities, following R = 73+6
−6L

0.19+0.04
−0.04

? .

We simulate planetesimal belt populations to under-

stand the effect of observational bias in [R− L?] space.

Given a static ring model, we show that it is unlikely

that a population of belts with radii that are uncorre-

lated with the host star’s luminosities can explain the

observed R−L? relation through selection effects alone.

This is largely due to the observed population having

a much lower scatter than the simulated one. We find

the latter to remain true for several different sets of

reasonable model assumptions, although we do not for-

mally rule out that a specific combination of population

model assumptions may explain the observed low scat-

ter. Nonetheless, our tests indicates that an underlying

R−L? relation is likely necessary to explain the observed

correlation. After repeating the fit to the observed popu-

lation by taking into account observational bias through

our fiducial model assumptions, we find the best-fit pa-

rameters of the relation to be largely unchanged, with

R = 66.8+7.7
−11.8L

0.19+0.05
−0.06

? .

We then consider whether steady state collisional evo-

lution of a population of belts that are once again un-

correlated in [R − L?] space, coupled to observational

bias, could explain the R − L? relation. We do so by

evolving the mass of simulated belt populations accord-

ing to the models that fit the population of IR excesses

(Wyatt et al. 2007; Sibthorpe et al. 2018). Including

collisional evolution in the model population can read-

ily explain the observed lack of small belts, particularly

around stars of increasing luminosities. This brings the

intrinsic scatter of the simulated population closer to the

one observed, and better reproduces the observed R−L?
relation compared to a static population. However, the
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intrinsic scatter of the evolved simulated population is

still higher and only marginally consistent with the one

observed. This suggests that some of the collisional evo-

lution model assumptions need to be refined; in partic-

ular, the R − L? relation could indicate a preferential

formation location for planetesimal belts in protoplane-

tary disks.

We briefly discuss how such a preferential formation

location may be qualitatively explained in the context

of current theories of planetesimal and planet formation.

In particular, we focus on the CO snow line and its po-

tential impact on the formation of planetesimals, show-

ing that the location of the 2 observationally-determined

CO snow lines in protoplanetary disks is close to the ex-

pectation from our R − L? relation. The similar slope

between planetesimal belts and CO snow lines would

suggest that volatility is a driver of planetesimal and/or

planet formation.

At the same time, we consider why planetesimals did

not grow further to form planets; we speculate that the

inner edge of these belts may be set by the timescale of

outermost planet formation, which would qualitatively

explain the positive slope of the R − L? relation. How-

ever, we find that this slope, in a simplified core accre-

tion scenario, should be flatter than observed. The low

scatter observed, on the other hand, may be due to a

narrow range in planet formation timescales, and is in

line with the expectation from core accretion and the

range of observed protoplanetary disk lifetimes.

Our work shows that in order to shed more light on

the origin of the R−L? relation we need to expand the

sample of resolved planetesimal belts, enabling simulta-

neous modelling of their masses and time evolution as

well as radii distributions. This will be crucial in con-

firming that there is a preferential formation location

of planetesimal belts, a finding that can set important

new constraints on models of planetesimal and planet

formation in the outer regions of the Solar System and

extrasolar planetary systems.
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APPENDIX

A. ANALYTICAL ESTIMATES OF THE OPTICAL DEPTH FOR FACE-ON AND EDGE-ON NARROW BELTS

The definition of optical depth for a column of dust of length L (neglecting scattering) at a wavelength λ reads (e.g.

Tielens 2005)

τ(λ) = L

∫ amax

amin

nd(a)σd(a)Qabs(a, λ)da, (A1)

where amax and amin are the minimum and maximum sizes of the dust distribution, nd is the number density of dust

grains, σd is the cross-sectional area of a single dust grain, and Qabs is the grain’s absorption efficiency, which is size

and wavelength dependent. We assume that continuum emission at any wavelength is dominated by grains of the same

size as the wavelength of the emission, leading to the approximation Qabs ∼ 1. Then, given that σtot ≡
∫ amax

amin
Nd(a)da

(where N is the number, rather than number density, of dust grains of size a) the optical depth through the column

integrated over all emission wavelengths can be found as τ = σtotL
V , where V is the volume of the dust column with

line of sight length L.

For a narrow belt approximated as a box of height H and width ∆R (with uniform dust number density) observed

face-on, the on-sky area V/L can be estimated as 2πR∆R, which combined to the definition of fractional luminosity

f = σtot/(4πR
2) leads to

τface−on =
2f

∆R/R
. (A2)

This implies that a belt with ∆R/R of 0.5 becomes optically thick (τface−on > 1) if its fractional luminosity is greater

than 2.5× 10−1 (as argued in §3.1.4).

For the same narrow belt in the uniform density box model approximation, we also consider its optical depth in the

perfectly edge-on viewing scenario. In this case, the maximum optical depth is attained along the column of maximum

length Lmax along the line of sight through the disk. This column corresponds to the tangent to the inner radius of

the belt along the line of sight, leading to Lmax = 2
√

2R∆R = 2R
√

2∆R/R. For a uniform density box-like ring, the

volume corresponds to V = 2πR2(∆R/R)H. Then, the maximum optical depth for the edge-on belt can be estimated

as

τedge−on,max =
4πRf

H

√
2R

π∆R
, (A3)

leading to the conclusion in §3.1.4 that a belt with aspect ratio H/R = 0.1 and ∆R/R = 0.5 only becomes optically

thick for fractional luminosities f > 7.1× 10−3.

B. THE NUMBER OF RESOLVED BELTS IN [R,L?] SPACE

B.1. Static model

As mentioned in Sect. 3.2, our selection probability map in Fig. 3 does not consider the stellar luminosity function in

the Solar neighbourhood; in other words, the detection fraction for each stellar luminosity does not take into account

that lower luminosity stars are much more abundant than higher luminosity stars. The latter is needed to be able to

consider the number of stars - as opposed to their detection fraction - expected to have a detectable and resolvable

belt in any [R,L?] bin. In order to do this, we turn the selection fraction per [R,L?] bin (Fig. 3) into a selection

fraction per L? column, and multiply the latter by the number of stars of that luminosity within 150 pc from Earth.

This number of stars is calculated using local stellar densities as a function of spectral type from Bovy (2017), and

assuming uniform stellar density. Since these stellar density measurements only extend down to K4 spectral type, in

this step we only consider stars more luminous than K4 (L? ≥ 0.18 L�).

The resulting map is shown in Fig. 7 (left), and shows significant differences compared to the selection fraction map

in Fig. 3. While the selection fraction is higher around more luminous stars, the predicted absolute number of stars

selected is higher for less luminous stars. This is readily attributable to the stellar luminosity function favouring less

luminous stars. At the same time, we find that the lower envelope of detectability now increases as a function of stellar

luminosity. This is because for a given belt radius, there will be a lot more low luminosity stars at a distance d close

to Earth, which in turn implies more low-luminosity belts with higher fluxes that are more easily detectable. Then,

regardless of the belt radius, our fiducial model applied to the stellar population in the Solar neighbourhood predicts

that the observed abundance of selected belts should favour lower luminosity stars.
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Static Collisionally evolved

Figure 7. Left: Number of stars expected to have detectable and mm-resolvable belts as a function of radius and stellar
luminosity within 150pc from Earth, per log10([R,L?]) bin. We assumed that all stars have been observed out to 150 pc, and
that they all host a belt that does not evolve with time. The same fiducial model population as Fig. 3 has been assumed; the
difference is that this figure takes into account the stellar density and luminosity function of the Solar neighbourhood. Right:
Result obtained after collisionally evolving the population in the left panel according to the model and best-fit parameters of
Wyatt et al. (2007) and Sibthorpe et al. (2018). For a star of a given luminosity, its belt is evolved to an age that is drawn
from a uniform distribution up to the smallest between its main-sequence lifetime and the age of the universe. Compared to
Fig. 5, this considers the stellar density and luminosity function of the Solar neighbourhood, but also the distribution of belt
radii (N(R) ∝ Rγ) assumed by the evolutionary model.

Instead, the number of stars in our resolved sample is found to increase with stellar luminosity. This could be due in

part to some selection bias not taken into account here (for example, the survey of Moór et al. (2017) was specifically

targeted at A-type stars), but also to the fact that we so-far assumed the set of parameters [f,R/RBB, λ0, β] to be

independent of stellar luminosity. A decreasing R/RBB with L? as reported from the Herschel resolved disks (Pawellek

et al. 2014) would increase the detectability of disks around lower luminosity stars even further, as disks around

less luminous stars, for the same radius, would be hotter and brighter. Additionally, we see no significant correlation

between R/RBB and L? in our observed sample; therefore, an R/RBB dependence on L? cannot explain this trend.

On the other hand, we deem it is plausible that the observed increase in number of resolved belts around more

luminous stars is caused by these belts having higher fractional luminosities, a trend that is tentatively present in

the observed sample. This could be explained by the fact that more luminous stars are also, on average, younger,

implying that they had less time to collisionally deplete. This could make them brighter, potentially explaining the

increasing abundance of resolved belts around more luminous stars; we explore this possibility when considering

collisional evolution in B.2.

B.2. Collisionally evolved model

The right panel of Fig. 7 shows an equivalent map of N(R,L?) of selected belts after the model population has been

collisionally evolved according to the model of Wyatt et al. (2007) and Sibthorpe et al. (2018). In this case, while

including the stellar luminosity function N(L?) favours low luminosity stars (as found for the static population in the

left panel of the figure), including the distribution of belt blackbody radii N(RBB) assumed by this model favours A

stars, as the A star population was best fit by a power law with a much flatter slope compared to FGK stars (γ = −0.8

versus γ = −1.7). For A stars, this means favouring larger disks, which evolve more slowly and are thus more easily

detectable.

Overall, it appears that the collisional evolution model is able to produce belts at the radii where they are mostly

observed, but fails to reproduce the number of stars having a detectable and resolvable belt as a function of stellar

luminosity. This could be due to limitations of the model but also to some of our assumptions. For example, we are

assuming that every star out to 150 pc has a disk, and that each disk has been targeted by IR observations. This is of

course not the case, particularly for lower luminosity stars; for example, Herschel surveys such as DEBRIS (Phillips
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et al. 2010) and DUNES (Eiroa et al. 2013) were designed to survey the same number of the nearest A, F, G, K, and

M stars. As lower luminosity stars are more abundant, however, a much smaller fraction has been surveyed; this causes

us to infer that there is a lower absolute number of disks around low luminosity stars than there truly is. Additionally,

stars belonging to young moving groups or associations were likely preferentially targeted, introducing a bias toward

younger stars.

We conclude that, as demonstrated above, the observed population density Nbelts(R,L?) has the potential to set

useful constraints on some of our model parameters assumed, but is also exposed to other biases that are difficult to

account for. In the most complete approach, all parameters determining a belt’s observables including R and L? should

be fitted simultaneously to Nbelts(R,L?, f, R/RBB, λ0, β, age) in a comprehensive population study, which is however

beyond the scope of this work. Since here we are not aiming to fit the population density but only the R(L?) relation,

in Sect. 3.3 and 4.1 we opted to keep the stellar properties fixed to those of our observed population of 26 stars, and

evaluate the likelihood of drawing our [R,L?] relation from an underlying uncorrelated population given our sample

of observed stars.

C. TESTING DIFFERENT MODEL ASSUMPTIONS FOR THE BIAS ANALYSIS

The main limitation of the analysis in Sect. 3.3 lies within our assumptions for the distributions of parameters [f ,

R/RBB, λ0, β] for the simulated belt populations. This is because changing these parameters modifies the selection

probability distribution of radii for each observed L?. We therefore repeat the process by changing the fiducial as-

sumptions for the parameter distributions one at a time while keeping the others fixed. Figs. 8 and 9 (left columns)

show how the radius selection probability distributions for each of our observed stellar luminosity vary after changing

our assumptions from our fiducial model.

Changing the boundaries of the fractional luminosity distribution. Maintaining a log-uniform distribution of fractional

luminosities, we test the effect of changing the maximum and minimum boundaries of the simulated population. In

particular, in Fig. 8 (central row) we increased the lower boundary from 10−7 to 10−4, and lowered the upper boundary

from 10−2 to 10−3. We find that the main effect of lowering the upper boundary is to push the lower limit of detectability

to larger radii, making the vertical selection probability distribution narrower. On the other hand, increasing the lower

boundary of the fractional luminosity distribution causes an overall increase in the selection probability for each star,

but without changing the lower or upper limit of radius detectability. In practice, this means a wider range of radii

‘saturate’ to a 100% normalized selection probability (black in the colour scale of Fig. 8, left column).

When looking at the formal probability distributions, we find that the probability of drawing an intrinsic scatter f∆R

within ±1σ of our observed value from an underlying uncorrelated population is marginally higher (∼ 2× 10−5), but

still very low. Changing the fractional luminosity boundaries to different values does not significantly improve things,

because lowering the highest fractional luminosity causes the lower limit of radius (mm) detectability to increase faster

than the rate of decrease of the upper limit of radius (IR) detectability. This would produce too many belts at large

radii, which are not observed. At the same time, we deem lowering the highest fractional luminosity to values below

10−3 unrealistic, because 11/26 of our disks have fractional luminosities above this value.

Log-uniform distribution of belt masses Mbelt. We then assume a belt population that has a log-uniform distribution

of belt masses Mbelt rather than fractional luminosities. By belt mass we refer to the observable dust mass of the belt

as would be derived from millimeter observations (Wyatt 2008), which differs from the true total belt mass which is

dominated by unobservable bodies larger than mm/cm in size. The upper and lower boundaries of the distribution

(0.5 and 10−4 M⊕) are set to closely match the extremes in our observed sample.

For a log-uniform distribution of masses rather than fractional luminosities, given that in our model f ∝MbeltR
−2,

this means that belts at larger radii have lower fractional luminosities. In addition, for a log-uniform distribution of

masses, the belt flux at a given wavelength Fν,belt depends on radius only through the belt temperature and not its

mass (since Fν,belt ∝MbeltBν [T (R)] where Bν [T (R)] is the Planck function).

The result is that belts become undetectable only at large radii where the temperatures are too cold (Fig. 8, bottom

left). The upper envelope is set by a line of constant flux equal to the detection threshold (dominated by 70µm

observations), which follows R ∝ L0.5
? for a constant belt mass. Lowering the upper boundary of the distribution of

belt masses has the effect of lowering this upper envelope of detectability; raising the lower boundary instead causes

the selection probability to increase for each pixel, but without changing this upper boundary. The lower envelope of

selected belts is determined solely by a belt’s hard limit of resolvability with ALMA (R > 0.′′028).
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Fiducial

f   ∈ [10-4,10-3]   

Uniform Mbelt

Figure 8. Results of Monte Carlo simulations of model belt populations, where different rows show different model assumptions
(see text for details). Left column: Vertical color strips represent the normalized selection probability of belts in log10(R) space
for each of the stars in our sample, given their luminosity L? and distance from Earth d. White vertical bars represent our sample
of belts currently resolved at millimeter wavelengths from Fig. 1. Right column: Red solid histograms and contours represent
marginalised probabilities of randomly drawing a given power law slope (left sub-column), intercept (centre sub-column) and
intrinsic scatter (right sub-column) from an uncorrelated population of model belts, after accounting for observational selection
effects. 1D histograms represent probability distributions of each parameter marginalised over the other two, whereas contour
maps represent 2D probability distributions of different pairs of parameters, marginalised over the third. Contours represent the
central [68.3, 95.5, 99.73] % of the distribution. Blue solid lines represent marginalised posterior probability distributions of the
parameters given the data, and should be compared with the model. Dotted lines represent probability distributions obtained
when fixing the radius uncertainty to ∆R/R = 0.1 for all stars, and for both the observed and simulated data.
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Uniform Mbelt, with Mbelt ∝ L★

R/RBB = 5.42 L★
-0.35  

Fixed R/RBB, λ0, β

Figure 9. Results of Monte Carlo simulations of model belt populations, where different rows show different model assumptions
(see text for details). For both columns, lines and symbols have the same meaning as in Fig. 8.

This model assumption produces a large number of small belts, since these are much hotter and hence brighter

than larger belts of the same mass. Such a large number of small belts is not observed, and this makes the simulated

population very different from the observed one (Fig. 8, bottom right). This means that the chance of randomly drawing

our observed power law parameters from an uncorrelated underlying population remains negligible. Furthermore, an
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observed population of belts that is dominated by smaller belts would be inconsistent with the results of IR surveys

(e.g. Sibthorpe et al. 2018), which find a decrease in disk incidence at blackbody radii < 10 au (at least for fractional

luminosities above 10−5).

However, compared to the uniform fractional luminosity case, it is interesting to see that the upper envelope of

detectability is now closer and has a slope more similar to the observed sample. We consider the observed lack of small

disks and discuss its possible origin in §4.1.

Belt mass increasing with stellar luminosity, following the protoplanetary disk population. Protoplanetary disk masses

(or millimetre luminosities) are known to correlate with their host star’s mass (Andrews et al. 2013; Pascucci et al.

2016). If this relation were to remain imprinted on planetesimal belts after protoplanetary disk dispersal, we would

naively expect the same to apply here (neglecting any belt evolution during the main-sequence lifetime of the star,

discussed in §4.1). We simulate a belt population where the belt masses are still created from a log-uniform distribution,

but where now both the upper and lower boundaries of the distribution follow Mbelt ∝Mγ
? , where γ = 1.7 (an average

between the 1.5-1.9 range of values derived by Pascucci et al. 2016). The upper boundary of the mass distribution for

the most luminous star and the lower boundary for the least luminous star are fixed to the extremes of our observed

sample (0.5 and 10−4 M⊕).

In Fig. 9 (top) we find that this assumption causes little change compared to a mass distribution that is independent

of stellar luminosity (Fig. 8, bottom). The dependence of the selection probability on stellar luminosity slightly steepens,

as belts around more luminous stars will be intrinsically more massive. It also slightly increases the slope of the upper

limit of detectability. This small change is overwhelmed by the still too large population of small belts, resulting in a

simulated population that remains inconsistent with the observed data.

R/RBB dependent on stellar luminosity. The distribution of small dust grains in planetesimal belts, resolved by the

Herschel Space Observatory at 100 µm, show a trend where their ratio between resolved radii and blackbody radii

(R/RBB) decreases following a power-law as a function of stellar luminosity (Pawellek et al. 2014). Although the

effect of observational bias on this result remains to be evaluated, we here assume the relation to be true and assess

its impact on the detectability of a belt in [R,L?] space. In particular, we take the best fit power law parameters

R/RBB = 5.42L−0.35
? obtained for a 50% astrosilicate + 50% ice composition in the reanalysis of Pawellek & Krivov

(2015).

Going back to our original assumption of a belt population with log-uniform distribution of fractional luminosities,

we find that introducing a R/RBB dependence on L? decreases the slope of the upper envelope of (70µm) detectability,

making it nearly flat (Fig. 9, center left). This is because for the same radius, belts around less luminous stars are

hotter and hence brighter. The lower envelope of (mm) detectability remains largely unchanged from the luminosity-

independent R/RBB case, due to a much weaker dependence of physical radius on temperature for a given flux detection

threshold at mm compared to IR wavelengths.

The predicted large scatter and, on average, larger radii than both the observed and other simulated populations

mean that a [R,L?] population with a luminosity-dependent R/RBB as found by Herschel studies is unable to explain

the observed R−L? relation. Furthermore, we do not find a significant R/RBB relation to hold for our sample of belts

resolved at mm wavelengths.

Fixed R/RBB, λ0 and β. Last, in an attempt to reduce the scatter in the simulated population, we fix R/RBB and the

modified blackbody parameters λ0 and β to a single value that is independent of L?, rather than varying them between

the extremes observed in our population. We assume R/RBB = 2.87 (the average value measured for our observed

population), λ0 = 210 µm (the fiducial value of Wyatt 2008), and β = 0.59 (the average best-fit value obtained from

fitting the millimetre slope of millimetre-bright disks, MacGregor et al. 2016b). As shown in Fig. 9 (bottom), we find

no significant difference in the derived belt detectability in [R,L?] space compared to the fiducial model assumptions,

with the simulated intrinsic scatter remaining significantly larger than observed.


