# Placing Our Solar System in Context: [A 12 step program to learn to accept disk evolution]



Michael R. Meyer Steward Observatory, The University of Arizona Dana Backman, SOFIA/SETI Institute Alycia Weinberger, Carnegie Institution of Washington, and Mark C. Wyatt, Institute of Astronomy, Cambridge









# Planetary Disk Studies: The Protostars and Planets View

- **1.** *Interpreting IR Observations of T Tauri Stars,* A.E. Rydgren (1978)
- 2. *Observ. Evidence for Disks Around Young Stars,* P.M. Harvey (1984)
- 3. Main Sequence Stars with Circumstellar Solid Material: The Vega Phenomenon,
- D.E. Backman and F. Paresce (1990).
- *Planetary Material around Main Sequence Stars*, A.-M. Lagrange, D.E. Backman, and P. Artymowicz (1998).

#### **Step #1. Different Wavelengths Trace Different Radii.**



#### Step #2. Inner Disks Dissipate 1-10 Myr. NIR



# ...but there is a dispersion in inner disk lifetimes





There is a difference between primordial and debris disks.

### Primordial Disks:

» Opacity dominated by primordial grains.

### • Debris Disks:

» Opacity dominated by grains produced through collisions of planetesimals.

# •How can you tell the difference?

» Absence of gas (Gas/Dust < 0.1) argues for short dust lifetimes (blow-out/P-R drag).

>>> Dust processing through mineralogy?



Detecting Cool Gas in Disks is HARD!

GAS

cf. Najita et al. This meeting

Gorti & Hollenbach ApJ (2004)

#### **Step #3. Gas disk lifetimes appear to be < 10 Myr.**







=> 20 stars with ages 3-100 Myr

Hollenbach et al. (ApJ, 2005); Pascucci et al. This meeting

#### ...but there are detections of gas in debris disks





**Roberge et al. (this meeting)** [Beta Pic, FUSE/HST/Visible]

Dent et al. (2005) [49 Cet, JCMT]



#### **Step #4. Dust from 0.3-3 AU evolves on timescales comparable to the cessation of accretion**

MIR



# ...and the transition time from thick to thin is << 1 Myr years.





Silverstone et al. (ApJ, Submitted); See also Wolk and Walter, 1996; Kenyon and Hartmann, 1995; Prato and Simon, 1995; Skrutskie et al. 1990.

Out of a sample of > 70 stars 3-30 Myr old, 5 optically-thick disks, and no optically-thin disks. Step #5. Warm Debris (> 100 K) surrounding Sun-like stars are rare (few %) MIR



...but more common around stars < 100 Myr.





Bouwman et al. (in preparation); Beichman et al. (2005); Song et al. (2005), Chen et al. (2005); cf. Kenyon & Bromley (2004)



#### ...or could be rare but extreme.





Rieke et al. (ApJ, 2005); See also Su et al. (this meeting).

#### **Step #7. Cool Debris Disks (< 100 K) are Common (10-20 %) around Sun-like Stars.**

FIR



Sub-mm Photometry: Dust Mass over Time





Carpenter et al. (2004); Greaves et al. 2004.

#### Step #8. Cold debris disks with inner holes are not strong evidence for giant planets

- Collisionally maintained holes decay as t<sup>-1</sup> (Decin and Dominik, 2004; Wyatt, 2005).
- Detected disks are not P-R Drag dominated.
- Extremely low density disks maintain constant dust production rate (e.g. Solar system asteroid belt).





# ...but they ARE evidence for

Dynamically hot outer planetesimal belts.

Lack of interior planetesimal belts.

Deliues to the physical state of the remnant disk (e.g. Najita & Williams, 2005).



Kim et al. This meeting; Hillenbrand et al. (2006)

# Step #9. Spectral energy distribution models are degenerate.



# ...but images & spectra break those degeneracies.









#### **Do Stars with Inner Planets (< 5 AU) Also Have Kuiper Disks?**



Beichman et al. (2005)

Step #10. The connection between dust emission and presence/absence of planets is not clear.



# **Step #11. Dynamical evolution is key to the history of our solar system dust disk.**



Backman et al. (2005); Gomes et al. (2005); Strom et al. (2005) Morbidelli et al. This meeting; See however Kenyon & Bromley (2004).

# Step #12. Comparison of disk evolution between A stars, G stars, and M stars (Binaries?) consistent (so far).



Wyatt and Greaves (2003); cf. Natta et al. (2000); Rieke et al. (2005); See however Plavchan et al. (2005); Stansberry et al. (this meeting)

### **Executive Summary Part I:**

- 1.Results from disk surveys depend on wavelength of observation.
- 2. Accretion disks dissipate in 1-10 Myr.
  3.Gas dissipation timescale is < 10 Myr.</li>
  4. Transition timescale 0.3-3 AU is << 1 Myr.</li>
  5. Warm debris disks are unusual.
  6. Unusual objects can be transient or rare.

### **Executive Summary Part II:**

- 7. Cool debris disks are common.
- 8. Inner holes not clear evidence for planets.
- 9. Images required for robust disk models.
- 10. Effect of planets on disk evolution unclear.
- 11. Dynamical history of SS important.
- 12. Disks might evolve independent of star mass or wide companions?

## **First Disk Imaged with the LBT!**



Students please ask me about LAPLACE 2006 Astrobiology Winter School!