
7. Debris disk 
model basics 



Models have to explain… 
(1) Radial structure  (2) Asymmetric structure  (3) Evolution 



Planetesimal belt dynamical theory 
In order to interpret the observations we need a model of the 
underlying physics and dynamics of a debris disk, and of the 
physics which affects their observational properties 

Here I will build up a simple analytical model for planetesimal 
belts, based on the models developed in 

 Wyatt et al. 1999, ApJ, 529, 618 
 Wyatt 1999, Ph.D. Thesis, Univ. Florida 
 Wyatt & Dent 2002, MNRAS, 348, 348 
 Wyatt 2005, A&A, 452, 452 
 Wyatt et al. 2007, ApJ, 658, 569 
 Wyatt 2008, ARAA, 46, 339 

copies of which you can find on my website  

 http://www.ast.cam.ac.uk/~wyatt 



The planetesimal belt 

Consider planetesimals orbiting 
the star at a distance r in a belt 
of width dr 

Face-on area of belt is: 
   2π r dr 

Volume of belt is: 
   4π r2 I dr 

Cross-sectional area of material 
in belt: 
   σtot in AU2 

Surface density of the belt: 
   τeff = σtot / (2πr dr), AU2/AU2 

mid-plane  I 

dr 

r 



Gravity 

•  The dominant force on all planetesimals 
is gravitational attraction of star 

•  The force between two massive bodies, 
M1 and M2 is given by 
      F = GM1M2/r2, 
where G=6.672x10-11 Nm2kg-2 

•  Expressing in terms of vector offset of M2 
from M1, r gives the equation of motion as 

d2r/dt + µr/r3 = 0, 
where µ=G(M1+M2) 

•  Which can be solved to show that the 
orbit of M2 about M1 is given by an ellipse 
with M1 at the focus (or, e.g., a parabola) 
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Orbits in 2D 
•  The orbit is given by: 
      r = a(1-e2)/[1 + e cos(f)], 
  a=semimajor axis, 
  e=eccentricity, 
  f=true anomaly 

•  Angular momentum integral: 
      h= r2df/dt = [µa(1-e2)]0.5 = const 
   Orbital period tper = 2π(a3/µ)0.5 

•  Energy integral: 
      0.5v2 - µ/r = const = C = -0.5µ/a 
      Vp = [(µ/a)(1+e)/(1-e)]0.5 

      Va = [(µ/a)(1-e)/(1+e)]0.5 

tper=(a3/M*)0.5 yrs and vk=30(M*/a)0.5 km/s, 
where M* is in Msun and a in AU 
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•  Mean angles: 
Mean motion:    n = 2π/tper 
Mean anomaly:  M = n(t-τ) 
Mean longitude: λ = M + ϖ 

•  Eccentric anomaly, E 
      tan(E/2) = [(1-e)/(1+e)]0.5tan(f/2) 
      M = E – e sin(E) 



Orbits in 3D 

•  In 3D just need to define the 
orbital plane, which is done with: 
I = inclination 
Ω = longitude of ascending node 

•  Also need to define the direction to 
pericentre: 
ω = argument of pericentre 
ϖ = longitude of pericentre = Ω+ω 

•  So, the orbit is defined by five variables: a, e, I, Ω and ϖ (or ω) 

•  One time dependent variable describes location in orbit: λ (or f, M or E) 

•  Method for converting between [X,Y,Z,Vx,Vy,Vz] and [a,e,I,Ω,ϖ,λ] is 
given in Murray & Dermott (1999) 



Size distributions 

Planetesimals have a range of sizes 

Define a size distribution such that n(D) dD is the 
number of planetesimals in size range D to D+dD 
  n(D) = K D2-3q

        between Dmin and Dmax 

Assuming spherical particles so that σ=πD2/4 gives 
   σtot = [0.25Kπ/(5-3q)][Dmax

5-3q – Dmin
5-3q] 

   σ(D1,D2) = σtot [(D1/Dmin)5-3q – (D2/Dmin)5-3q] 

q n(D1,D2) σ(D1,D2) m(D1,D2) 

<1 large large large 

1 to 5/3 small large large 

5/3 to 2 small small large 

>2 small small small 

Diameter, D 

σ(D), 
AU2 

Dmin 

Dmax 

Similar relations for m(D1,D2) 
(assuming m=πD3ρ/6) and n(D1,D2) 
meaning that number mass and area 
in the distribution is dominated by 
large or small particles depending on q 



Collisional cascade 

When two planetesimals collide (an impactor Dim and target D) the result 
is that the target is broken up into fragments with a range of sizes 

If the outcome of collisions is self-similar (i.e., the size distribution of 
fragments is the same for the the same Dim/D regardless of whether 
D=1000km or 1µm), and the range of sizes infinite, then the resulting size 
distribution has an exponent (Dohnanyi et al. 1969; Tanaka et al. 1996) 

    q = 11/6 

This is known as a collisional cascade because mass is flowing from large 
to small grains 



Shattering and dispersal thresholds 

The outcome of a collision depends on the specific incident kinetic energy 
   Q = 0.5 (Dim/D)3 vcol

2  

Shattering threshold, QS
*: energy for largest fragment after collision to have 

(0.5)1/3D 
•  Impacts with Q<QS

* result in cratering (ejection of material but planetesimal 
remains intact) 
•  Impacts with Q>QS

* result in catastrophic destruction 

Dispersal threshold, QD
*: energy for largest fragment after reaccumulation 

to have (0.5)1/3D 

Strength regime: QD* ≈ QS
* for D<150m 

Gravity regime: QD
* > QS

*  for D>150m 



Catastrophic collisions 

One study which generalises the outcome of 
collisions for a range of energies of interest in 
debris disks is the SPH simulations of Benz & 
Asphaug (1999) 

They parametrised QD
* as a function of 

composition (basalt/ice) and for a range of 
vcol (two which can be interpolated between, 
or extrapolated) 

For catastrophic collisions: Q>QD
* so 

   Dim/D > Xtc = (2QD
*/vcol

2)1/3 

For collisions at vcol=1 km/s this means  
   Xtc=0.01 to 1  



Catastrophic collision rate 

The rate of impacts onto a planetesimal of size D from those in 
the size range Dim to Dim + dDim is Rcol(D,Dim)dDim (Opik 1950) where 
  Rcol(D,Dim) = f(D,Dim) σ(r,θ,φ) vrel 
where 
  vrel = f(e,I)vk    [ NB f(e,I) = (1.25e2 + I2)0.5 ] 
  σ(r,θ,φ) = σtot/(4πr2drI) 
  f(D,Dim)dDim = [σ(Dim)/σtot][1+(D/Dim)]2[1+(vesc(D,Dim)/vrel)2] 
    is the fraction of σtot that the planetesimal sees 
  vesc

2(D,Dim) = (2/3)πGρ[D3+Dim
3]/(Dim+D) 

    is escape velocity 

Mean time between catastrophic collisions 
  tcc(D) = tper(r dr/σtot)[2I/f(e,I)]/fcc(D) 
where                 Dmax 
  fcc(D) = ∫     f(D,Dim) dDim 
                       Dtc(D) 

D 

Dim vrel 



Simplified collision times 

For a disk of same sized particles, fcc(D) = 4: 
  tcc = tper / [4πτeff [1+1.25(e/I)2]0.5] ≈ tper / 4π τeff 

If gravitational focussing can be ignored, then fcc(D) can be solved: 
  fcc(D) = (Dmin/D)3q-5 G(q,Xc) 
  G(q,Xc) = [(Xc

5-3q-1)+(6q-10)(3q-4)-1(Xc
4-3q-1)+(3q-5)(3q-3)-1(Xc

3-3q-1)] 
  tcc(D) = (D/Dmin)3q-5 tper / [G(q,Xc)πτeff [1+1.25(e/I)2]0.5] 

G
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Actual outcome 
Collisions do not either destroy a planetesimal or not 

The largest fragment in a collision, flr = Mlr/M is given by 
  Q < QD

*      flr = 1 – 0.5 (Q/QD
*) 

  Q > QD
*      flr = 0.5(QD

*/Q)1.24 

The size distribution of the fragments can then be constrained by 
considering that the total mass of remaining fragments = M-Mlr 

For example, experiments show the fragments to have a size 
distribution with an exponent 
  qc ≈ 1.93 
(although results get 1.83-2.17, and there may be a knee in the 
size distribution at 1mm) 

This means that the second largest fragment must have size: 
  D2/D = [(1-flr)(2/qc-1)]1/3 

We now know the outcome and frequency of all collisions in a 
planetesimal disk 



Real cascade size distribution 

The size distribution is not that of an infinite collisional cascade: 

•  The largest planetesimals are only so big, Dmax, so mass is lost from the 
cascade 

•  The cascade is not self-similar, since Xtc is a function of D 

•  The smallest dust is removed faster than it is produced in collisions and 
so its number falls below the q=11/6 value 



Radiation forces 

•  Small grains are affected by their interaction 
with stellar radiation field (Burns et al. 1979) 

•  This is caused by the fact that grains remove 
energy from the radiation field by absorption and 
scattering, and then re-radiate that energy in the 
frame moving with the particle’s velocity: 
   Frad=(SA/c) Qpr [ [1-2(dr/dt)/c]r – r(dθ/dt)θ ] 
        = radiation pressure (r) + 
           Poynting-Robertson drag (θ) 

•  The drag forces are defined by the parameter β 
which is a function of particle size (D): 
  β=Frad/Fgrav=Cr(σ/m)〈Qpr〉T*(L*/Lsun)(Msun/M*), 
where Cr = 7.65x10-4 kg/m2 

•  For large spherical particles: 
   β = (1150/ρD)(L*/Lsun)(Msun/M*)  

Qabs 

S 

S 

v 

Qsca 

Qpr=Qabs+Qsca[1-〈cos(α)〉] 

α 



Radiation pressure 

Most important consequence is the change in 
orbital elements for particles released from a 
large object (can be derived from the 2D orbits 
from position and velocity at P the same): 

     anew=a(1-β)[1-2β[1+ecos(f)][1-e2]-1 ]-1 
     enew=[e2+2βecos(f)+β2]0.5/(1-β) 
     ϖnew-ϖ =f-fnew=arctan[βsin(f)[βcos(f)+e]-1] 

which means particles are unbound if β>0.5 

•  The radial component is 
called radiation pressure, 
and essentially causes a 
particle to “see” a smaller 
mass star by a factor     
(1-β), so that particles 
with β>1 are not bound 
and leave the system on 
hyperbolic trajectories 

•  This means that a small 
particle orbiting at “a” has 
a different orbital period to 
that of larger objects: tper 
= [a3/M*(1-β)]0.5 which 
also moves the locations 
of resonances etc 



Poynting-Robertson drag 

•  Poynting-Robertson drag causes dust grains to spiral into the star while at 
the same time circularising their orbits (dIpr/dt=dΩpr/dt=0): 
    dapr/dt = -(α/a) (2+3e2)(1-e2)-1.5  ≈ -2α/a   
    depr/dt = -2.5 (α/a2) e(1-e2)-0.5     ≈ -2.5eα/a2 
    where α = 6.24x10-4(M*/Msun)β  AU2/yr 

•  So time for a particle to migrate in from a1 to a2 is 
    tpr = 400(Msun/M*)[a1

2 – a2
2]/β   years 

•  On their way in particles can become trapped in resonance with interior 
planets, or be scattered, or accreted, or pass through secular resonances… 

•  Large particles move slower, and so suffer no migration before being 
destroyed in a collision with another large particle (tpr∝D whereas tcc∝D0.5), 
with the transition for which P-R drag is important 
     βpr = 5000τeff (r/M*)0.5 



Collisions vs P-R drag 

Consider a belt of planetesimals at r0 which 
is producing dust of just one size 

That dust population then evolves due to 
  collisions: tcol = tper / 4πτeff 
  P-R drag: drpr/dt = -2α/r 

The continuity equation is: 
  d[n(r)drpr/dt]/dr = -n(r)/tcol 
which can be expanded to: 
  dn/dr – n/r = Kn2r-1.5 
and solved using Bernoulli’s equation: 
  τeff(r) = τeff(r0) [ 1+ 4η0(1-(r/r0)0.5) ]-1 
where η0 = 5000τeff(r0)[r0/M*]0.5/β = tpr/tcol 

Note that the same equation implies that 
particles evolving due to P-R drag have a 
size distribution n(D) ∝ ns(D)D 

If η0 >> 1 then dust remains 
confined to the planetesimal belt  

Regardless of τeff(r0), the maximum 
optical depth at r=0 is 5x10-5β[M*/r0 ]0.5 



Disk particle categories 

This motivates a division of disk into particle categories depending on size: 

•  β << βpr (large): planetesimals confined to belt 
•  β ≈ βpr (P-R drag affected): depleted by collisions before reaching star 
•  βpr < β < 0.5 (P-R drag affected): largely unaffected by collisions 
(evaporate at star) 
•  0.1<β<0.5 (β critical): bound orbits, but extending to larger distances 
than planetesimals 
•  β>0.5 (β meteoroid): blown out on hyperbolic orbits as soon as created 

Which categories 
exist in a disk 
depends on the disk 
density 



P-R drag dominated disks 

A significant P-R drag affected grain population is 
only expected in tenuous disks for which 
  τeff < τeffPR = 10-4 [M*/r]0.5 
since then βpr<0.5 

Such disks have a size distribution with area 
dominated by grains ~βpr in size 
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The asteroid belt and zodiacal cloud are examples of 
this regime, since τeff ≈ 10-7 meaning the material in 
the asteroid belt should be concentrated in particles 
Dpr~500µm with smaller particles dominating closer 
to the Sun (100-200µm dominate accretion by Earth, 
(Love & Brownlee 1993) 



Collision dominated disks 

The majority of debris disks have  
  τeffPR < τeff < 0.1 
meaning that P-R drag is insignificant, but that grains 
getting blown out by radiation pressure are not created 
quickly enough for them to contribute much to σtot 

Such disks have a size distribution with area dominated by 
grains β~0.1-0.5 in size and so may have a large β critical 
component 

Since grains with β>0.5 are removed on orbital timescales 
(e.g., consider that when β=1 velocity is constant so one 
orbital time moves grains from r to 6.4r), they become 
important when tcol < tper and so τeff > 0.1 (note that such 
disks are becoming optically thick) 



Wavy size distribution: bottom end 

We expect the size distribution to differ from 
q=11/6 for small sizes because of their 
removal by radiation forces 

•  a sharp cut-off causes a wave, since β 
critical grains should be destroyed by β>0.5 
grains (Thebault, Augereau & Beust 2003) [the period 
of the wave is indicative of Xtc]  

•  if a large number of blow-out grains do 
exist, however, their large velocities can 
significantly erode the β critical population 
(Krivov, Mann & Krivova 2000) 



Wavy size distributions: middle/top 

The transition from strength to gravity 
scaling also causes a wave in the size 
distribution 

•  If QD
* ∝ Ds  then equilibrium size 

distribution has (O’Brien & Richardson 2003): 

•  q>11/6 if s<0 (strength regime) 
•  q<11/6 if s>0 (gravity regime) 

•  The transition between the two size 
distributions causes a wave in the 
distribution (Durda et al. 1998), and asteroid belt 
size distribution well fitted thus constraining 
QD

* vs D and concluding that D>120km are 
primordial (Bottke et al. 2005) 

p=
3q

-2
 



Simple evolution model 

The cut-off in the size distribution at Dmax means no mass input at the top end 
of the cascade resulting in a net decrease of mass with time: 

  dMtot/dt = - Mtot/tcol 

where Mtot is dominated by grains of size Dmax which, assuming a size 
distribution described by q, have a lifetime of 

  tcol = r1.5 M*
-0.5 (ρrdrDmax/Mtot) (12q-20)(18-9q)-1[1+1.25(e/I)2]-0.5/G(q,Xc) 

This can be solved to give: 

  Mtot(t) = Mtot(0) [ 1 + t/tcol(0) ]-1 

In other words, mass is constant until a significant fraction of the 
planetesimals of size Dmax have been catastrophically destroyed at which point 
it falls of ∝ 1/t  



Dust evolution: collision dominated 
Forgetting waviness, the size distribution of dust in a 
collisionally dominated disk is proportional to the 
number of large planetesimals and so is the area of 
the dust (which is what is seen): 
  σtot = Mtot (18-9q)(6q-10)-1ρ-1(Dmin/Dmax)3q-6Dmin

-1 

A common way of expressing this observationally is 
the fractional luminosity of the dust, which if you 
assume the black body grains: 
  f = Lir/L* = σtot / 4πr2  Diameter, D 

σ(D), 
AU2 

Dmin 

Dmax 

The mass (or f) of a disk at late times is 
independent of the initial disk mass; i.e., 
there is a maximum possible disk 
luminosity at a given age: 

  fmax = r1.5M*
-0.5(dr/4πrtage)(Dmin/Dmax)5-3q * 

           2[1+1.25(e/I)2]-0.5/G(q,Xc) 



Evolution of size distribution 

The evolution of 
the size 
distribution can be 
followed using 
schemes where, in 
each timestep, 
mass is lost from 
each size bin due 
to destructive 
collisions with 
other 
planetesimals, and 
mass is gained 
due to the 
fragmentation of 
larger particles 
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Dust evolution: blow-out grains 

The exact number of grains below the radiation 
pressure blow-out limit depends on how many 
are created in different collisions: 
•  planetesimals with dusty regoliths may release 
large quantities in collisions 
•  tiny grains may condense after massive collision 
•  small grains have higher velocities and so 
preferentially escape in gravity regime Diameter, D 

σ(D), 
AU2 

Dmin 

Dmax 

Regardless, since their production rate is ∝ Mtot
2 and their loss 

rate is constant, their number will fall ∝ Mtot
-2 and so ∝ t-2 



Massive collisions 

The collision rate, Rcol, gives a mean time between collisions, tcol, which the 
steady state model can be used to work out the number of collisions that 
occur between objects of size D to D+dD and Dim and Dim+dDim 

However, the actual number of collisions in the timestep is a random number 
and should be chosen by Poisson statistics (Durda et al. 1997) 

Important for collisions between largest 
objects which happen infrequently, but 
have large impact on disk 

Models show asteroid belt evolution is 
punctuated by increases in dust when 
large asteroids are destroyed 

This is not usually the case for debris disks for which single asteroid 
collisions do not produce a detectable signature  



Steady state vs stochastic evolution 

That is the steady state model for planetesimal belt evolution, and 
explains the observed ∝ t-1 evolution  

Several mechanisms have been proposed to cause non-equilibrium 
evolution, including: 

•  close passage of nearby star (Kenyon & Bromley 2002) 

•  formation of Pluto-sized object in the disk (Kenyon & Bromley 2004) 

•  passge through dense patch of ISM (Arytmowicz & Lubow 1997) 

•  dynamical instability in the disk (e.g., LHB type event; Gomes et al. 2005) 
•  sublimation of supercomet (Beichman et al. 2005) 

•  massive collision between two asteroids (Wyatt & Dent 2002) 

All of these models can be interpreted in terms of the steady state 
model: a collisional cascade is rapidly set up in the system and the 
same physics applies 



Population synthesis 

To explain the observed distributions of 
excesses, assume stars all have a 
planetesimal belt, chosen from a 
distribution of initial masses and from a 
distribution of radii, then choose their 
spectral types and ages from appropriate 
ranges to get the observed populations 
(Wyatt et al. 2007b) 



Self-stirring 
Assume that: 

•  debris disks are stirred 
by the formation of 
Pluto-sized objects 
within them, a process 
which takes longer 
further from the star 

•  before the disk is “self-
stirred”, the dust/disk 
mass ratio is lower by 
50x that of a collisional 
cascade 

•  each annulus is 
evolved separately  



Optical properties 

Optical constants can be used to work out the bulk properties of the 
grains (Qabs, Qsca and Qpr) using Mie theory for compact spherical 
grains, and geometric optics and Rayleigh-Gans theory in 
appropriate limits (Laor & Draine 1993) 

Astronomical silicate (Draine & Lee 1984) Organic refractory (Li & Greenberg 1997) 

•  Emission efficiency Qem=Qabs     ~1 for λ<D     and ~(λ/D)n for λ>D 
(although there are emission features, e.g., 10 and 20 µm features of 
silicates from Si-O stretching and O-Si-O bending modes) 
•  Albedo = Qsca/(Qabs+Qsca) 



Radiation pressure coefficient 
Remember Qpr=Qabs+Qsca[1-〈cos(α)〉] where 〈cos(α)〉 is the asymmetry 
parameter (asymmetry in light scattered in forward/backward direction) 

But we’re interested in β=Frad/Fgrav=(1150/ρD)(L*/M*)〈Qpr〉T* 
where 〈Qpr〉T* = ∫QprF*dλ / ∫F*dλ is Qpr averaged over stellar spectrum 

•  higher mass stars remove larger grains by radiation pressure (~1µm for K2V 
and 10µm for A0V) 
•  porous grains are removed for larger sizes 
•  turnover at low D means small grains still bound to K and M stars 

K2V A0V 



Equilibrium dust temperature 

The equilibrium temperature of a dust grain is determined by the balance 
between energy absorbed from the star and that re-emited as thermal radiation: 

  [g/(4πr2)]  ∫ Qabs(λ,D) L*(λ) dλ = G ∫ Qabs(λ,D) Bν(λ,T(D,r)) dλ 

where dust temperature is a function of D and r, g=0.25πD2, G=πD2 

Since ∫ L*(λ) dλ = L* and ∫ Bν(λ,T) dλ = σT4, then  

  T(D,r) = [ 〈Qabs〉T* / 〈Qabs〉T(D,r) ]0.25 Tbb 

where Tbb = 278.3 L*
0.25 r-0.5 and 〈Qabs〉T* is average over stellar spectrum 

Small particles are 
hotter than black 
body because they 
absorb starlight 
efficiently, but 
reemit inefficiently 



Emission spectrum 
The emission from a single grain is given by 
  Fν (λ,D,r) = Qabs(λ,D) Bν(λ,T(D,r)) Ω(D) 
where Ω = 0.25πD2/d2 is the solid angle subtended by the particle at the Earth 

If the disk is axisymmetric then define the distribution of cross-sectional area 
such that σ(D,r)dDdr is the area in the range D to D+dD and r to r+dr  
and so ∫∫σ(D,r)dDdr = σtot

 

Thus the total flux in Jy from the disk is 
                        rmax  Dmax 
  Fν  = 2.35x10-11 ∫  ∫   Qabs(λ,D) Bν(λ,T(D,r)) σ(D,r) d-2 dD dr                        rmin   Dmin 

where area is in AU2 and distance d is in pc 

This equation can be simplified by setting σ(D,r)=σ(D)σ(r) or just =σ(D) 

Even more simply the grains can be assumed to be black bodies Qabs=1 at the 
same distance giving Fν  = 2.35x10-11 Bν(λ,Tbb) σtot d-2 



Modelling images 

An image is made up of many pixels, each of which has a 
different line-of-sight through the disk 

The surface brightness of emission in each pixel in Jy/sr is 
worked out using a line-of-sight integrator: 
                        RmaxDmax 
Fν/Ωobs=2.35x10-11∫ ∫ Qabs(λ,D)Bν(λ,T(D,r))σ(D,r,θ,φ)dDdR                         RminDmin 

where σ(D,r,θ,φ) is volume density of cross-sectional area in 
AU2/AU3 per diameter, and R is the line of sight vector 

This equation can be simplified by setting 
σ(D,r,θ,φ)=σ(D)σ(r,θ,φ) 
Fν/Ωobs = P(λ,r) σ(r,θ,φ) dR 
                                          Dmax 
P(λ,r)=2.35x10-11∫Qabs(λ,D)Bν(λ,T(D,r))[σ(D)/σtot]dD                       Dmin 

where σ(r,θ,φ) depends on dynamics, and P(λ,r) depends on 
composition/size distribution 

Ωobs 

R                         



Modelling structure 

A model for the spatial distribution of material, σ(r,θ,φ), can be derived 
from 2 body dynamics and assuming distributions of orbital elements. 

For example, in 2D: 

(1)  Make a grid in r and θ 
(2)  Choose N particles on orbits with 

•  Semimajor axis, a 
 e.g., between a1 and a2 

•  Eccentricity, e 
 e.g., between 0 and emax 

•  Pericentre orientation, ϖ 
e.g., between 00 and 3600 

•  Mean longitude, λ 
 e.g., between 00 and 3600 

(3) Convert particle location into r and θ 
(4) Add up number of particles in each grid cell 



Real disk images 

The line-of-sight integrator will give a perfect image of the disk, the one that 
arrives at the Earth’s atmosphere 

The image is blurred by the point spread function of the telescope 
•  ideally there will be a psf image to convolve the perfect image with 
•  if not, can assume Gaussian smoothing with FWHM=λ/Diameter telescope 
•  this is what you compare to the observation 

The images are noisy 
•  often assume each pixel has additional uncertainty defined by gaussian 
statistics with given 1σ 
•  Monte-Carlo: to ascertain effect on image, create many noisy model 
images (each with random noise component) and see how diagnostics of 
model are affected 



Application to Fomalhaut images 
The disk modelling process is evident through the example of the Fomalhaut 
disk (Holland et al. 2003; Wyatt & Dent 2002): 

450µm observation                       model                        residuals 

•  The observation has three observables: mean peak brightness of the lobes, 
mean radial offset, mean vertical half maximum width 
•  The model had three free parameters: total area, radius, and inclination 
(although slightly more information on radial and vertical structure) 



Fomalhaut SED 
Once the radial distribution was constrained using the image, the full SED 
could be used to constrain the size distribution 

model changing q 

The slope of the size distribution could be well constrained as different dust 
sizes (at the same distance) have different temperatures, but the composition 
could not 

model changing composition 



Extended dust distributions 

Short 
wavelengths 
probe smallest 
grains and so 
are dominated 
by dust on 
orbits affected 
by pressure and 
drag forces 

The extended structure of AU Mic can be 
explained by dust created in a narrow belt at 
~40AU (Augereau & Beust 2006; Strubbe & Chiang 2006) 

β Pictoris dust distribution can be explained in the same way (Augereau et al. 2001) 


