M. Pettini: Structure and Evolution of Stars
EXERCISES: Set 1 of 4

Q1: On the basis of the ratio of the ‘characteristic’ distance between two
of the objects below to their ‘characteristic’ size (radius), which are ‘closer’
together, planets in the solar system, stars in the Milky Way Galaxy, or
galaxies in the local Universe?

Q2: Suppose the space density of stars within the Galaxy is 0.1 pc=3.

(i) How many stars would you see per square degree in a direction where
the Galaxy extends to: (a) 100 pe, (b) 1000 pc and (c) 10 000 pc?

At a distance of 50 pc from the Sun, there is a cluster of 3000 stars, occu-
pying (uniformly) a sphere of radius 1.25 pc.

(ii) If in that direction the Galaxy extends to 250 pc, how many field stars
will occupy the same apparent area as the cluster? How many will be in
front and how many behind?

About 2% of the stars, in both the field and the cluster, can be identified
spectroscopically as being virtually identical to the Sun.

(iii) What is the apparent magnitude of the solar-type stars in the clus-
ter? And what is the apparent magnitude of (a) the brightest and (b) the
faintest, of the solar-type field stars projected on the cluster?

(iv) Sketch a histogram of the cumulative apparent magnitude distribution
of the solar type stars, both in the cluster and the field, putting them in
bins of width 0.5 mag. For the field component, show that the number of
stars in successive bins increases by very nearly a factor of two per bin.



L3
(1) Explain what astronomers mean by the term ‘proper motion’.

(ii) Two stars are at distances of 10 pc and 1kpc from the Sun, respectively.
Which of the two stars would you expect to show the higher proper motion
and why?

(iii) Two solar-type stars are both at a distance of 50pc from the Sun.
One star is a member of the halo population, while the other is a disk
star. Which of the two stars would you expect to show the higher proper
motion? Which other physical property would you expect to be different
between the two stars?

(iv) A star at a distance of 10 pc is travelling at 5km s™! along a path
perpendicular to our line of sight. What is its proper motion, in seconds

of arc per century?

(v) Suppose the Galaxy is rotating rigidly with a period of 108 years. Find
the proper motion of any star in the plane of the Galaxy, as measured
relatively to a fixed background of extragalactic objects.

(vi) An astronomer measures the following positions for a bright star at
yearly intervals:

Date RA Dec

1 Jan 2000 12h30m15s.1 +51°20'15”.0
1 Jan 2001 12h30m16s.9 +51°20'32".3
1 Jan 2002 12h30m18s.0 +51°20'42".5
1 Jan 2003 12h30m18s.2 +51°20'44".5
1 Jan 2004 12h30m19s.0 +51°20'52".1
1 Jan 2005 12h30m20s.4 +51°21'05".7

From these data, derive the proper motion of the star. What can you con-
clude regarding the accuracy of the positional measurements?



Q4: A gas planet orbits a 1M, solar-type star and transits in front of the
star once every 3.5 days. The light curve of the transit is shown below:
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(i) From the depth of the eclipse, calculate the radius of the planet, as-
suming that it is completely dark.

(ii) What other information might be inferred from the shape of the light
curve?

(iii) Suppose the brightness of the star is measured with a CCD (charge-
coupled device) detector in which each photon generates one measurable
electron (or ‘count’). How many counts are needed to get the same accuracy
as shown in the plot (i.e. errors of ~ 0.002 on the relative flux, assuming
Poisson statistics)? How does that compare to the maximum counts in a
CCD of ~ 60000 counts per pixel?

(iv) If the mass of the planet is 0.001 M, (approximately one Jupiter mass),
calculate the radial velocity amplitude of the star due to the orbiting planet.

(v) What wavelength shift would that give to an absorption line in the star’s
spectrum at 5000 A? How does that compare to the typical resolution of
0.1 A of the spectrographs normally used for these kinds of observations?

(vi) Another, similar, planet, which was in a wider orbit around the star,
survives during the late stages of stellar evolution and ends up orbiting the
stellar remnant—a white dwarf. With a (future) very sensitive instrument
the orbit of the planet around the white dwarf can be followed. The planet’s
period is 244 yr, and the mass of the white dwarf is 0.6 M,. What is the
semi-major axis of the white dwarf-planet system?
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(vii) As projected onto the sky, the orbit of the planet around the white
dwarf appears to be a perfect circle of radius 1”7, but the white dwarf, in-
stead of being in the centre of the circle, is 60% of the way to the edge.
Show that the true orbit is an ellipse, with eccentricity e = 3/5, and cal-
culate the size of the semi-minor axis and the distance to the system.

Qba: Starting from the Planck function for blackbody radiation, derive:

(i) the Stefan-Boltzmann law
|7 7B,y = oT*
and

(ii)) Wien’s law
Amax? = 0.290cm K

Q5b: A person is standing in a room at a temperature of 20 C. The average
human body has a temperature of 36 C and a surface area of skin of 1.4m?.
Assuming that the average person absorbs and emits radiation according
to the Planck formula for blackbody radiation:

(i) Calculate the energy per second radiated by an average person.

(ii) Determine the peak wavelength of the blackbody radiation emitted by
the average person. In what region of the electromagnetic spectrum is this
wavelength found?

(iii) Calculate the energy per second absorbed by the average person from
the room.

(iv) Calculate the net energy difference between (i) and (iii), and com-
pare its value with the power consumption of an everyday household item.
What is the source of this energy?



Q6a: A star has an apparent magnitude my = 2.5. You measure its
parallax to be 8 = 0.002 arcseconds.

(i) What is the star’s absolute magnitude in V7

(i1) Given that a main-sequence A0 star has My = +0.6, what can you
deduce about the nature of the star whose parallax you have mea-
sured?

Q6b: The star explodes as a supernova, increasing its luminosity by a
factor of 50000. What are the new values of apparent and absolute mag-
nitude?

Q6c: The supernova remnant, in the shape of a ring, is expanding with a
speed v = 10, 000 km s~1. After one day, would it be possible to resolve the
ring with a ground-based telescope? And with the Hubble Space Telescope?

QT:

(i) X-ray observations have shown that the outer atmosphere of the Sun
(the corona) reaches a temperature of nearly 10 K. Why doesn’t the
Sun appear as a blackbody with Tog ~ 10% K?

(i) If the temperature gradient of a star’s atmosphere were reversed, so
that the temperature increased outwards, what type of spectral line
would you expect to see in the star’s spectrum at wavelengths where
the opacity is greatest?

(iii) Consider a star surrounded by a large hollow spherical shell of hot gas.
Under what circumstances would you see this shell as a ring around
the star? If you observed the ring with a spectrograph, what type of
spectrum would you see?






M. Pettini: Structure and Evolution of Stars
EXERCISES, Set 1: Solutions

Q1: On the basis of the ratio of the ‘characteristic’ distance between two
of the objects below to their ‘characteristic’ size (radius), which are ‘closer’
together, planets in the solar system, stars in the Milky Way Galaxy, or
galaxies in the local Universe?

Al: Taking the radius of Neptune (~ 25000km) as a typical planetary
size, and the radius of the orbit of Jupiter (5 AU) as the typical distance
between planets, the typical distance between planets in units of planetary

radii is: g o Ls 1ot
X 1.0 X m
n = : =0.3 x 10° kil

(R>p1anet 25 x 103 x 103 m % (1.1)

Taking the Sun to be a typical star, and the distance to our nearest star,
a Cen (1.3pc), as the typical separation between stars, we have

d 1.3 x 3.1 x 106
(—) _ 18x31x107m g8 (1.2)
star

R 7.0 x 108 m

The nearest galaxy in M31 (the Andromeda galaxy) at d ~ 780kpc (ignor-
ing the Magellanic Clouds, which are at d ~ 50kpc but can be considered
as companions to the Milky Way), and a typical galaxy like the Milky Way
has a radius R ~ 15kpc. Thus:

k
(i) _ I80%pe _ 4 (1.3)
galaxy

i 15 kpe

Therefore, stars are really far apart, three orders of mgnitude more so
than planets, and galaxies are quite close together. This suggests that
stars basically never interact with each other (but we have not considered
multiple stars here), whereas galaxies interact frequently. For comparison,
the Bohr radius divided by the electron ‘radius’ is ~ 20000, similar to the
typical planetary value.



Q2: Suppose the space density of stars within the Galaxy is 0.1 pe 4,

Q2(i): How many stars would you see per square degree in a direction
where the Galaxy extends to: (a) 100 pe, (b) 1000 pc and (c) 10 000 pc?

A2(i):

The solid angle in steradians (7? steradians = 180%sq. deg) subtended by
area A at distance d is Q@ = A/d%.
The total number of stars is N = n x V, where n is the number density

and V is the volume.
The surface density of stars is ¥ = N/

Thus, in a cone of height d and base 72, we have:
N nVd? Lr?d)d® 1
¥ = q = nA = n (37;; ) = gndg stars steradian™ (1.4)
and
¥ 1 d3 i stars sq. deg ™!
= —nd’ — A

3" 1802 166

Therefore:

i 2
= 3 0.1pc~?100% pc? @ ~ 10 stars sq. deg™" (a)

i 2
= 3 0.1 pc~®1000° pc? T~ 10%stars sq. deg™! (b)

1807

1 2
¥ = g 0.1pc™210000° pc? W—Q ~ 107 stars sq. deg ™! (c)

180

Q2(ii): At a distance of 50 pc from the Sun, there is a cluster of 3000 stars,
occupying (uniformly) a sphere of radius 1.25 pc.

If in that direction the Galaxy extends to 250 pc, how many field stars will
occupy the same apparent area as the cluster? How many will be in front

and how many behind?

A2(ii): From A2(i), we have:

1 s T
3= = 0.1pc3250% pe? T~ 160stars sq. deg™! (1.5)

1802
2



Projected area of the cluster is:

g A _ 7’ 180" 1.25°pc® 180°

== — 6455q.deg., (1.6
&R T T 50pe sa.deg.,  (1.6)

and therefore, the number of field stars seen projected against the cluster

is:
N =X = 159stars sq. deg.” ! - 6.45sq. deg. = 1025 stars .

Denoting N; and Ny as the number of stars respectively in front and behind
the cluster, we have:

Ny (AN /50N 1\ 1 )
Ny  \ds/ \250/  \5) — 125° '
and since N = N; + Ny ~ Ny = 1025, we have:
1025

Ny=——m~8, Ny~1025—8 =101
1= To5 , Vo 5 017

Q2(iii): About 2% of the stars, in both the field and the cluster, can be
identified spectroscopically as being virtually identical to the Sun.

What is the apparent magnitude of the solar-type stars in the cluster? And
what is the apparent magnitude of (a) the brightest and (b) the faintest,
of the solar-type field stars projected on the cluster?

A2(iii): The Sun has absolute magnitude My = 4.8.

The distance modulus has been defined as: m — M = 5logd/10, where d
1s in pc.

Thus, at d = 50pc, m — M = 5log5 = 3.5 and my = 4.8+ 3.5 = 8.3.

The faintest star is likely to be at d = 250pc. Therefore, its distance
modulus will be m — M =5log25 = 7.0 and my =48 +7.0=11.8

To deduce the apparent magnitude of the closest solar-type star, we have
to work out how far we need to look, on average, until we find a solar-type
star in the solid angle subtended by the cluster.

We know that n = 0.1pc™2, and that 2% of the stars are of solar type.
Thus, ng = 0.01 x 0.02 = 0.002 pc~3.
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We also know that the number of stars projected onto an area of sky is:
1 72
N =00 = —nd®*—=0
7= 3 R0

and we know that £ = 6.45sq.deg. So, the problem reduces to working
out the value of d at which N = 1:

31807\ 3 1802 i
d= 2 = = = g1 pe. (1.8)
=3 0.002 pc=3 72 6.45sq. deg

A solar-type star at a distance of 91 pc will therefore have a distance modu-
lus m—M = 5log 91/10 = 4.8 and an apparent magnitude my = 4.8+4.8 =
9.6.

Q2(iv): Sketch a histogram of the cumulative apparent magnitude distri-
bution of the solar type stars, both in the cluster and the field, putting
them in bins of width 0.5 mag. For the field component, show that the
number of stars in successive bins increases by very nearly a factor of two
per bin.

A2(iv):

For the cluster, we have my = 8.3 with 0.02 x 3000 = 60 stars. For the
field, we have from A2(iii), 9.6 < my < 11.8. Thus, in order to build the
histogram required, we need to work out distances and numbers of stars
corresponding to my = 9.5,10,10.5,11,11.5, 12.

From the definition of the distance modulus, we have:

mkﬂlfj:S)

d = 100" (1.9)

and for the number of stars:

1 2
jom Q = —
N=2N=onm

ﬂ_Z

ogp 045" = 1.3 x 107%° .

(1.10)

1
Qdd = 3 0.002 pc3



Using the above two equations, we have:

my d (pc) N
9.5 87 0.9
10.0 110 L7
10.5 138 3.4
11.0 174 7

11.5 219 14
12.0 275 27

As can be seen from the Table, N indeed increases by about a factor of
2 every 0.5mag interval in my. That this is the case generally, it can be
seen by considering the following:

d
mi = 5log (1‘5) + M

d
my = 5 log (ﬁ) + M

Therefore:
dy dg
_ — = 1. —%51 2
mi — me = blog (10) og (10)
= Slog (Z—;)
Hence: J
a0 = o |
5 e (dg)
and q
1
— =1.26
dy
and



Q3(i): Explain what astronomers mean by the term ‘proper motion’

A3(i): The term ‘proper motion’ reflects the change in the positions
of some stars on the celestial sphere, relative to a fixed frame of refer-
ence based on the unchanging coordinates of very distant objects, usually
quasars at cosmological distances.

Q3(ii): Two stars are at distances of 10pc and 1kpc from the Sun, re-
spectively. Which of the two stars would you expect to show the higher
proper motion and why?

A3(ii): Proper motion arises primarily (but not exclusively) because stars
move in 3D relative to one another. Proper motion measures the projec-
tion on the plane of the sky of the 3D velocity between a star and the Sun
as an angle per unit time (usually measured in arcsec yr~1). From this it
follows that the closer a star is to the Sun, the larger its proper motion
(again in arcsec yr=') for the same value of its projected 3D velocity.

Q3(iii): Two solar-type stars are both at a distance of 50pc from the
Sun. One star is a member of the halo population, while the other is a disk
star. Which of the two stars would you expect to show the higher proper
motion? Which other physical property would you expect to be different
between the two stars?

A3(iii): Stars in the Galactic halo have a higher velocity dispersion (they
move with random motions relative to one another) than stars in the disk
(with ordered rotation around the centre of the Galaxy). Thus, in general,
we would expect a halo star to have a higher proper motion than a disk
star, and indeed members of the Galactic halo population can be identified
by their high proper motions (if close to the Sun).

We would also expect an average halo star to be older than an average disk
star and to exhibit a lower proportion of elements heavier than He, that
are synthesised through successive generations of stars.



Q3(iv): A star at a distance of 10 pc is travelling at 5km s~! along a path
perpendicular to our line of sight. What is its proper motion, in seconds
of arc per century?

A3(iv): We want to work out the proper motion:
A - Ut
At d
where Af is the angle subtended by the movement Ar = v, - At L to the

line of sight of a star at distance d travelling with speed v;. Thus,

Af  5x10°ms7!
At 10 x 3.1 x 106m

=16x 10 "“rads™!

o m . vis
~ 180 x 60 x 60 648000
lyear = 3.16 x 10" s

a radians

Thus,

Af 648000

pE S x 3.16 x 107 x 100 x 1.6 x 107 = 10.4 arcsec (100 yr) ™
-

Q3(v): Suppose the Galaxy is rotating rigidly with a period of 108 years.
Find the proper motion of any star in the plane of the Galaxy, as measured
relatively to a (supposedly) fixed background of extragalactic objects.

A3(v): The angular speed is:
2r  df

wzﬁzarad v L

27 648000
108 T

w -100 = 1.3 arcsec (100yr)™"



Q3(vi): An astronomer measures the following positions for a bright star
at yearly intervals:

Date RA Dec
1 Jan 2000 12h30m 15s.1 +51°20'15".0
1 Jan 2001 12h30m16s.9 +51°20'32".3
1 Jan 2002 12h30m 18s.0 +51°20/42".5
1 Jan 2003 12h30m 18s.2 +51°20/44".5
1 Jan 2004 12h30m19s.0 +51°20'52".1
1 Jan 2005 12h30m 20s.4 +51°21'05".7

From these data, derive the proper motion of the star. What can you con-
clude regarding the accuracy of the positional measurements?

A3(vi): The point of this question is to: (a) familiarise the students with
celestial coordinates, and (b) foster a critical attitude to data.

To deduce the proper motion from year to year, we need to calculate the
angular distance between two successive positions, as given by the above
values of Right Ascension, «, and Declination, ¢. The angular distance
A is obtained by summing in quadrature the differences in RA and Dec:
A = (Ac?+ Aﬁz)l/g. Potential pitfalls to avoid are forgetting that: (i)
on the equator (i.e. when § = 0) 1s of time (1s in RA) is equivalent to
15 arcsec , and (ii) away from the equator, one has to multiply Aa by cosd
in order to obtain the correct angular distance in RA.

With these points in mind, the angular distances between two successive
measurements of RA and Dec are as follows:

Interval A (arcsec)
2000-1 24.1
2001-2 14.5
2002-3 20
2003-4 10:%
2004-5 18.9




One could average these values to deduce a mean proper motion (u) =
14.2 arcsec yr—1.

However, more importantly, the student should realise that there are large
differences between the values of A measured from year to year. These
are unlikely to be real: stars do not accelerate or decelerate from year to
year! Proper motion is smooth (at least on these timescales), and the large
scatter between the above values must therefore arise from large errors in
the measurements, of order ~ 10 arcsec.

Furthermore, in the lecture notes the students were told that the largest
value of proper motion measured for any star is u = 10.4arcsec yr—!
(Barnard’s star; see Figure 2.2 of lecture notes). This is one more rea-
son for the above measurements to be suspect.

Final point: if the accuracy of the positional measurements is & ~ 10 arcsec,
the values in the table compiled by the hypothetical astronomer are quoted
to far too many (in)significant figures. Thus, the first entry of declination
should really be quoted as +51°20".2 and so on. This sort of ‘sloppiness’
is often encountered in the astronomical literature.



Q4(i): A gas planet orbits a 1M, solar-type star and transits in front of
the star once every 3.5 days. The light curve of the transit is shown below:
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From the depth of the eclipse, calculate the radius of the planet, assuming
that it is completely dark.

A4(i): When the planet is in front of the star, the stellar light is dimmed
by 0.015 (relative flux = 0.985 of uneclipsed star). Since R o VA:

RP
~? = /0.015 = 0.12
Ry

Q4(ii): What other information might be inferred from the shape of the
light curve?
A4(ii):

(a) From the time difference At;» = to —t; and R, it is possible to deduce
the relative velocity v of the star and planet.

(b) Knowing v and R we can deduce the inclination of the orbital plane
to the line of sight, by comparing v - At; 4 with Rg.
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(c) From v and the period P we can deduce the average distance of the
planet from the star

(d) We can measure limb darkening of the star by comparing the relative
fluxes at t9 and #3.

Q4(iii): How many counts are needed to get the same accuracy as shown
in the plot (i.e. errors of ~ 0.002 on the relative flux, assuming Poisson
statistics)? How does that compare to the maximum counts in a CCD of
~ 60000 counts per pixel?

A4(iii): Photons obey Bose-Einstein statistics, whereby the lo uncer-
tainty is given by N /N, where N is the number of photons recorded.
Thus, to obtain a 1o uncertainty o(N)/N = 0.002, we require (0.002)72 =
250000 counts.

Since we are told that each CCD pixel saturates at ~ 60000 counts, we
need to spread the star’s light on at least 5 pixels on the detector in order
to achieve the statistical accuracy of the photometric data shown in the
plot.

Q4(iv): If the mass of the planet is 0.001 M (approximately one Jupiter
mass), calculate the radial velocity amplitude of the star due to the orbiting
planet.

A4(iv): The star and the planet orbit about their common centre of mass:

with Mgry = Mpre, and therefore:

M,
= ry—— = (0.001 1.11
FL =13 Mo 2 ( )
From Kepler’s third law, we have:

4% (1.001r9)3
G (1.001M)

P? = dr” (r -I-?")S*
T G(Mp+ M) VT

(1.12)
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With P = 3.5 days, we have:

GPQM@ 1/3 9
ry o (Tﬁ“) =6.7x 10°m (1.13)
and
ri = 0.001ry = 6.7 x 10°m (1.14)

The speed of the solar-type star relative to the common centre of mass is

therefore: 5 PE—
UI'= "5 T35 x 24 x 3600s e (1.15)

Q4(v): What wavelength shift would that give to an absorption line in the
star’s spectrum at 5000 A? How does that compare to the typical resolution
of 0.1 A of the spectrographs normally used for these kinds of observations?

A4(v): From the Doppler formula, we have v/c = AX/A. Therefore,

1
000234 (1.16)

AM = 5000 - =
3 x 108

which is only 0.0023/0.1 < 1/40 of the typical spectral resolution. Hence,
means must be devised to keep the spectrograph very stable and measure
its wavelength scale with great precision.
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Q4(vi): Another, similar, planet, which was in a wider orbit around the
star, survives during the late stages of stellar evolution and ends up or-
biting the stellar remnant—a white dwarf. With a (future) very sensitive
instrument the orbit of the planet around the white dwarf can be followed.
The planet’s period is 244 yr, and the mass of the white dwarf is 0.6 M.
What is the semi-major axis of the white dwarf-planet system?

A4(vi): We have:
&® = MP? = a = (MP)"? (1.17)

Scaling to the solar system, where the Earth’s orbit has a semi-major axis
of a = 1 AU and period P = 1yr aroud a star of mass M = 1M, we have:

1/3

a = [(0.6) (244)*] 7" = 33 AU (1.18)

Q4(vii): As projected onto the sky, the orbit of the planet around the
white dwarf appears to be a perfect circle of radius 1”7, but the white
dwarf, instead of being in the centre of the circle, is 60% of the way to the
edge. Show that the true orbit is an ellipse, with eccentricity e = 3/5, and
calculate the size of the semi-minor axis and the distance to the system.

A4(vii): Imagine that we are viewing the ellipse edge on, along the semi-
major axis:

Then,
i B
sing = — = =2 (1.19)
ae  a
and hence: - e
A== (1.20)
i) a

and for x;/xs = 0.6, e = 3/5.
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The semi-major axis is:

b=ay/1—e2=233AU+/1—(3/5)%=26.4AU (1.21)

The distance is just:

b 26.4 AU

“tanf  tan (1 361000”)

= 5.45 x 10° AU (1.22)
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Q5a: Starting from the Planck function for blackbody radiation, derive:

(i) the Stefan-Boltzmann law
/ 7B,dv = oT*
0

and

(i1) Wien’s law: ApaxT = 0.290cm K.

A5a(i): The Planck function gives the dependence of blackbody radiation
on temperature and frequency; it may be transformed by introducing a
new variable x = hv /KT, so that v = x - kT'/h and dv = (KT'/h) dx

2h1? 1 2h (KT\® z°
BV = — = N . (1.23)
2 explhv/ET| -1 ¢ \h e? — 1
Integrating over all frequencies:
o0
= / B dy
0
B /°° 2mhy? 1 iy
iy 2 explhv/kT] -1 2

onh (kT /00 z°
= | — dits .
g? h 0 € —1
From numerical integration tables (or by numerical calculation), the value
of the above integral is found to be:

co 233 71_4
de = — 1.2
/0 =—1"" 15 )

giving us the required result:

4 0
o 2rh (KT / ‘:ES ey o Vol e 7r_4 _ 2W5k4, T4 _ o
& h p € —1 e2h® 18 1Be*h?
(1.26)




where all the physical constants have been grouped together under the
Stefan-Boltzmann constant:

B 2okt

7T 1523

~ 5.67 x 107 erg em™? K4 g1

Aba(ii): Wien'’s law gives the wavelength at which the Planck function:
2hc? 1
A5 exp[is] — 1

By = (1.27)

is at its maximum as a function of temperature. By introducing a new
variable: z = he/AKT so that A = (he/kT) - (1/x), we can re-write B), as:
2k°TS b

By = )
A hicd er — 1

(1.28)

To find the wavelength A at which B, as a maximum, we differentiate
eq. 1.28 and equate it to zero:
@:@d_x:wﬂf&lﬂ ($4[5(€$—1)—$€I]> hc _0  (1.29)
dA dz dA hic? (e% — 17 AkT '

A solution exists at x = 0 (A = o00), but that is simply due to the fact
that the slope of the Planck function at long wavelengths is nil. However,
this solution is not of interest since it represents a minimum. To find the
solution of interest, the equation that has to be solved is

5(e" —1) —ze® =0 (1.30)
which can be re-arranged as:

e‘$+% =1. (1.31)

The equation may be solved numerically (see Figure below for a graphical
solution) to give Tpax = 4.96.

Thus:
hc

)\max = oA
LmaxkT
B 6.626 x 1072 erg s x 2.9979 x 1019 ¢em 57!

4.96 x 1.3807 x 10~16erg K-17
_0.290cm K

_f["T

(1.32)
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Q5b: A person is standing in a room at a temperature of 20 C. The average
human body has a temperature of 36 C and a surface area of skin of 1.4 m2.
Assuming that the average person absorbs and emits radiation according
to the Planck formula for blackbody radiation:

(i) Calculate the energy per second radiated by an average person.
A5Db(i): Using

Lperson = 4nR*0T? (1.33)
with 47R%2 = 14m?, ¢ =567 x 108W m2 K™, and T = 36 + 273 =

309 K, we have:

Loerson = 1.4 x 5.67 x 1078 x 309* = 724 W (1.34)
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(ii) Determine the peak wavelength of the blackbody radiation emitted by
the average person. In what region of the electromagnetic spectrum is this
wavelength found?

Ab5b(ii): Using Wien’s displacement law, AmaxT’ = 0.290 cm K, we have:
Amax = 0.290/309 = 9.4 um which is in the mid-infrared range.

(iii) Calculate the energy per second absorbed by the average person from
the room.

A5Db(iii): Repeating the calculation at (i), we find:

Lroom = 1.4 x 5.67 x 1078 x 293* = 585 W (1.35)

(iv) Calculate the net energy difference between (i) and (iii), and compare
its value with the power consumption of an everyday household item. What
is the source of this energy?

A5b(iv): Comparing the answers at (i) and (iii), we see that in this
situation the average person loses energy at a rate of 139 W — similar
to a bright light-bulb! This power is provided by the metabolism of the
human body.
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Q6a: A star has an apparent magnitude my = 2.5. You measure its
parallax to be # = 0.002 arcseconds.

(i) What is the star’s absolute magnitude in V7

(i1) Given that a main-sequence A0 star has My = +40.6, what can you
deduce about the nature of the star whose parallax you have mea-
sured?

Aba:

(i) Since for § = larcsec d = 1pc, d = 500 pc for § = 0.002 arcsec. The
distance modulus is defined as:

mV—MV:5logd#5:8.5.
Hence, the star’s absolute magnitude is My = 2.5 — 8.5 = —6.0

(i) Thus, this star is 6.6 magnitudes (a factor of 437) more luminous than
a main-sequence AQ star. The only stars with such high luminosities
are supergiants.

Q6b: The star explodes as a supernova, increasing its luminosity by a
factor of 50000. What are the new values of apparent and absolute mag-
nitude?

A6b: Recalling that fluxes are magnitudes are related by the expression:
I

P
it can easily be seen than an increase in luminosity by a factor of 50000
corresponds to a decrease of both the apparent and absolute magnitudes
by 11.75 magnitudes. Hence, My = —17.75 and my = —9.25.

1004><(m1 ~m2)

Q6c: The supernova remnant, in the shape of a ring, is expanding with a
speed v = 10,000 km s~%. After one day, would it be possible to resolve the
ring with a ground-based telescope? And with the Hubble Space Telescope?
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A6c: If the ring-like structure has an expansion velocity of 10000 km 5L,
then the ring diameter after one day is

Dgn = 2 x 10000 x 1000 x 60 x 60 x 24 = 1.73 x 10"*m

At a distance of 500 x 3.1 x 10¥ m, the SN remnant diameter will subtend
an angle:

173 x 10"
500 x 3.1 x 1016
— 1.1 x 10~ " radians

—1.1x1077 x i x 60 x 60 = 0.023 arcsec
T

With the typical atmospheric seeing of FWHM = 1 arcsec, the ring will not
be resolved by ground-based telescopes, and will appear as a point source.

Although there is no atmosphere above the Hubble Space Telescope, its
optics produce images with a resolution of FWHM = 0.05 arcsec at best.
Thus, we’ll have to wait for a few days before the HST will be able to
resolve the supernova remnant.
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Q7(i): X-ray observations have shown that the outer atmosphere of the
Sun (the corona) reaches a temperature of nearly 109 K. Why doesn’t the
Sun appear as a blackbody with Tug ~ 106 K?

AT(i): When looking into a star’s atmosphere, we always look to an
optical depth 7, =~ 2/3. The fact that the Sun does not appear as a
blackbody with Tug =~ 10° K tells us that the corona is optically thin (7 <
1).

Q7(ii): If the temperature gradient of a star’s atmosphere were reversed,
so that the temperature increased outwards, what type of spectral line
would you expect to see in the star’s spectrum at wavelengths where the
opacity is greatest?

A7(ii): The fact that we look down to 7\ =~ 2/3 implies that we see down
to a depth:

/ kapds ~2/3
0

Thus, at wavelengths where k) is greatest, s is smallest. If the tempera-
ture of the star’s atmosphere increases outwards, then a smaller value of
s corresponds to looking at gas at a higher temperature. At wavelengths
where the opacity is highest, one would therefore see emission lines.

Q7(iii):  Consider a star surrounded by a large hollow spherical shell
of hot gas. Under what circumstances would you see this shell as a ring
around the star? If you observed the ring with a spectrograph, what type
of spectrum would you see?

A7(iii): A large spherical shell would look like a ring if we could see
straight through the middle of the shell. Thus, the shell must be optically
thin. Near the edge of the shell, where the line of sight passes through
more gas, the shell appears brighter. Hot gas would produce an emission
line spectrum.
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M. Pettini: Structure and Evolution of Stars

EXERCISES: Set 2 of 4

Q1: In 1994 a new bright star was found, Nova Sco 1994. It turned out
that it was a sudden brightening of an X-ray binary in which an F star
is orbiting a compact, unseen, object. The mass function of the unseen
companion is defined as
(M sini)3
(M, M2) = e

and can be estimated from the radial velocity amplitude of the F star v,
the binary period P, and the inclination of the plane of the orbit to the
line of sight, sini. The mass function has the units of mass, and is the
minimum mass of the companion should the star for which we have orbital
information be a test particle (or effectively massless). When additional
information is available about the mass of the star with the orbital infor-
mation, more accurate estimates of the companion mass can be obtained.

(i) Derive the formula giving the mass function of the unseen companion
in terms of ve, P and sin i, assuming that the orbit is circular.

(ii) The Figure below shows the observed wavelength of the Fe11 \6485.10
line as function of the orbital period.

Nova Sco 1994

T T T —y T T oo T T T T T T L

6487

6484.5

6479.5

Wavelength &)
6482

6477

Binary phase

Justify the assumption that the orbit is circular using the data shown in
the Figure, and deduce the value of v. Why is the mean wavelength of
the Fe line not equal to its laboratory wavelength?
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(iii) When the system returns to quiescence, the light of the binary system
is dominated by the F-type star. In such close binaries, the stars become
deformed by the gravitational pull of the companion. This leads to their
projected surface on the sky—and therefore the total brightness—varying
with the orbital period. From such variations, the orbital inclination can
be deduced. In the case shown here, ¢ ~ 70° and P = 2.62days. From
these parameters, determine the value of the mass function.

(iv) Knowing that the mass of an F-type star is My ~ 2.4M,, deduce M.
It is generally thought that in X-ray binaries where the mass of the unseen
companion is My 2 3M, the compact object is likely to be a black hole.
Is the unseen companion in Nova Sco 1994 a black hole?

Q2: The gas density within a star decreases from the centre to the surface
as a function of radial distance r according to

P\ 2
= 0o |1 — (=
p(r) =p [ ( R) ]
where p,. is the core density and R is the star’s radius.

i) Find m(r).
ii) Derive the relation between the total mass of the star M and R.

(
(
(iii) What is the average density of the star in units of the core density p.?
(

iv) The gravitational potential energy of a star of mass M and radius R

is given by:
GM?

R

U, = —«

where « is a constant of order unity determined by the distribution of
matter within the star.

Find the value of « for the density profile given above.



Q3: The Lorentz profile:

I
by = 475 2
(v —10)" + ()
describes the ‘natural’ broadening of an absorption line due to the inher-
ent widths of the energy levels between which the atomic transition takes
place following the absorption of a photon of rest frequency 1. In the
above expression I" = 1/At is the radiative damping constant, inversely
proportional to the mean lifetime At of the excited energy level to which
absorption takes place.

(i) Show the the full width at half maximum of a Lorentzian line profile is
AVFWHM = F/Q’ﬁ

(ii) At what interval in units of I'/47 (in other words, in units of the half-
width at half maximum) from the rest frequency does the Lorentz profile
have a value of 1% of its central intensity?

(iii) Thermal broadening is described by a Gaussian distribution. For a
Gaussian distribution with the same FWHM as the Lorentz profile, what
is the probability of absorption at the same Av from the line centre as in
part (ii)?

Q4: The temperature dependence of energy generation by the triple-alpha

process is:
Gy == ]CDTS*SE_(M/TB)

where T is the temperature in units of 108 K and % is a constant.

(i) By considering the energy generation near Ty = 1 to scale as & () =
ki1Tg, show that: &, ~ koTy!, where k; and ky are constants.

(ii) Calculate the change in energy output resulting from a 10% change in
temperature.



Q5: An eclipsing-binary system has a parallax of 0.1 arcsec (with negli-
gible error) and consists of two solar-type stars with a semi-major axis of
500Rs. The period is known very accurately.

(i) What is the angular size of each of the stars and of the semi-major
axis? If you can measure angles on the sky with a 1o rms accuracy
of 0.01 arcsec, what is the percentage accuracy of the measurement of
the semi-major axis and of the radius of each star 7

(ii) Assume that the stars emit as blackbodies:

2hv3 1
2 /KT _ 17

FV(T) -

where v is the frequency is Hz, with an effective temperature Tyg ~
5800 K. If you measure the flux ratio between logr = 14.0 and 15.0
with an accuracy of 10%, with what precision can you determine the
value of T,47

(iii) If we now include an error in the measurement of the parallax of
on = 0.01 arcsec, what is the percentage accuracy in the mass of the
system?

Q6: A star is composed of H (mass fraction X = 0.7), He (mass fraction
Y = 0.3) and negligible amounts of heavier elements.

(i) Calculate the mean molecular weight immediately above and below the
radius in the star where hydrogen becomes ionized. Assuming the transi-
tion between ionized and neutral hydrogen takes place over a very small
radial distance, such that the pressure and temperature can be consid-
ered constant across the zone, what would this imply about the dynamical
stability of the zone?

(ii) Assuming that the pressure P has contributions SP from gas pressure
and (1 — §)P from radiation pressure, where 0 < 8 < 1, show that:

2 (2) = (3) 20

p p) a

(iii) A polytrope of index n has central pressure P. = W,GM?/R* and
central density p. = X, M/ (%WR?’), where W,, and X,, are dimensionless
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constants that depend only on n. Write down the equation for 5., the
value of 8 at the centre of the polytrope of index n, and show that f,
depends only on M and n.

(iv) The Sun may be approximated by a polytrope of index n = 3.25, for
which W, = 20.4 and X,, = 88.1. With x = 0.59, evaluate the constant
A in the equation 8% = A(1 — B) deduced from part (iii). What can you
conclude about the importance of radiation pressure at the centre of the
Sun?

Q7(i): Two early-type stars in the same cluster start their lives on the
H-burning main sequence with the same mass: My(A) = My(B) = 5 M.
Star A is single. Star B is a member of a binary system and throughout
its life on the main sequence loses mass to a compact companion at an
average rate M = 1 x 1078Mg yr~!. Which of the two stars do you think
will leave the main sequence first and why?

Q7(ii): An astronomer armed with a photometer and two broad-band fil-
ters, V and B, measures the following magnitudes for two stars in the
constellation of Pegasus: my(aPeg) = 2.45, mp(aPeg) = 2.45; and
my (0 Peg) = 2.40, mp(8Peg) = 4.04. On the basis of this information
alone, which of the two stars would you consider more likely to be the
closer one to the Sun? What other information would you require to defi-
nitely establish which is closer?

Q8: Using the tabulation of solar photospheric abundances by Asplund
et al. 2009 (ARAA, 47, 481) given at the end of Lecture 6, calculate the
mass fractions of H, He, C, N, O, and Ne in the Sun.






M. Pettini: Structure and Evolution of Stars
EXERCISES, Set 2: Solutions

Q1(i): Derive the formula giving the mass function of the unseen compan-
lon in terms of vy, P and sin4, assuming that the orbit is circular.

A1(i): Referring the the sketch below:

a1 as
. L
M, el M,
we have, from Kepler’s third law:
p? = 4 (a1 + ag)? (2.1)
G (ﬂ/fl -+ Mg)
with
Mml = Mgag
If the orbits are circular:
g 2
v = %al, Uy = %O‘,Q (22)
and
ﬂ — 2{ — % (2 3)
(%) a9 M1 ’ '
so that: M M
V1 = ?)Qﬁf, a; = agﬁf. (24)
Substituting into (2.1):
4mr M, k
P? = ay—- +a
G (M, + M) ( “M, 2)
o 47T2a§ (1 4 Mg) 3
G (M, + My) M (2.5)
S . WV YAt
G (M4 M) M3 VTR
4rial
—= (M; + M.
GM? M1 +Ms)



Thus:
GM} 8ma3 P

(M + M2)2 PS o

P
= v or (2.6)

Recognising that we do not observe vy directly, because of the unknown
inclination of the orbital plane to our line of sight, we have vops = vg sine,
leading to the usual formula for the reduced mass:

M} sin® B PUS’,ObS
(M + Mp)2 — 2nG

F(My, M2) = (2.7)

which groups the observables on the right-hand side of the equation.

Q1(ii): Justify the assumption that the orbit is circular using the data
shown in the Figure, and deduce the value of vo. Why is the mean wave-
length of the Fe line not equal to its laboratory wavelength?

A1(ii): The orbit is close to circular because the curve describing the
wavelength shift of the spectral line is symmetric.

The wavelength of the line varies from 6477.0 A to 6487.0 A, that is, it
shifts by +£5.0 A from a mean wavelength () = 6482.0 A. The value of vy
follows directly from the Doppler formula:

v AA 5

TN T 2T Gas20

3x10%ms™! =231km s (2.8)
By the same reasoning, the fact that (A\) — Aap = —3.1 A implies that
the Nova Sco 1994 binary system is approaching us with a velocity vgys =
(—3.1/6485.1) x ¢ = 143km s7".

Q1(iii): In the case shown here, i >~ 70° and P = 2.62days. From these
parameters, determine the value of the mass function.



A1(iii): Plugging the appropriate values into eq. 2.7, we have:

M13 . Pvg,obs
(M + M)*  2nGsin®s
(2.62 x 24 x 3600s) (231 x 10°m s71)°
T 27 X 6.67 X 10-11 3 5-2 kg1 sin® 70° (2.9)
_ 80x 1030 Jeer
2% 1030kg Mg!
= 4.0M

Q1(iv): Knowing that the mass of an F-type star is My ~ 2.4M, deduce
M.

Al(iv): If f(My, My) = 4.0M and My = 2.4M,,, we can solve numerically
for M; = 7.1M, making the unseen companion of Nova Sco 1994 one of
the best candidates for a stellar mass black hole.



Q2(i): The gas density within a star decreases from the centre to the
surface as a function of radial distance r according to

s 2
otr) = e [1- (%)
where p, is the core density and R is the star’s radius.

(i) Find m(r).

A2(i): Consider a spherical shell of radius r and thickness dr, density p
and mass dm:

The mass within the spherical shell is:
dm = 4nr’pdr (2.10)

and the mass within a sphere of radius r is obtained by integrating eq. 2.10:
m(r) = 4m / rpdr
0
T 7 2
— 4rp. | 12 1—-(—) d
TP /0 r [ = j' s
=471 p {/Trzdr—i T?“‘Ldfr}
0 R

’FS ?"5
= ey g e = e
W”'{3 SR;

(2.11)



Q2(ii): Derive the relation between the total mass of the star M and R.

A2(ii): To obtain the total mass of the star, we set r = R:

3 3
M{r = R) = 4ap, Iri - E} (2.12)
35
or
3
M(R) = 2.13)

Q2(iii): What is the average density of the star in units of the core density
pe?

A2(iii): The average density is obtained by dividing the mass just found
by the volume of the spherical star:

<>_8’1TpCR3 3 2pc
Pl="15 4xm8_ 5

(2.14)

Q2(iv): The gravitational potential energy of a star of mass M and radius
R is given by: '
GM?

R

U, = —e

where o is a constant of order unity determined by the distribution of
matter within the star.

Find the value of « for the density profile given above.

A2(iv): The gravitational potential energy of the star is given by:

M
U, = —/ R s (2.15)
0

7

With m(r) given by eq. 2.11, and dm = p(r) 4wr? dr we have:



B . 6 6 8
= B2 | Ty e d
L6220 R° R R R
e TG | —— — — — A
P 175 735~ 21 ' 45
AR
— —16x2 o —
T

Recalling the expression for the total mass of a star with the given density
profile (eq. 2.13), we have:

647°p2 R

M(R)?*= —Z&— 2.
and therefore

U o— GM? 225

== Lo

i 318
2.

T A

o vie="0.7].



Q3(i): Show the the full width at half maximum of a Lorentzian line profile
18 /—\VFPVHM’ = F/Q’ﬂ'

A3(i): The maximum value of the Lorentz profile is achieved at v = v,

where:
4

Bv =) = 5. (2.19)

The half maximum is reached at some frequency such that:
14 2 =7
(hm) = s 5 === = 2 (2.20)

2 T (o — )2 + (L)

After simplifying this equation, we have:

r2 I \? I
2 e aE— e s R — _
(Vhm — )" = g2 (M) (%) (2.21)
e
4

or

Vhm — Vg = (222)
which is the half-width at half maximum. The FWHM is just twice this
value: .

Avpwam = . (2.23)
2m

Note that in terms of the angular frequency w = 27v, Avpwpyy =T .

Q3(ii): At what interval in units of I'/4x (in other words, in units of the
half-width at half maximum) from the rest frequency does the Lorentz
profile have a value of 1% of its central intensity?

A3(ii): Since at peak a Lorentz profile has a value ¢(v = 1) = 4/T" [part
(i)], we want to know the frequency at which:

0.04
H) = = (2.24)
We thus need to solve the equation:;
- ~0.04

42

v-wl+ (L) T

iy

(2.25)
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which may be simplified to:

AP =(y—u) = (o_lm = 1) G%)Q = 99 (%)2 (2.26)

Therefore, in units of T'/4w, Av = /99 =~ 10. Thus, a Lorentz profile falls
to 1% of its peak value at 10 times the half-width at half maximum {rom

its central frequency.

Q3(iii): Thermal broadening is described by a Gaussian distribution. For
a Caussian distribution with the same FWHM as the Lorentz profile, what
is the probability of absorption at the same Av from the line centre as in
part (ii)?

A3(iii): A Gaussian distribution function is defined as:

202

$(v) = exp {—(y—_ﬂ} (2.27)

where ¢ is the one-dimensional projection of the velocity dispersion of the
absorbing atoms along the line of sight.

At the line centre, v = vy, ¢(v) = 1. At half maximum, ¢ = 0.5 and thus:

2
and 5
~In05= @2—;’—0) (2.29)

AV =uvpm — vy = v2(—1n0.5)0c =1.18¢0 (2.30)
When Av = 10 X (vpm — 1) = 11.80, we have:

9
¢(v) = exp [_m] — {_112.82} ~ oxp {_@] _ 58 % 10-%

202



Conclusion: away from the line centre, a Gaussian distribution falls off
much more rapidly than the inverse-square behaviour of the Lorentz func-
tion. Thus, a frequencies well away from the resonant frequency of an
atomic transition, absorption takes place via natural broadening, rather
than Doppler broadening.



Q4(i): By considering the energy generation near Tg = 1 to scale as £ (T} =
ki Tg, show that: Esq & koTg', where ki and ks are constants.

A4(i): Differentiating the energy generation equation:

‘ﬁ“ = —3koTy e ™ 4 44k Ty P~/
8
[z . Eia (2.32)
-\ T Ty
Near Tz = 1,
nga 8304
= 4] — 2.
dTs T3 (2:38)
d&34 dTy
= 4] —— 2.34
8304 TS ( )
Integrating:
In€s, =41InT3 +C (2.35)
or
Esq = ko T (2.36)

Q4(ii): Calculate the change in energy output resulting from a 10% change
in temperature.

A4(ii): We have:

Ese (Té>41 41
Z8a [ 28 = 1.1% = 50! 2.37
gBa TS ( )

Clearly, the energy generation rate depends very sensitively on the tem-
perature.
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Q5:  An eclipsing-binary system has a parallax of 0.1 arcsec (with negli-
gible error) and consists of two solar-type stars with a semi-major axis of
500R. The period is known very accurately.

Q5(i): What is the angular size of each of the stars and of the semi-major
axis? If you can measure angles on the sky with a 1o rms accuracy of 0.01
arcsec, what is the percentage accuracy of the measurement of the semi-
major axis and of the radius of each star ?

A5(i): A parallax of 0.1arcsec implies that the stars are at a distance of
d =10 pc= 3.1 x 10 m. Thus we have:

2R 2 x 7.0 x 10% 180
Oor = d® = Sl <1007 - 45 % 1079 x — x 3600 = 9.3 x 10~* arcsec
(2.38)
for the stellar radii, and
0, = 250 X Oy = 250 x 9.3 x 10~* = 0.23 arcsec (2.39)
for the semi-major axis.
The percentage accuracy is simply:
T0yp 0.01
= 100 = 1075 2.4
2R — 83102 ~ 00 =1075% 240
e 0.01
Jg ‘
¢t =——x100=4.3 241
= am 00 % (2.41)
Q5(ii): Assume that the stars emit as blackbodies:
2hv? 1
FT) = 2 (2.42)

c2 ehv/kT _ 1’

where v is the frequency is Hz, with an effective temperature Tog ~ 5800 K.
If you measure the flux ratio between log v = 14.0 and 15.0 with an accu-
racy of 10%, with what precision can you determine the value of Tog?

11



A5(ii): We have:

F, (10" Hz)
~ F,(105 Hz)
= 2hy§4/ g eh%ﬂﬁ . (2.43)
2hu3 [c2 ehra/kT — ]
Vi 3 ehu15/kT -1
- (32)
To find the uncertainty in 7" from z, we need dx/dT":
Q5 hivys hinyg ghv1a/KT
a7 = —I (sz T kT2 ehvia/kT 1) (2.44)
huys
N =T
since 14 = 0.1145. Therefore, since o, = ‘i,—fch, we have:
ar - kT Oy
T hus T
4 x 1072 JK 1 - 5800K
~ 16.6 X 10*34JJS 1015 g1 X T0%
1458 x 10720 (2.45)
~ axi0m <107
~ 1.2 x 107! x 10%
~ 1.2%

Q5(iii): If we now include an error in the measurement of the parallax of
o = 0.01arcsec, what is the accuracy with which we can determine the
mass of the system?

A5(iii): From Kepler’s third law, we have:
o

GM (%)2 = g (2.46)

where P is the period and M = m; + my (eq. 4.3 of lecture notes).

Therefore,
472 3

- cpr”
12

M (2.47)



dM  12w® , M

e = - 3— 2.48

da _ GBE" a (248)
M Og

— =3—, 2.49

M a ( )

In part (i) of this question, we estimated o,/a = 4.3% ignoring the uncer-
tainty in the measurement of the parallax. If we include the latter, the two
sources of error should be combined in quadrature:

% (%) (32
(o) (52 -
0.23 1

= 11%

And therefore,

% — 33%. (2.51)
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Q6(i): Calculate the mean molecular weight immediately above and below
the radius in the star where hydrogen becomes ionized. Assuming the tran-
sition between ionized and neutral hydrogen takes place over a very small
radial distance, such that the pressure and temperature can be consid-
ered constant across the zone, what would this imply about the dynamical
stability of the zone?

A6(i): The mean molecular weight j, of a fully neutral gas is given by:

1

1
—=> —F (2.52)
o A

where A is the atomic mass number of element with mass fraction /. Thus,
for X =0.7. ¥ =04, 4 &1k

1 X Y 1 0.3
A Wi —VNZ =070+ —+ ~0; n > 1,29 2.93
=T+ +<A> et i (2.53)

On the other hand, the mean molecular weight pie, of a fully ionised gas

is given by: -
1 1+Z;
=% oy (2.54)
HMion p Aj )
where Z; is the atomic number of element j, i.e. the number of electrons

liberated in complete ionisation of the atom. Thus:

1 3
= X + ZY, Mion = 0.62 (255)
Hion

To answer the second part of this question, let us first consider where in
a star like the Sun such a transition might take place. Qualitatively, we
expect the interior of the Sun to be fully ionised (and incidentally for a
fully ionised gas of solar composition pien =~ 0.59 taking into account a
mass fraction of elements heavier than He of Z = 0.12). On the other
hand, at the surface the gas is at least partly neutral (we see absorption
lines of neutral H and He). Thus, in our hypothetical star, such a sudden
transition zone would occur somewhere near the surface.

For an ideal gas, the pressure is given by:
1

P=——pkT. (2.56)
HMH

14



Therefore, if the transition is really so sudden that P and 7' remain con-
stant, as the gas goes from fully ionised to fully neutral its density must
increase by a factor 1.29/0.62 ~ 2. Thus, we would have a layer of denser,
neutral, gas overlaying a less dense layer of ionised gas: a highly unstable
situation!

Q6(ii): Assuming that the pressure P has contributions P from gas
pressure and (1 — 8)P from radiation pressure, where 0 < 8 < 1, show

that: 3 4
g (%) — (E) §(1 —~ 1) (2.57)

p p) a

A6(ii): We have,

Prad Pgas
- — 2.
and hence: 1
ECL R}OT
— — 2.59
P 1-8  uB (2:59)

where R = k/my. Writing the density in terms of the temperature from
(2.59) leads to:

L3
P % (2.60)
Substituting back:
1 (31 =B)R\Y o
da & ( pba ) 1-p S
4
N H N (2.62)

which can be rearranged in the form of (2.57).

Q6(iii): A polytrope of index n has central pressure P, = W,GM?/R" and
central density p, = X,M/(37R?), where W, and X, are dimensionless
constants that depend only on n. Write down the equation for f., the
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value of B at the centre of the polytrope of index n, and show that 3.
depends only on M and n.

A6(iii): Substituting the expressions given for P, and p. into (2.57), we

have: e 4
8! (E%M—) (;fi,) - (%) -5 (2.63)
Simplifying:
B (W) M? (3‘2)4 - (%)4 2(1—56) (2.64)
Hence: )
pe(ER) H o

From which it can be seen that indeed 8, depends only on M and n, since
all the other quantities in the above equation are constants.

Q6(iv): The Sun may be approximated by a polytrope of index n = 3.25,
for which W,, = 20.4 and X,, = 88.1. With p = 0.59, evaluate the constant
A in the equation 8% = A(1 — ) deduced from part (iii). What can you
conclude about the importance of radiation pressure at the centre of the
Sun?

A6(iv): Writing eq. 2.65 as 85 = A(1 — §), we have:
3RX,\* 3
A= ;
( 47 ) aM?(W,G)3 (2.66)

With X, = 88.1, R = 8314J K~ mol~!, p = 0.59, a = 7.6x10716 Jm=3 K4,
Mg = 2.0x 103 kg, W, = 20.4, and G = 6.7 x 1071 m3 kg™ 572, A = 2988
(dimensionless).

The equation:
z* = 2988(1 — z) (2.67)
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clearly has a solution very close to 1. The exact (positive) solution is
x = B, = 0.999666.

We conclude that radiation pressure is unimportant in the core of the Sun,
where gas pressure dominates because of the very high values of tempera-
ture and density (recall that Py o< pT).
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Q7(i): Two early-type stars in the same cluster start their lives on the
H-burning main sequence with the same mass: My(A) = My(B) = 5 Mo,
Star A is single. Star B is a member of a binary system and throughout
its life on the main sequence loses mass to a compact companion at an
average rate M =1 x10"8Mg yr~'. Which of the two stars do you think
will leave the main sequence first and why?

A7(i): Referring to Figure 4.10 of the lecture notes, one can see that the
main sequence lifetime of a 5 Mg star is 7 =~ 1.25 X 108 years. Thus, we
expect this to be the lifetime of star A. On the other hand, star B will
have lost some of its mass during this interval of time. By the time star
A moves off the main sequence, the mass of star B will have been reduced
to ~ (5 —1.25) = 3.75 M. Given the steep (inverse) dependence of stellar
lifetimes on mass, 7 o< M 247 star B will have consumed its core hydrogen
at a slower rate. Consequently, star B will leave the main sequence after
star A.

Q7(ii): An astronomer armed with a photometer and two broad-band fil-
ters, V and B, measures the following magnitudes for two stars in the
constellation of Pegasus: my(aPeg) = 2.45, mp(aPeg) = 2.45; and
my (B Peg) = 2.40, mp(BPeg) = 4.04. On the basis of this information
alone, which of the two stars would you consider more likely to be the
closer one to the Sun? What other information would you require to defi-
nitely establish which is closer?

A7(ii): The two stars have essentially the same magnitude in the V' band,
but have very different (B — V) colours: (B — V) = 0.00 for aPeg and
(B—V) = +1.64 for 8 Peg. This question tests the students’ understanding
of the introductory material given in the first few lectures on several levels:

(1) Hopefully, everyone will realise that 3 Peg is fainter than o Peg in the
B-band (i.e. that the magnitude scale runs backwards).

(2) The difference in (B — V') colour implies that o Peg is bluer than [ Peg.
(3) The blue colour implies that o Peg has a higher effective temperature

than 3 Peg.
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(4) Since L = 4wR?*0T., the bluer colour would suggest that aPeg is
intrinsically more luminous than 8 Peg, if both stars are on the main se-
quence.

(5) On the other hand, stars of the same Tig can differ by 10 magnitudes
in their absolute luminosity L, if their radii differ by two orders of mag-
nitude. Thus, with the information provided, we do not know if the bluer
star, a Peg, is a white dwarf (i.e. blue and intrinsically very faint). Con-
versely, the redder star, 8 Peg, may be an intrinsically luminous red giant
or supergiant.

(6) Reasoning that most stars are on the main sequence, and that other
loci of the H-R diagram are less densely populated, we would conclude that
3 Peg is more likely to be intrinsically fainter because of its red colour. In
terms of their absolute magnitudes, M (8 Peg) > M (aPeg), at all wave-
lengths.

Turning to the distance moduli, we have:
[my — Mylgpeg < [my — Myapeg

since my (8 Peg) =~ my(aPeg). In other words, if both stars are on the
main sequence, 3 Peg is closer to the Sun than « Peg.

(7) In order to establish if the two stars are on the main sequence, pho-
tometry is usually insufficient. We need to obtain spectra of the two stars,
from which we could measure the widths of their absorption lines. Line
widths reflect the pressure of the stellar atmosphere, and can differentiate
between the extended atmospheres of giants and supergiants (narrow lines)
at one extreme, and the very high pressures in the dense atmospheres of
white dwarfs (broad lines) at the other.

(8) All of the above reasoning has ignored the complicating effects of in-
terstellar dust, which have only been alluded to in the course (dust is dis-
cussed in more detail in the “The Physics of Astrophysics” course). Dust
can make stars appear both redder and fainter than they intrinsically are.
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Q8: Using the tabulation of solar photospheric abundances by Asplund
et al. 2009 (ARAA, 47, 481) given at the end of Lecture 6, calculate the
mass fractions of H, He, C, N, O, and Ne in the Sun.

A8: This is a simple question, just aimed at familiarising the students with
the different ways in which solar abundances are quoted in the astronomical
literature.

(i) The Asplund et al. 2009 compilation gives abundances in both the pho-
tosphere (derived from spectral modelling) and in carbonaceous chondrites
(derived by chemical analysis in the laboratory). It is useful to discuss
the reasons for the two sets of measurements, and how they compare (and
why). The students have been told to use the photospheric scale.

(ii) The values tabulated by Asplund et al. are log (X/H) + 12, where X/H
is the number of atoms of element X per H atom. Here we are asked to
calculate the mass fractions. For example, the entry in the Table for carbon
is 8.43. This corresponds to C/H = 2.7 x 107*. The mass fraction will be
this value x12, since a carbon atom has 12x the mass of the hydrogen
atom (approximately).

(iii) Thus, consider a mass element Am containing 10000 H atoms and let
the mass unit be the mass of the hydrogen atom. Then, we have:

Am = 10000 x 1 +851 x4 +2.7x 12+ 0.7 x 14+ 4.9 x 16 + 0.85 x 20

~ 13541
(2.68)

neglecting elements heavier than Ne.
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Now, by definition:

10000 x 1
X=—or — — =(.738
Am D
851 x 4
Y = = (J.251
Am
27w 132
T = L2 20,0024
m
D7 % 14
=— —— =0.00072
N Am
4.9 x 16
s == = (0.0058
2 Am
.8 20
I, = 252X 20 _ 6 0013
Am

Conclusion: the total mass in elements heavier than He is very small, only
of the order of ~ 1.2%.
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M. Pettini: Structure and Evolution of Stars

EXERCISES: Set 3 of 4

K

(i) Show that the equation of hydrostatic equilibrium may be written as:
dlnP gr dlogP
dlnt kP dlogr

where 7 is the optical depth, x is the opacity and ¢ is the gravitational
acceleration.

(ii) We know from geological and fossil records that the Sun’s luminosity
has remained constant over the last billion years. From this statement,
deduce the accuracy of the approximation of hydrostatic equilibrium as
applied to the Sun. (At the surface of the Sun, the gravitational accelera-
tion is g = 2.5 x 10?m s72).

Q2: In a certain temperature regime, the p-p chain can be approximated
by the following four reactions:

'H +'H — %H +81 + v,
'H + 2H — *He -+,
SHe + *He — "Li,
Li + 'H — “He +“He .

(i) Write down the rate equations for the abundances Ny, Ny, N3, Ny, and
Ny of the five nuclear species involved in terms of the rates ri, ri2, 734,
and 717 of the four reactions.

(ii) If 2H, 3He and "Li are all in transient equilibrium, show that the equa-
tions can be simplified to

Nl = —4T11N12, N4 = T1.1N12:
and find equations for the equilibrium abundances of the other species.

(iii) At lower temperatures, the last two reactions in the chain are replaced
by the single reaction:



3He + 3He — 4He + 2 'H

Making equivalent assumptions about transient equilibrium, show that the
corresponding simplified rate equations are:

: . . !
N1 - —27‘11le, N4 = 57’11N§-

(iv) What is the underlying reason why these differ from the previous equa-
tions by a factor of 27

Q3: The gravitational binding energy of a star of mass M and radius R is

given by:
aGM?

R
where o is a constant. Such a star contracts homologously at constant
effective temperature, radiating at a rate L(t).

E=-—

(i) Derive expressions for L(t) and R(t) for a star of fixed mass which af
time t = 0 had L = Ly and R = Ry.

(ii) Show that at late times L and R display power law dependences on
time.

(iii) Where would such a star be found in the Hertzsprung-Russell diagram?

Q4: Consider a convective star.

(i) Give an approximate derivation for the boundary condition at the pho-

tosphere in the form:
GM

ml re N2l
In fully convective low-mass main-sequence stars, the equation of state is
that of an ideal gas and the opacity is of the form x = kopT®. Show that
the adiabatic constant K = PT~%? is such that K oc MY2R1T5. The
energy generation rate is of the form & = EpT®.



(i) Show that for a group of such stars of the same chemical composition
the members satisfy the following relations:

R Mll/lT; L ox A4'37/17

(iii) Sketch the locus of such stars on the H-R diagram, marking the locus
of the main sequence and the position of the Sun.

Qb5: The HII region around an O star has radius R = 5pc, temperature
T = 10000 K, and density n = 100 cm 3.

(i) Estimate whether such an interstellar cloud is stable against gravita-
tional collapse.

(ii) If such an H1I region were visible at redshift z = 3 and you recorded
its spectrum with a ground-based telescope, which spectral feature would
you expect to be strongest? Give reasons for your answer.

Q6:

(1) Find the temperature at which the number density of hydrogen atoms
in the ground state is equal to that of atoms in the second excited state
(o == 3)s

(ii) Calculate the electron density, n., of a pure hydrogen gas at T =
14000 K where 70% of the atoms are ionised. You may assume that the
partition function is Z(7T') = 2 for neutral hydrogen at this temperature.

Q7: Estimate the time the Sun will spend on the horizontal branch, if 15%
of its mass is converted from *He to 2C via the triple-alpha reaction.






M. Pettini: Structure and Evolution of Stars

EXERCISES, Set 3: Solutions

Q1(i): Show that the equation of hydrostatic equilibrium may be written

as:
dlnP  gr dlogP

dlnt &P  dlogr
where 7 is the optical depth, « is the opacity and g is the gravitational
acceleration.

(3.1)

A1(i): The equation of hydrostatic equilibrium is:

dP Gmp
T =
Since Gm/r? = g the equation can also be written as:
dP
— = 3.
o = P9 (3.3)

In the lectures, we have defined the optical depth 7 (at a given wavelength
or frequency) as:

dr = —k pdr. (3.4)
Substituting into (3.3)
AP
= (3.5)
dr &

Since dIn P = % and dlnt = %, we have:

dinP FdPF gr
Aar ~ Pdr ~ P (3.6

: ., Inz
And, since logxz = (10}’

dlog” In(10)dlnP dInP g7
dlog7  In(10) dlnT  dlnT &P




Q1(ii): We know from geological and fossil records that the Sun’s luminos-
ity has remained constant over the last billion years. From this statement,
deduce the accuracy of the approximation of hydrostatic equilibrium as ap-
plied to the Sun. (At the surface of the Sun, the gravitational acceleration
is g =25 x 10%°m s72).

Al1(ii): For a blackbody, L = 4noR*Tj. Since it is extremely unlikely
that R and Tis would have changed in such a way that the product R?-T%
has remained constant, the fact that dL/dt = 0 (over the last 10° years)

implies that dR/dt = 0 (as well as dT.g/dt = 0).

In hydrostatic equilibrium,
d Plr)

o gp(r) =0 (3.8)

If hydrostatic equilibrium does not hold, then on the right-hand side of
eq. 3.9 will have a non-zero term, corresponding to a residual acceleration
a:

dP(r
) 1 plr)g = plr)e. (3.9
T
Expressing a as a (small) fraction of g, we have:
dP(r
d£ )4 p(r)g = p(r)Bg. (3.10)

If the Sun had been perturbed from hydrostatic equilibrium 10° years ago,
a small mass element originally at rest at the surface would have moved a
distance: 1 ]
§R = —at? = =fBgt*. 3.11
S0t = 5Bg (3.11)
The accuracy to which the approximation of hydrostatic equilibrium ap-

plies is equivalent to finding an upper limit to 3:

B<2—. (3.12)

With g = 250m s~2 and ¢ = 3.156 x 107 yr, we have:
R

1
< 20R z .
d 950% ~ 10 x 101 ~ 1.25 x 1017 (3.13)
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or -
OR | 1.25x 10" | . 1.25 x 107

z > 8
BR= 1B R2x10° (3.14)

B ™ R
Since dR/R5 is negligible, 8 <« 5 x 10° or, equivalently, the assump-
tion of hydrostatic equilibrium must hold to an accuracy of better than
1/200 000 000.

Q2(i): In a certain temperature regime, the p-p chain can be approximated
by the following four reactions:

'H 4+ 'H - ?H +8* + v (1)
'H + 2H — *He 4+, (2)
SHe + *He — "Li (3)
"Li +'H — *He +*He (4)

Write down the rate equations for the abundances Ny, Ny, N3, Ny, and N
of the five nuclear species involved in terms of the rates 17, 12, 734, and
r17 of the four reactions.

A2(i): The rates at which these nuclear reactions proceed is proportional
to the product of the abundances of the two nuclei on the left-hand sides
of the four equations. Thus:

Nl = —-QNETH — NlNngg - N1N7'r17 (3.15)

(hydrogen is used up in all three reactions and is not produced in any of

the four). Similarly:
Ny = Niryp — NyNorp

(

N3 = Ny Nyrig — N3Nyrsg (
N4 = —N3N4T34 -+ 2N1N77“17 (318

Ny = N3Nyrsqg — Ny N7y (



Q2(ii): If 2H, *He and "Li are all in transient equilibrium, show that the
equations can be simplified to:

Ny = —4r; N7, Ny =r11N7,

and find equations for the equilibrium abundances of the other species.
A2(ii): If D, 3He, and "Li are in equilibrium, their concentrations do not
change with time, and therefore Ny = N3 = Ny = 0. Then:

NZryy = NiNaro
N1 Nyris = N3Narsy
N3Nyrsy = N1Nri7

Substituting into eq. (3.15), we have:
Ny = —2N2py; — N12T11 — Niry = —4]\/??"11 . (3.20)

Similarly, substituting into eq. (3.18):
N, = N3Nyrsq = NiNoryy = Niry. (3.21)

The equilibrium abundances of H, 3He and "Li can be written in terms of

H and *He as:
11

Ny = N; -2 (3.22)
T12
(from eq. 3.16 with Ny = 0);
N2 T11
Ny = =doms 3.23
7 Nyru ( )
Ny=N 2 (3.24)
i

Q2(iii): At lower temperatures, the last two reactions in the chain are
replaced by the single reaction:

3He + 3He — *He + 2 'H



Making equivalent assumptions about transient equilibrium, show that the

corresponding simplified rate equations are:

1

NI = —2T11N12, N4 = 5T11N12-

A2(iii): The new rate equations are as follows:

Nl — *2N12’f'11 o N1N2T12 -+ 2N32'T‘33

Ny = Niryy — NiNorpa
N3 = N1N2T12 i 2N327"33
N4 = N32T33
With Ny = N3 = 0, we then have:
Nl — f2N127“11 = NIQTH + 2N§T‘33

= —2N127“11 — NIZTU + N12T11 = —QNE'I"H

and y 3
Ny = §N1N27"12 = §N12?"11-

Q2(iv): What is the underlying reason why these differ from the previous

equations by a factor of 27

A2(iv):

In case 1, the net result of the reactions is 2 *IHe nucleus.

In case 2, the net result is 1 *He and 2 H nuclei.

Thus, the rate of decrease of H is halved, due to the production of 2 'H
nuclei, and the rate of increase of *He is halved due to the production of

only one *He nucleus.

c



Q3(i): The gravitational binding energy of a star of mass M and radius R

is given by:
aGM?

R

where o is a constant. Such a star contracts homologously at constant
effective temperature, radiating at a rate L(t).

1 —

Derive expressions for L(t) and R(t) for a star of fixed mass which at time
t:OhadL:Lo alldR:Ro.

A3(i): As we discussed in the lectures, the virial theorem tells us that:
(E) = (K) +(U) = 5{U) (3.29)

only half the change in gravitational potential energy is available to be
radiated away as the protostar contracts; the remaining potential energy
supplies the thermal energy that heats the gas. Thus:

L#ldE 1d GM2 #IQGMQ dR (3.30)
2dt 2 dt R )] 2 R dt’ ‘
We also know that:
L = 4w R% TS (3.31)
and therefore: 2 e g
2 4 _ L
47TR O'Teff = E _EQ_ E . (332)
With Tiz and M both constant, we have:
8’1TO'T
= —d : .
eVl f d /Ro R (3.33)
Integrating:
8moTiy 1 1
oCM2 '~ T3 "3RS 3R} (24
1 B 1 247rcheff
R3S R} aGM? 9%
or
1 24roT4t]™V®
Bis | 3.
{Rg aGM? ] (3.36)
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We can now solve for the luminosity using (3.31):

1 24roTt] P
L=4gaTh |— — B 3.
We also know that:
Ly = 4o R:TS; (3.38)
so that -
1 dro o
0
and 55
1 47r(7Te4
2= ( 5 ff) (3.40)
0
which takes us to our final answer:
_ -2/3
L 32 94noTH
_ 4 0 ff
L == 47'('0"1785 {(m) — meg—tJ (341)

Q3(ii): Show that at late times L and R display power law dependences
on time.

A3(ii): At late times, i.e. at large values of t, the second term in square
brackets of egs. 3.36 and 3.41 dominates over the first term, and therefore:

2UnoTh 173
R= [_—a% tJ ie Roctl/3 (3.42)

and

UneTs 173
L = 47TOTglff [—%‘;—H t} e Loct™2/3 (3.43)
o



Q3(iii): Where would such a star be found in the Hertzsprung-Russell
diagram?

A3(iii): With L decreasing at constant T.g, the contracting star moves
along a vertical track in the H-R diagram (see Figure below).

This is the Hayashi track followed by contracting pre-main sequence stars
with a gravitational, rather than nuclear, internal energy source.

T ¥ T T T = T

L log L/L, M, T

log Teff



Q4(i): Give an approximate derivation for the boundary condition at the
photosphere in the form:

GM
and then show that:
K o MPER 1T B (3.45)

A4(i): We start from the equation of hydrostatic equilibrium:

dP  GM(r)p
dr 2 (3.46)
At the photosphere:
dP GMp
R — 4
dr R? (3.47)

where M and R are the stellar mass and radius respectively. Integrating
from R to oo: OM

We can define the photosphere of a star as the region extending down to
optical depth 7 = 1. In lecture 5 (eq. 5.10) we also saw that the optical
depth 7 is related to the opacity « via:

= / B (3.49)

Therefore:

r= / kpdr =1 (3.50)
R

Taking the opacity « to be a constant, we have:

e o0 1
/@/ pdr =1 = / pdr = — (3.51)
R R %

Combining (3.51) and (3.48) gives the desired result:

kP ~ N2




For the second part of this question, we are given the following:

R
P= pT (3.52)
MY
Kk = KopT® (3.53)
K = pT7%72 (3.54)

Using the result of the first part of this question, we have:

GM
ko pT5 P - (3.55)

Expressing p in terms of P and T (eq. 3.52):

M _
PTfoczy = Poc MR i (3.56)
since all the other quantities have constant values. Substituting into (3.54),
we arrive at the stated relationship:

K o« MYV2RITLS

which holds everywhere, since K is a constant.

Q4(ii): Show that for a group of such stars of the same chemical compo-
sition the members satisfy the following relations:

R o Mll/l?. L o MST/lT

A4(ii): Since we are asked only to demonstrate the proportionality, we
can use dimensional arguments.

From the equation of hydrostatic equilibrium, we have:

A RN AP .. 3.57

ar R R (3:57)
From the equation of mass continuity:

dm M

= 2 sl 2 .

T mTep == I x pR (3.58)
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Hence,
M M?

The ideal gas law:
F
P o g T P (3.60)

We are also told that the energy generation rate:

dL E
7= E = EpT® = 7 pT® o p=° P8 (3.61)
Therefore: i}
L R3\° / M2\ °®
giving:
Lo ROME. (3.63)
We also know that:
L =4nR*oTH (3.64)

Combining eqs. (3.54) and (3.45) from part (i) of this question, we have:

PT-512 g MW RITS (3.65)
and
P (_—) oe MER TS (3.66)
P
Using (3.59):
MQ M2 RS —5/2
i s o
giving:
M71/2R73/2 o Ml/QR_ITe%G (368)
and therefore
Tog ox MYSRY12 (3.69)
Substituting into (3.64):
L < RPM*ORY2 « RTPM3. (3.70)

11



We now have two equations for L, eq. 3.70 and eq. 3.63. Equating them,
leads to:
ROM® « RPMY? = Roc MUY (3.71)
Now plug this proportionality into (3.63) to obtain:
9
Lx ROM® = (M“/”) S (3.72)

giving:

L o _[\437/17

Q4(iii): Sketch the locus of such stars on the H-R diagram, marking the
locus of the main sequence and the position of the Sun.
A4(iii):

Such stars are found on the main sequence of stars less massive than the
Sun (which is only partly convective).

Lupinosity (WL g)
107 —
: . i
= 15 A
C'1 P .-g;
. Mo 1 '
G — 51
s — 3 M
10—
13— 1M 5
e
7 —
0.5 1
i o
-
3 3 GD 00 0 3 000
lemporatura
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Q5(i): The H1r region around an O star has radius R = 5 pc, temperature
T =10000K, and density n = 100 cm™3.

Estimate whether such an interstellar cloud is stable against gravitational
collapse.

A5(i): The criterion for gravitational collapse is given by the Jeans mass:

5T \¥% 7/ 3 \'/*
M; = = .
' (GumH) (4WP) ’ 373)

whereby if the mass of the H1I region is greater than Mj the cloud will be
unstable to gravitational collapse and vice versa.

An Hi1 is defined as the volume around the star within which H is fully
ionised. In general, He and other elements will be only partially ionised
but, as a rough approximation, we can neglect all elements heavier than
H. In this case, the mean molecular weight is u = 1/2.

The density of the cloud is:

p = naimy + NHIMp + NeMe + . . .
= NHIMp
~100%x10%-1.7x 107" ~1.7x 107 ¥ kg m™3

Using S.I. units throughout, we have:

5.1.4 x 10723 . 104 32 3 12
My ~ :
! (6.7 x 10-11.1/2 1.7 x 10—27) (4 .3.14-1.7 x 10~31)

(3.74)
1.4 x 10718\ %/2 3 142
My e — (3.75)
1.1 x 107937 2.1 x 10-18
My ~ (1.3 x 10°)*? (1.4 x 10'8)"
5.5 x 105 kg (3.76)

~ 2.8 x 107 M,

T 2 x 1030kg M

13



The mass of the H1I region, on the other hand, is:

12

= (5x3.1x101)°-1.7x 107 m’kgm™? (3.77)

27 x10%kg
T 2% 1080kg Mg

- ~1.3x10° Mg

Since My < Mj, the cloud is stable against gravitational collapse.

Q5(ii): If such an HII region were visible at redshift z = 3 and you
recorded its spectrum with a ground-based telescope, which spectral fea-
ture would you expect to be strongest? Give reasons for your answer.

A5(ii): With a ground-based telescope, we can expect to record the por-
tion of the spectrum most easily transmitted by the Earth’s atmosphere,
typically from 3500 A to 9000 A.

At redshift z = 3, this wavelength interval corresponds to rest-frame wave-
lengths between 875 A and 2250 A, in the far-ultraviolet.

The spectrum of an H1r region is dominated by emission lines, produced
as H* ions and free electrons recombine; the electron is generally captured
in a high atomic energy level, and then cascades down to the ground state
through intermediate levels. Each of these transitions will produce an emis-
sion line at the appropriate wavelength. Since most downward transitions
end up with a transition from the n = 2 to the n = 1 level, the strongest
emission line one would expect is the Lyman « line at a rest wavelength
X = 1215.67 A.

At redshift z = 3, this emission line would be recorded at an observed
wavelength Agps = (1 + 2) Ao = 4863 A.

14



Q6(i): Find the temperature at which the number density of hydrogen
atoms in the ground state is equal to that of atoms in the second excited
state (n = 3).

A6(i): The number of atoms in an atomic level n with energy F, is given
by the Boltzmann’s equation:

N,=Ae B/ g (3.78)

where k is Boltzmann’s constant (k = 8.62x107°eV deg™!), A is a constant
of proportionality and g, is the statistical weight of atomic level n denoting
the number of particles which can be in atomic state n.

The relative populations of the two levels in question are therefore:

N ¢ —(By—E3)/kT
— = =], 3.79
N3 g3 (3.79)

The values of the atomic parameters required to solve this equation were
not given explicitly in the lectures. It is left to the initiative of the student
to search for them in the literature. A good source of atomic data is:

http://www.nist.gov/pml/data/asd.cfm

Choosing the options LEVELS, and then H1 and ‘Levels Units’ as eV, shows
the different energy levels of the hydrogen atoms. From this table, it can
be seen that £; = 0 and F3 = 12.09€V.

The statistical weights g, of the levels are not given explicitly in this table.
However, in the lectures the students have been told that g, = 2J, +1
(lecture 3.2). Thus, forn=1, J =1/2 and g, = 2.

The n = 3 level is divided into three sub-levels according to the orbital
angular momentum of the electron: 3p, 3s and 3d. In turn, the 3p level is
split into two sublevels depending on whether the electron orbital and spin
angular momentum vectors are parallel or anti-parallel, with corresponding
J=3/2and J =1/2. For 3s, J = 1/2. For the 3d, J =5/2 and J = 3/2.
Adding together the values of 2J+1 for all these sublevels, we find g3 = 18.

With these values, eq. 3.79 becomes:

Ny 2 —{0-12.09)/kT
N;  18° el
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or

L1209 eV
" In(9)k eV deg!
12.09 (3.81)
220 862x 105 < °

~ 63850 K

v

Q6(ii): Calculate the electron density, n., of a pure hydrogen gas at
T = 14000 K where 70% of the atoms are ionised. You may assume that
the partition function is Z(7') = 2 for neutral hydrogen at this temperature.

A6(ii): The relative proportions of ions in two successive stages of ionisa-
tion is given by the Saha equation:

3/2
e B (TN e (3.8

where Z; is the partition function of the ith ionisation stage, x; is the
ionisation potential of the ith ionisation stage (the energy required to ionise
ion i to ion i + 1), and the other symbols have their usual meaning.

Since Ny = 0.7(Ng 4 N1), N1 = 0.43N,. Also, since the gas is made up of
only H, n. = Ns.

While Z(T) is given for H1, the student is left to work out for him/herself
the value of Z(T) for H11. The student should come to realise that, having
lost its electron and therefore not having atomic energy levels, ionised
hydrogen is a special case. Its partition function is Zyy = 1, i.e. it may be
assumed that a hydrogen ion has a single state of energy equal to 0eV.
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So, now we have:

Ne - Nf+l . Te

2

2

=40x10%-1.3x107° (

(

N; 043
2-3.14-5.11 x 10%/c% - 8.62 x 1075 - 14000

(4.14 x 10-15)”

3/2
)

eV? g2

—51x 10%cm™3

or

ne=2.2x 10 cm™3

17

eV em™2 s? eV deg™! deg>3/2

13.6

8.62 x 1079 - 14000

(3.83)

(3.84)



Q7: Estimate the time the Sun will spend on the horizontal branch, if 15%
of its mass is converted from *He to 2C via the triple-alpha reaction.

A'T7: The triple alpha reaction:
3'He = *C+3x
releases the energy corresponding to the mass difference:
(3 x 4.002602 — 12)u = 0.00781wu, i.e.
E =0.00781 x 931.5 = 7.275 MeV .

Since three *He nuclei are involved, the fraction of mass transformed into
energy 1s:
_ 7.27T5MeV 7.275 MeV

= = — 6.50 x 107*.
Smage? 3 x 4.002602 x 931.5 MeV/c? - ¢

The total energy emitted during the horizontal branch phase is therefore:
Eyg = 0.15f Myc?
—0.15-6.50 x 1074 2.0 x 10¥ g - (3.0 x 101 cm 571)”
= 1.76 x 10" erg

On the horizontal branch, the luminosity of the Sun is Lyg ~ 50L¢ (see,
for example, Figure 13.1 of the lecture notes). Thus,

. _ Pue _ 1.76 x 10% erg

HB = 708 50-3.85x 10% . crg s

=91x10%s~3x10"yr.

The lifetime on the horizontal branch is therefore much shorter than the
lifetime on the main sequence. This is due to two factors: (i) the triple-
alpha reaction releases less energy per unit mass than hydrogen burning,
and (ii) the rate of energy production by He-burning on the horizontal
branch is much larger than the main-sequence H-burning energy production
rate (i.e. the luminosity of a horizontal branch star is much larger than its
luminosity on the main sequence).

Note that the value of typ deduced here is ~ 4x less than the value typ =~
120 Myr given in the lecture notes (section 13.4). One of the reasons is
that the hydrogen burning shell also contributes to the stellar luminosity,
making the stellar lifetime longer.
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M. Pettini: Structure and Evolution of Stars

EXERCISES: Set 4 of 4

Q1: The figure below shows, among other things, the path followed in the
H-R diagram by a cooling white dwarf of mass M = 0.63 M.
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(i) Deduce the slope of the straight-line track followed by the cooling WD.
How does it compare with the slope in the Figure?

(ii) What is the radius (in solar units) of the white dwarf when L/Ly =
0.017

Q2: The following three approximate relations apply to massive stars on
the main sequence:

(1) The mass—luminosity relation:

L M;
— | =~ 0. 2.
log (Le) 0.78 + 2.76 log (Mo)

where M; is the initial mass;



(2) The mass-loss rate-luminosity relation:

dM L
1 19276 +1.30 1
Og(dt) 1276+ 1.50 Og(L@)

where dM/dt is in Mg /yr; and

(3) The main-sequence lifetime-mass relation:

M,
10g7‘MS 7.72 — 0.66 log (M )
©

(i) Use these relations to calculate the fraction of the initial mass that is
lost by massive stars with M; = 25, 40, 60, 85, and 120 M., before they
evolve off the main sequence.

(ii) A star with M; = 85My has a convective core that contains 83% of
the stellar mass. Calculate the time after the star appears on the main
sequence at which the products of nuclear burning will appear at the sur-
face. How would such a star be classified at this time?

Q3: (i) Show that for a spherically symmetric star the equations of mass
continuity and hydrostatic equilibrium can be combined into the second-
order differential equation:

(i) For a gas with an equation of state, P = Kp", where K is a constant,
use the above equation to derive a second-order differential equation involv-
ing only density and radius. Using the dlmensmnless variables ' = r/R.
and p' = p/po, show that the term Kpy~ ?/R? is a dimensionless constant,

and hence that R, pv/ 2=

(iii) White dwarfs obey the equation of state P = Kp7, with v = 5/3 for

non-relativistic conditions and v = 4/3 in the relativistic regime. Using

the above result, R pv/ , show that for non-relativistic white dwarfs

R o M~ while for relativistic white dwarfs R # f(M).



Q4: In a 10Mg star the 1M core collapses to produce a Type IT supernova.
Assume that 100% of the energy released by the collapsing core is converted
to neutrinos and that 1% of the neutrinos are absorbed by the overlying
envelope to power the ejection of the supernova remnant.

(i) Estimate the final radius of the stellar remnant if the energy liberated
1s just enough to eject the remaining 9My to infinity. State clearly any
assumptions made.

(i) What is the typical velocity of the ejecta, if the energy absorbed by
the envelope is 10%! erg?

(ili) An astronomer announces the discovery of a Type II supernova in a
Globular cluster, but her colleagues are skeptical. Why?

Q5: Type Ia supernovae are thought to be the explosion and complete
disruption of a white dwarf in a binary system. Carbon and oxygen, the
dominant constituents of white dwarfs, are burned to heavy elements, pri-
marily Ni and Fe, during the explosion.

(i) Calculate the nuclear energy released by a Type Ia SN assuming that:
(a) the exploding white dwarf has a mass of 1.4 Mg, consisting of '2C and
160 in equal proportions by number, and (b) all of the C and O are burned
to ®Ni in the explosion. The mass of a given nucleus of atomic number Z
and mass number A is given by the formula:

m(A, Z) = Amy + mex(A, Z)

where one atomic mass unit m, = 931.5MeV/c?, and the mass excess
mMex = 0, —4.7, and —53.9MeV/c? for 12C, %0, and 56Ni respectively.
[Note: 1MeV = 1.6 x 10713 ] ]

(ii) Given that the white dwarf had a gravitational binding energy B, =
5 x 10 J, obtain a simple estimate of the average velocity of the ejected
matter in the explosion, if all of the energy released is transformed into
kinetic energy.



Q6: Assume that a star evolves homologously and that angular momentum
is not lost via a wind.

(i) How will the rotation speed of the star depend on its radius?

(ii) The Sun will ultimately evolve into a white dwarf, with radius Rwp =
10" m. Given that the Sun has a rotation period of 28 days, obtain an
estimate of the rotation period of the white dwarf it will eventually become.
Comment on whether this is likely to be an upper or lower limit to the
actual value.

(iii) Neutron stars are believed to be formed in Type 1I supernovae as the
core of a massive star collapses. If the core had an initial radius R, = 10" m
and a rotation period of 28 days, estimate the rotation period of the neu-
tron star, assuming Rys = 10km. Compute the minimum rotation period
possible for a neutron star. How do the two numbers compare?

QT7: Consider an accreting High Mass X-ray Binary with a circular orbit
in which the donor is a 15.0M, star filling its Roche lobe and the recipient
is a neutron star of mass My, = 1.4My and radius Rys = 104 m.

(i) Comment on how the changing separation between the two stars affects
the accretion.

(ii) If 2/3 of the donor mass were to accrete onto the neutron star in a con-
tinuous stream over ~ 10% years, what is the expected luminosity (primarily
in the X-ray regime)? How does it compare with the Eddington luminos-
ity? Where do you think that 100, of donated gas would actually end up?

Q8: An astronomer claims that in a distant galaxy the stellar Initial Mass
Function is ‘top-heavy’.

(i) Explain what is meant by such a statement.

(ii) Put forward some observational tests that may verify the validity of
this claim.



Q9: In a distant galaxy, a burst of star formation forms stars with a
Salpeter initial mass function between My = 0.1Mg and Mpax = 60Mg.
For our purposes, the burst can be considered to be instantaneous. At
the end of their lives, stars with initial mass M; < 8 M leave a compact
remnant with mass M, = M;/5, while stars with M; > 8M, leave a remnant
with mass M, = 1.4M;,.

(i) Calculate the fraction of the stellar mass that is returned to the inter-
stellar medium 10 Gyr after the burst of star formation.

(ii) Comment briefly on the result.

Q10: At the end of its life, two physical processes remove pressure support
from the core of a massive star, precipitating core collapse on the timescale
of a few seconds: photodisintegration and neutronisation.

(i) In photodisintegration, each iron nucleus can absorb 124.4 MeV of en-
ergy in the process 7 +38 Fe — 135He + 4n. If 3/4 of the core mass
M, = 1.4M,, is dissociated in this way, calculate the total energy absorbed
by this process.

(ii) Neutronisation is the inverse process to beta decay: p+e~ — n+ ..
The conversion of protons (in nuclei) to neutrons by electron capture is
possible if the gas is sufficiently dense for degenerate electrons to have
an energy above the 1.3 MeV mass-energy excess of neutrons compared to
protons. If each v, produced by the above reaction carries away 10 MeV of
energy, how much energy is removed from the core if the entire M, = 1.4M
undergoes neutronisation?

(iii) Compare the combined energy loss by photodisintegration and neutro-
nisation to the luminosity of a main sequence star with mass M = 12Mp,
and comment on the result.






M. Pettini: Structure and Evolution of Stars

EXERCISES, Set 4: Solutions

Q1(i): Deduce the slope of the straight-line track followed by the cooling
WD. How does it compare with the slope in the Figure?

A1(i): The question is deliberately vague as to which is the WD track
because the student should be able to recognise it from the material covered
in the lectures.

We start from the Stefan-Boltzmann law:
L = 4nR*0 T (4.1)

The H-R diagram in the Figure is on a log-log scale; therefore:
log L =logdno + 2log R + 4log Ty (4.2)

If the white dwarf cools at constant radius (recall that the radius of a white
dwarf is determined uniquely by its mass), the first two quantities on the
right-hand side of the above equation are constant, and the slope on a
log L-log Tes plot is —4 (T4 increases to the left).

In the Figure, the track is steeper than the constant radius lines which
have slope of —4. Gradual shrinkage of the star as it cools would do this.

Q1(ii): What is the radius (in solar units) of the white dwarf when

A1(ii): From (4.1), we have:

P LNY? /T \ 72
Ry Le Tetr o
From the Figure we can read off logTes =~ 4.2 when log(L/Lg) = —2.

With Teg o = 5777K, T'/T, = 2.8; hence:

Rﬂ = (0.01)2(2.8)72 = 0.0128 (4.4)
©

consistent with the lines of constant radius shown in the Figure.
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Q2(i): Use the three relations given to calculate the fraction of the initial
mass that is lost by massive stars with M; = 25, 40, 60, 85, and 120 M
before they evolve off the main sequence.

A2(i): The three relations can be combined to give a fourth relation be-
tween the fractional mass loss during the main sequence lifetime and the
initial mass, as follows:

dM M,
log| — | = —12.76 + 1.3 |0.78 + 2.76 log | —

dt M,
i 7 (4.5)
~ —11.75 + 3.59log | —
i = <M®>
and 3.59
dM M\~
oM 1o~ [ AL 4
dt v M (4.6)
or 3.59
M’ 2
dM ~ 10717 [ — dt :
i (47)
Therefore,
A\ 359
AM ~ 10717 [ — At 4.
o (13)
where At is the main sequence lifetime, which we are told has a mass
dependence: ,
M.\ 08
At~ 1077 [ — 4.9
7 (1.9)
Combining the last two equations and dividing by M;, we arrive at the
required relationship:
AM M\
~ 107403 [ — .
M; (MG) el

giving the following values:

Mi (MO) AM/J'WI x 100

25 4.7
40 11.5
60 25.2
85 49.4
120 6.1




Stars with M; > 85M¢, lose more than 50% of their mass while on the main
sequence!

Q2(ii): A star with M; = 85M;, has a convective core that contains 83% of
the stellar mass. Calculate the time after the star appears on the main se-
quence at which the products of nuclear burning will appear at the surface.
How would such a star be classified at this time?

A2(ii): This follows straightforwardly from part (i), eq. 4.8 which can be
rearranged to give:

—3.59
At =101 AM M 4.11

With AM = (1 —0.83) - 85 = 14.5 M, we have At = 0.96 x 100 yr.

Such a star would be classified as a WNL star, that is, a late Wolf-Rayet
star of the WN sub-type.



Q3(i): Show that for a spherically symmetric star the equations of mass
continuity and hydrostatic equilibrium can be combined into the second-

order differential equation:

2
LA g,
p dr

A3(i): The mass-continuity equation is:

dM(r)

e 4rrp(r)
and the equation of hydrostatic equilibrium can be written as:
dp M)
p dr e
Rearranging (4.14):
1 r2dP
M . R S
(r) G p dr

Differentiate (4.15):

dM(r) 1 8 [e®dP
dr Gdr

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

Q3(ii): For a gas with an equation of state, P = Kp7, where K is a con-
stant, use the above equation to derive a second-order differential equa-
tion involving only density and radius. Using the dimensionless variables
" =r/R, and p' = p/po, show that the term Kpg"g/Rf is a dimensionless

constant, and hence that R, « ,08/ a1



A3(ii): Substituting P = Kp” into eq. 4.12, gives:

14 [2asp]

= 471G 4.
ridr | p dr e (AI7)

Substituting the dimensionless variables ' = r/R, and p' = p/py:

(R*’r’)QdK (pop’)”
(pop’)  d(Rar')

1 d
(R*’r")z d (R*T’)

= —4nG (pop') - (4.18)

Rearranging (4.18):

1 1 R2d [(")?dK (pop)"
4 4 o R W... Sl 4.1
mGo(r) 2R2 R, po dr [ 7 d(R.) } el
1 1 REKpl d [(»)?2d(p)"
ArGo ()2 = ——— = 2P @ )7 _
Simplifying:

47TG}9!(T‘/)2 e (K‘g{;; ) acf}"_! l:(rr) d(p’)’y:l (421)

The term in the curved brackets in (4.21) must be dimensionless (as the
rest of the equation is) and constant, given that all stars must have the
same solution. This is because the boundary conditions of o’ = 1 at v’ = 0,
pf=0atr =1, and dp'/dr’ = 0 at v = 0 (by spherical symmetry, since
the pressure gradient vanishes there) apply to all stars.

Hence, pj~>/R? = constant, R2 o pl ™2, or R, pg/g_l.

Q3(iii): White dwarfs obey the equation of state P = Kp?, with v = 5/3
for non-relativistic conditions and v = 4/3 in the relativistic regime.

Using the above result, R o pg/ *! show that for non-relativistic white

dwarfs R oc M~1/3 while for relativistic white dwarfs R # f(M).



A3(iii): Non relativistic case: R pglfﬁ — py x R7S.
Recalling that M o poR®, we have: M o< R7® — R, o< M~1/3,

Relativistic case: R o pal/S — po o< R73.
Hence, M o R3R? i.e. M # f(R).



Q4(i): Estimate the final radius of the stellar remnant if the energy lib-
erated is just enough to eject the remaining 9M,, to infinity. State clearly
any assumptions made.

A4(i): The energy that goes into ejecting the remaining mass is (see Lec-
ture 7, eq. 7.8 and following):

30 fG1MZ (i — —1—) (4.22)

1 Te,f Tei

where f = 0.01 and 7.; and r.r are, respectively, the core radius at the
start of the collapse and the core’s final radius.

AF, =

The energy needed to eject 9 M of material out of the potential well
created by the remaining 1 M is:

e e G 9ME
7 {rg)

where (rg) is an average radius of the 9 My before the core collapses.

(4.23)

Equating the two expressions leads to:

30 T
Tof = (f = _") (4.24)

Let’s consider some possibilities for {rg). One extreme is to take the radius
of a 10 My supergiant, i.e. (rg) ~ 100R; (see, for example, Lecture 2,
Figure 2.9). With r.; ~ rg ~ 6000km, we have:

30 1 -1
= ~ km . 4.2
fet (0.01 100 X7 x 108 km | 6000 km) ST e (4.25)

Another extreme would be to assume that all of the 9 M is located in a
thin shell just above the collapsing core, in which case (r9) ~ Rgy, and:

- £ .. _1~2k (4.26)
Tef =\ 0.01 - 6000km @ 6000km /) — <F™- |

Using an intermediate and crude “guesstimate” of (rg) ~ 1Ry for a cen-
trally condensed supergiant, we have:

30 i -
= e 295 km . 4.27
Tk (0.01 Ix7x106km © 6000k1n> o (4:27)
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Therefore, there appears to be plenty of energy available in the gravita-
tional collapse of the core to eject the 9Mg of overlying material (recall
that the final core radius quoted in Lecture 16 is roughly 20km).

Q4(ii): What is the typical velocity of the ejecta, if the energy absorbed
by the envelope is 10°! erg?

A4(ii): We have:
1 F
Ey=1x 10" erg = 5 Mo (v)? (4.28)

and therefore:

(v) = 2B T2 _[(2x 10%' g cm? 572 1/2
VEAM, ) T\ 9x2x109g (4.29)

—33x108cms ! =3300km s !.

Q4(iii): An astronomer announces the discovery of a Type II supernova
in a Globular cluster, but her colleagues are skeptical. Why?

A4(iii): Type II supernovae are generally believed to be the end points of
the evolution of stars with masses M X 10Mg (Lecture 16.3.1).

Such stars have lifetimes 7 < 3 x 107 yr.

Globular clusters have ages 7 2 3 x 109 yr.

Thus, all massive stars originally in a globular cluster have long ago ex-
ploded as Type II supernovae.

Q5(i): Calculate the nuclear energy released by a Type Ia SN assuming
that: (a) the exploding white dwarf has a mass of 1.4 M, consisting of *C
and %0 in equal proportions by number, and (b) all of the C and O are



burned to °°Ni in the explosion. The mass of a given nucleus of atomic
number Z and mass number A is given by the formula:

m(A, Z) = Amy + mex(A4, 2)
where one atomic mass unit m, = 931.5MeV/c?, and the mass excess
Mex = 0, —4.7, and —53.9MeV/c? for 12C, 10, and 5°Ni respectively.
[Note: 1MeV = 1.6 x 10713 ] ]
A5(i): The conversion of 2C and %O to *Ni involves:

2 (*C+ '9%0) — "Ni+... (4.30)

The total energy released in the explosion is the mass difference between
the left- and right-hand sides of eq. 4.30 x the number of such reactions
required to convert 1.4My of 2C and 80 into %Ni.

The mass on the L.H.S. of 4.30 is:

MeV
m' =2 x [12 x 931.5 + 16 x 931.5 — 4.7 —
C
_ 52155 MV (4.31)
02
= 9.3 x 107 % kg,
since 1m, = 1.66053886 x 102" kg.
Thus, to burn 1.4M; of a CO white dwarf we require:
M’WD 1.4 x 2.0 % 1030 kg 55
! = =3.0 x 10 4.32
Nreao = =5 9.3 x 10-B kg 8 i)
The mass on the R.H.S. of 4.30 is:
MeV

m' =56 x 931.5 — 53.9 = 52110 (4.33)

r
ignoring the mass of electrons and neutrinos generated in the nuclear re-
actions.

Thus, the energy released per reaction (E = mc?) is:

AE =m' —m"” = 52155 — 52110 = 45 MeV (4.34)



and the total energy released in the explosion is:

E = AE X Nyeae = 45 x 3.0 x 10°° MeV
=1.4%x 10" x 1.6 x 107*] (4.35)
=22x 107,

Q5(ii): Given that the white dwarf had a gravitational binding energy
Ug = 5 X 104 J, obtain a simple estimate of the average velocity of the
ejected matter in the explosion, if all of the energy released is transtormed
into kinetic energy.

A5(ii): With the rather extreme assumption that all the energy liberated
by the explosion of the white dwarf is turned into kinetic energy of the
ejecta (and thus ignoring radiation losses), we have:

Ky =E—Ug=22x10" —5x 10% = 1.7 x 10" J (4.36)

2

Since K = %mv , we have:

oK \? 3.4 x 104 kg m? 572 1/2
N = ~ 11000 km s~} ~ 0.04c!
) (MWD> ( 1.4 x 2.0 x 1039kg ) 000 km s 0.04c
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Q6(i): How will the rotation speed of the star depend on its radius?

A6(i): The standard expression for angular momentum:
L=rxp (4.37)

can be applied to a star of mass M and radius R (dropping the vector

notation):
L=Muvy R= MwR? (4.38)

where the rotational velocity and the angular frequency w are related by:
Urot == L{JR.

With L and M constant, it is straightforward to see that as the star evolves:

1
Vrot X E (439)

Q6(ii): The Sun will ultimately evolve into a white dwarf, with radius
Rwp = 10" m. Given that the Sun has a rotation period of 28 days, obtain
an estimate of the rotation period of the white dwarf it will eventually
become. Comment on whether this is likely to be an upper or lower limit
to the actual value.

A6(ii): If vyop o 1/R and w = vpot/ R, it follows that w o< 1/R2. Further-
more, since the period is just:

27
P=— 4.4
4 (4.40)
we have: )
Pwp\ _ (fwp )" (4.41)
Py R '
Thus:

107 ? 2
Pyp = (ﬁ) - 28 days = 28 = 5.7 x 107 days = 8.3 minutes

4900
(4.42)

In reality, this is a lower limit to the rotation period of the WD. As we
have discussed in the lectures, before becoming a white dwarf the Sun will

11



lose a substantial fraction of its mass during the RGB, AGB, and PN evo-
lutionary stages. This will result in angular momentum loss; consequently
the WD remnant will not spin as fast.

Q6(iii): Neutron stars are believed to be formed in Type II supernovae
as the core of a massive star collapses. If the core had an initial radius
R. = 107 m and a rotation period of 28 days, estimate the rotation period of
the neutron star, assuming Rys = 10km. Compute the minimum rotation
period possible for a neutron star. How do the two numbers compare?

A6(iii): Again, assuming homologous contraction and constant angular
momentum, we have:

Prns Rxs\’
— 4.43
- ( = (4.43)
and
100\ 2
Pus = 28 days (W) — 28 x 24 x 3600 x 1078 = 2.45 (4.44)

The minimum rotation period possible is determined by the ability of grav-
ity to provide the centripetal force necessary to hold the star together, i.e.

GM

wi R = i (4.45)
Since P = 27 /w, we have:
Rg 1/2
Prin = 2 AT 4.
s (GM) (4.46)
For a neutron star of R = 10*m and M = 1.4M,,, we have:
1012 1’1’13 1/2
Froin = 6.28 = 4.6x107*
"’“ (6.67 x 10~11m3 kg™! 72 x 1.4 x 2 x 10%0 kg) i
(4.47)

From the above result we see that P, is some four orders of magnitude
smaller than the initial rotational period of the neutron star in our example.
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Q7(i): Comment on how the changing separation between the two stars
affects the accretion.

AT(i): In lecture 18 we derived the expression that relates the binary
separation a to the mass transfer rate M:

1 da . M; — M

oo s B

a dt My M,
Since the mass transfer is from the more massive star to the less massive

one, M; < My and therefore da/dt is —ve: the stars get closer together
(assuming conservation of mass and angular momentum).

(4.48)

We also saw that the distance from the inner Lagrangian point L1 to the
donor star, depends on the binary separation:

M
£ = a [0.500 + 0.227 log, (?‘71'3)] . (4.49)
1

Thus, as a shrinks, L1 will move closer to, or into, the donor, greatly en-
hancing the accretion. This is unstable mass transfer!.

Q7(ii): If 2/3 of the donor mass were to accrete onto the neutron star
in a continuous stream over ~ 104 years, what is the expected luminosity
(primarily in the X-ray regime)? How does it compare with the Eddington
luminosity? Where do you think that 100, of donated gas would actually
end up?

AT7(ii): The potential energy lost by an element of mass dM as it infalls
from “infinite” radius to radius R is:

dU = g%m (4.50)

Division by the time interval d¢ yields the rate at which potential energy
is given up. The maximum luminosity that one would expect under the
assumption of spherically symmetric, steady-state radial infall onto the
surface of the neutron star, with all the energy being reradiated in the

waveband observed, is: ;
GMys dm
L =~ — 4.51
Ry dt (4:51)
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In our case, we have:

dm  10Ms 10 x2x10%kg
dt — 10fyr 104 x3.2x 107s

=6.3x10%kgs™'. (4.52)

Entering Mps = 1.4Mg, Rps = 10*m, and the above value of dm/dt into
eq. 4.51, we have:

6.7 x 107 m3 kg™l s72 x 1.4 x 2 x 10%%kg
LX ~
104m
~12x10%kgm?s 25 =1.2x10°W

x 6.3 x 1009 kg 571

(4.53)

In Lecture 10 (eq. 10.41), we saw that the Eddington luminosity is:
M
Leaq =~ 3.8 x 10t — Lg; (4.54)
Mo
hence:
Leddns ~ 3.8 x 10! x 1.4 x 3.9 x 10%W = 2.1 x 10°' W. (4.55)

Comparing (4.53) and (4.55), we see that the Eddington luminosity is a
factor of 10° smaller than the luminosity that would be expected from all
the matter being lost from the donor. In such circumstances, radiation
pressure would prevent almost all of the matter from being accreted, so it
must be lost to the system—possibly aided by turbulence created during
an in-spiralling phase.

High mass X-ray binaries do radiate close to the Eddington limit.
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Q8(i): Explain what is meant by a ‘top-heavy’ IMF.

A8(i): These two questions are meant to stimulate the curiosity of the
student; the relevant material has only been touched upon in the lecture
notes (Lecture 11.9).

A ‘top-heavy’ IMF simply implies a stellar initial mass function in which
the balance between high- and low-mass stars is ‘tilted’ in favour of high-
mass stars compared to a standard reference, normally taken to be the

Salpeter IMF":
N(M)dM o< M=% dM (4.56)

where N (M) dM is the number of stars per unit volume with mass between
M and M + dM. In a ‘top-heavy’ IMF the exponent of the power law is
greater (i.e. less negative), giving a higher proportion of high-mass stars.

Q8(ii): Put forward some observational tests that may verify the validity
of this claim.

AB8(ii): To answer this question, the student has to draw on material that
she/he has encountered at several places in the lecture course. Possible
tests of a top-heavy IMF would include:

(1) A lower than ‘normal’ mass-to-light ratio. We saw in Lecture 4.5 that
L o< M?3®. Consequently, M/L oc M~2%°. Thus, a stellar population with
a top-heavy IMF would by overluminous for its mass.

(2) Unusually strong P-Cygni lines. In Lecture 15.4.4 we considered the
wind-momentum luminosity relation for mass-losing stars:

_ R\ /2
Mug, ( Rg)) oo LM (4.57)

which shows that the product of the mass-loss rate and the wind termi-
nal velocity is proportional to the luminosity of a star. P-Cygni lines are
diagnostic of powerful, optically thick stellar winds; in a galaxy with an
unusually high proportion of massive stars, the contrast of the P-Cygni
lines over the UV continuum would be increased (and viceversa)—see Fig-
ure 4.1.
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Figure 4.1: Comparisons between Starburst99 (Leitherer et al. 1999) population synthesis
models with different IMFs (green lines) and the Keck spectrum of MS 1512-cB58 analysed
by Pettini et al. (2000b) in the region near the C IV doublet (black histogram). Top
panel: ‘Standard’ Salpeter IMF, with & = 2.35 in the mass range 1-120M¢.  Middle
panel: ‘Standard’ Salpeter IMF, with ov = 2.35, but with the upper mass limit truncated
at M, = 30Mg. This IMF lacks the most massive stars; consequently the strength of the
C1v P-Cygni line is reduced significantly compared to the top panel. Bottom panel: A
‘top-heavy’ IMF, with a much flatter power-law slope (a = 1.0) results in a much stronger
P-Cvgni line. The y-axis is residual intensity.

(3) Chemical abundance anomalies. In Lecture 11.9 we briefly mentioned
that stars of different masses synthesise (and expel) different elements in
different proportions. For example, massive stars are thought to be the
main producers of O, while intermediate- and low-mass stars make most
of the Fe. Thus, a top-heavy IMF would lead higher O/Fe ratios than

16



observed, for example, in the Milky Way.

(4) Qualitatively, the students should at least surmise that a top-heavy
IMF will lead to a higher density/frequency of the end products of mas-
sive stars: core-collapse supernovae, neutron stars and pulsars, gamma-ray
bursts, and black holes.

Q9(i): Calculate the fraction of the stellar mass that is returned to the
interstellar medium 10 Gyr after the burst of star formation.

A9(i): In Lecture 11.9 we saw that the Salpeter initial mass function de-
scribes the number of stars (per unit volume) in the mass interval between
M and M + dM and has the functional form:

E(M)dM o< M™23dM | (4.58)

Let the IMF have some normalisation a, i.e. £(M) = aM 2%, Then, the
total initial mass of the stellar population is:
60Mg
Mgt = M; £(M;)dM;
0.1M,,

600
—q GM'—l.SSdM (459)

0.1M¢
= 5.(l8

Note that the IMF needs to be defined between M, and My, or the
integral will be ill-behaved.

In the lectures, it was also stated that the lifetime of a star with M; = 1M,
is 10 Gyr (e.g. lecture 4.5 and Figure 4.10). The mass locked-up in stellar
remnants and in low mass stars (with M; < 1Mg) 10 Gyr after the star
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formation episode is therefore:

1Mp 85 0 60Mg
M = / M, €(M)AM + / = ¢(M)AM; + / L4E(M)AM,
0

.111/_{@ lﬂ/fo 8}!/.{@
1M . 8Me 60Me
=l M7EBAM; + - M135dM; + 1.4a / M7*%dM,
0.1M, 0 1 Mg 8M;
= 3.89a
(4.60)
The amount returned to the ISM is therefore:
Mooy = M; — M, = 5.71a — 3.89a = 1.82a (4.61)
and the returned fraction is:
M.,  1.82
=_——— =0.32. .
M, 5.71 (4.62)

Q9(ii): Comment briefly on the result.
A9(ii): Even after 10 Gyr, most of the initial mass is still locked up in low
mass stars (still on the main sequence) and compact stellar remnants.

In reality, the returned fraction is somewhat larger than the above estimate,
because the IMF does not follow a Salpeter slope all the way down to
0.1Mg, but turns over near M ~ 1My.
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Q10(i): In photodisintegration, each iron nucleus can absorb 124.4 MeV
of energy in the process v +3¢ Fe — 13 3He + 4n. If 3/4 of the core mass
M. = 1.4M,, is dissociated in this way, calculate the total energy absorbed
by this process.

A10(i): The number of %Fe nuclei is:

% i
o = —1.4Mgy — .
Nee = 7 © 56u (4.63)
where u is the unified atomic mass unit. Thus:
3 1

N = 7 L4x1.99x 10%g = 2.25 x 10°°. (4.64)

56 x 1.661 x 10 2% g

If each nucleus absorbs 124.4 MeV, the total energy loss is:

AFE = —2.25x10% x 1244 x 106 x 1.60 x 107'% = —4.5 x 10” erg . (4.65)

Q10(ii): If each v, produced by the inverse beta-decay carries away 10 MeV
of energy, how much energy is removed from the core if the entire M, =
1.4M undergoes neutronisation?

A10(ii): The number of protons contained in a stellar core of mass M, =
1.4Mg is approximately:

= 8.4 x 10%. (4.66)

(the other half being neutrons). Assuming charge neutrality, there will also
be 8.4 x 10° electrons. Since each neutronisation produces one electron
neutrino, and each v, carries away 10MeV, the total energy lost to the

system 1s

AE = —8.4 % 10% x 10 x 10° x 1.60 x 1071 = —1.3 x 10°%erg. (4.67)
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Q10(iii): Compare the combined energy loss by photodisintegration and
neutronisation to the luminosity of a main sequence star with mass M =
12M,,, and comment on the result.

A10(iii): In Lecture 4.5, we saw that for stars on the main sequence,
L o< M35, Thus, the luminosity of a M = 12M, star is:
L =123%L ~ 6000Le = 6000 x 3.839 x 10*% erg s7* = 2.3 x 10* erg s7*.

We also saw that the main sequence lifetime of stars with masses M > 8M
can be approximated by the relation:

log(tyg/yr) = 9.01 — 1.57log(M /M) (4.68)
(Figure 4.10). Thus, a star with M = 12M will spend
tus = 20.7 Myr = 20.7 x 10°% x 31556926 = 6.5 x 10's
on the main sequence (ignoring mass loss).
During this time, the star will radiate an energy:
AE =—-23x10"erg s x 6.5 x 10Ms = —1.5 x 10°%erg

comparable to the sum of the energy loss due to photodisintegration and
neutronisation, AE = —(0.45 + 1.3) x 10° = —1.75 x 10 erg (eqs. 4.65
and 4.67).

Thus, in just a few seconds at the end of its life, a massive star loses as much
energy as that radiated throughout its entire life on the main sequence.

20



	examples.1.stars
	Sols.1.stars
	examples.2.stars
	Sols.2.stars
	examples.3.stars
	Sols.3.stars
	examples.4.stars
	Sols.4.stars
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

