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Introduction

NB The use of the word “collisionless” is a technical one, specific to stellar dynamics.
It does not simply mean there are no physical collisions between stars - it is a stronger
statement than that.

Aiming to describe the strucure of a self-gravitating collection of stars, such as a star
cluster or a galaxy.

e.g. globular cluster N ∼ 106 stars, rt ∼ 10 pc ∼ 3× 1017 m.
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1. Gravity is a long range force. For example, if the star density is uniform, then a
star at the apex of a cone sees the same force from a region of a given thickness
independent of its distance.

m1 ∝ r2
1 h

m2 ∝ r2
2 h

and

f1 ∝ −
Gm1

r2
1

∝ h

f2 ∝ −
Gm2

r2
2

∝ h

⇒ the force acting on a star is determined by distant stars and large-scale structure of
the galaxy. The force is zero if uniform density everywhere, but 6= 0 if the density falls
off in one direction, for example.
This is unlike molecules of gas where forces are strong only during close collisions
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2 Stars almost never collide physically.

Distance to nearest star in a globular cluster is
d ∼ 10

(106)
1
3
∼ 0.1 pc ∼ 3× 1015 m >> r∗ ∼ 109 m.

r∗ � d � rt

This means that we can mentally smooth out the stars into a mean density ρ̄ and use
that to calculate a mean gravitational potential Φ̄ and use that to calculate the orbits
of the individual stars. The forces on a given star do not vary rapidly.

If this is a good approximation then the system is said to be “collisionless”..
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Between 2 and ∞

N =∞ If the system consisted of an infinite number of stars which are themselves
point masses then the collisionless approximation would be perfect.

N = 2 If instead we have a binary system then the approximation is dire - it does not
work at all.

So somewhere between N = 2 and N =∞ it becomes OK. What is the criterion for
this?

Consider a system of N stars each of mass m, and look at the motion of one star as it
crosses the system. Now look at

1 the path under the assumption that the mass of the stars is smoothed out

2 the real path using individual stars

What we want to do is estimate the difference between the two - or, in particular, the
difference in the resultant transverse (relative to the initial motion) velocity of the star
we have chosen to follow.
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Weak encounters

For the real path we will use an impulse approximation to start with. On the real path
the star undergoes encounters with other stars which perturb the straight path. One
encounter with a star of mass m at (0, b), i.e. impact parameter b as shown:

on the path x = vt
Fy =

Gm2

r2
cos θ =

Gm2b

(x2 + b2)
3
2

Fy =
Gm2

b2

[
1 +

(vt
b

)2
]− 3

2

= mv̇y

∆vy =
Gm

b2

∫ ∞
−∞

[
1 +

(vt
b

)2
]− 3

2

dt

=
Gm

bv

∫ ∞
−∞

(1 + s2)−
3
2 ds

Setting s = tan θ allows us to integrate this

∆vy =
2Gm

bv
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Weak encounters

We could have obtained this sort of approximation more quickly by noting that
|∆v⊥| ≈ Force at closest approach × time spent near perturber = Gm

b2 × 2b
v .

How many encounters at distance b are there? The surface density of stars is ∼ N
πR2 ,

so the number of stars with b in the range(b, b + db) is

δn =
N

πR2
2πb db

Each encounter produces an effect ∆v⊥, but the vectors are randomly oriented.
Therefore the mean value of the effect is zero, but the sum of the δv2

⊥ is non-zero.

So v2
⊥ changes by an amount (

2Gm

bv

)2
2N

R2
b db

We need to integrate this over all b, so

∆v2
⊥ =

∫ R

0

8N

(
Gm

Rv

)2
db
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∆v2
⊥ =

∫ R

0

8N

(
Gm

Rv

)2
db

b

There is a problem here, and that is the lower limit 0 for the integral. The
approximation we have used breaks down then, so replace 0 by bmin, the expected
closest approach - i.e. such that

N

πR2
(b2

minπ) = 1

so
bmin ∼ R/N

1
2

Then

∆v2
⊥ ≈ 8N

(
Gm

Rv

)2

ln Λ

where Λ = R/bmin.
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Weak encounters

Let us check for consistency that approximation we have used is OK.

When b = bmin. We have the requirement that δv⊥/v << 1,
so require 2Gm/bv2 << 1, or b >> 2Gm/v2.

But from the Virial theorem v2 ∼ GM/R ∼ GNm/R, so need
b >> 2GmR/GNm = 2R/N, i.e. b/R >> 2/N.

For bmin have bmin/R ∼ 1/N
1
2 >> 1/N, so the approximation is OK.

11 / 101



Galaxies Part II

Collisionless Systems:
Introduction

Relaxation time

Gravitational Drag /
Focusing

The Collisionless
Boltzman Equation

The Jeans Equations

Application of Jeans
equations

The Virial Theorem

Relaxation time
Weak encounters

Let us check for consistency that approximation we have used is OK.

When b = bmin. We have the requirement that δv⊥/v << 1,
so require 2Gm/bv2 << 1, or b >> 2Gm/v2.

But from the Virial theorem v2 ∼ GM/R ∼ GNm/R, so need
b >> 2GmR/GNm = 2R/N, i.e. b/R >> 2/N.

For bmin have bmin/R ∼ 1/N
1
2 >> 1/N, so the approximation is OK.

11 / 101



Galaxies Part II

Collisionless Systems:
Introduction

Relaxation time

Gravitational Drag /
Focusing

The Collisionless
Boltzman Equation

The Jeans Equations

Application of Jeans
equations

The Virial Theorem

Relaxation time
Weak encounters

Let us check for consistency that approximation we have used is OK.

When b = bmin. We have the requirement that δv⊥/v << 1,
so require 2Gm/bv2 << 1, or b >> 2Gm/v2.

But from the Virial theorem v2 ∼ GM/R ∼ GNm/R, so need
b >> 2GmR/GNm = 2R/N, i.e. b/R >> 2/N.

For bmin have bmin/R ∼ 1/N
1
2 >> 1/N, so the approximation is OK.

11 / 101



Galaxies Part II

Collisionless Systems:
Introduction

Relaxation time

Gravitational Drag /
Focusing

The Collisionless
Boltzman Equation

The Jeans Equations

Application of Jeans
equations

The Virial Theorem

Relaxation time
The time to erase the memory of the past motion

So we conclude that v2
⊥ changes by an amount ∆v2

⊥ ≈ 8N
(
Gm
Rv

)2
ln Λ at each crossing.

The collisionless approximation will fail after nrelax crossings, where

nrelax∆v2
⊥ ∼ v2 i.e. nrelax8N

(
Gm

Rv

)2

ln Λ ∼ v2

and using v2 ' GNm
R this becomes

nrelax8N

(
v2

Nv

)2

ln Λ ∼ v2 i.e. nrelax ∼
N

8 ln Λ

The relaxation time is

trelax = nrelax × tcross ≈ nrelax
R

v

and the crossing time

tcross ∼
√

R3

GNm
12 / 101
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Notes:

1 ln Λ ∼ lnN, so nrelax ∼ N
8 ln N .

2 relaxation time is the timescale on which stars share energy with each other.

3 can model a system as collisionless only if t << trelax.

Estimates of timescales:

• Galaxies: N ∼ 1011, tcross ∼ 108 yr, nrelax ∼ 5× 108, so
trelax ∼ 5× 108tcross ∼ 5× 1016 yr. This is much greater than a Hubble time, so
galaxies are not relaxed.

• Globular clusters: N ∼ 106, tcross ∼ 10pc/20km s−1 ∼ 5× 105 yr, so
trelax ∼ 4× 109 yr. Their ages are somewhat greater than this, so globular
clusters are relaxed, and hence spherical.
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Consider a large mass M moving with speed v through a sea of stationary masses m,
density ρ. In the frame of the mass M:

.. so not only is v⊥ affected, but
there is also a contribution to v‖.
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Relative to M have a Keplerian orbit with the angular momentum h = bv = r2ψ̇ The
orbit, as you remember:

1

r
= C cos(ψ − ψ0) +

GM

h2
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1

r
= C cos(ψ − ψ0) +

GM

h2

Get C , ψ0 by differentiating this ↑

dr

dt
= Cr2ψ̇ sin(ψ − ψ0)

As ψ → 0 dr
dt → −v so

−v = Cbv sin(−ψ0)

Also, since r →∞ then

0 = C cosψ0 +
GM

b2v2

so
tanψ0 = −bv2/GM
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Now π − θdefl = 2(π − ψ0), so θdefl = 2ψ0 − π.
⇒

tan

(
θdefl

2

)
= − 1

tanψ0

and so

tan

(
θdefl

2

)
=

GM

bv2

Then θdefl = π
2 if ψ0 = 3π

4 , or tanψ0 = −1 ⇒

b⊥ ∼
GM

v2
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To estimate the drag force, we assume that all particles with b < b⊥ lose all their
momentum to M (i.e. δv ≈ v at b⊥)
So the force on M = rate of change of momentum = πb2

⊥ρv
2 (consider cylinder

vdt × πb2 within which each star contributes v)
So

M
dv

dt
= −πρv2

(
GM

v2

)2

or
dv

dt
' −πρG

2M

v2

This is known as dynamical friction.
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Note:

1 We have assumed that the mass is moving at velocity v with respect to the
background. In general the background will have a velocity dispersion σ. We have
effectively assumed in the above that v >> σ. If v << σ then we expect
negligible drag since the particle barely “knows” it is moving. The general result
(see Binney & Tremaine, p643 onwards) is that drag is caused by particles with
velocities 0 < u < v .

2 Force F ∝ M2, and the wake mass is ∝ M

3 F ∝ 1
v2 .
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Applications of dynamical friction

• Galactic cannibalism
A satellite with σ ∼ 50 km/s in a

galaxy with σ ∼ 200 km/s will spiral
from 30 kpc in 10 Gyr.

• Decay of black-hole orbits
for MBH > 106M� only few Gyr to go

from 10 kpc to 0

• Friction between the Galactic bar and
the Dark Matter halo

• Formation and evolution of binary
black holes

• The fates of globular clusters
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The Collisionless Boltzman Equation

• If the interactions are rare, then the orbit of any star can be calculated as if the
system’s mass was distributed smoothly.

• But, as we just saw, eventually the true orbit deviates from the model orbit.

• Luckily, as long as we consider timescales < trelax we are fine

• In fact, for galaxies, trelax >> tHubble . Perfect!

• However, when modelling a collisionless system such as an elliptical galaxy it is
not practical to follow the motions of all constituent stars. Because there are too
many of them!
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The Collisionless Boltzman Equation
The Distribution Function

Let us assume that the stellar systems consist of a large number N of identical
particles with mass m (could be stars, could be dark matter) moving under a smooth
gravitational potential Φ(x, t).

Most problems are to do with working out the probability of finding a star in particular
geographical location about the galaxy, moving at a particular speed.

Or, in other words, the probability of finding the star in the six-dimensional
phase-space volume d3xd3v, which is a small volume d3x centred on x in the small
velocity range d3v centred on v.

At any time t a full description of the state of this system is given by specifying the
number of stars f (x, v, t)d3xd3v, where f (x, v, t) is called the “distribution function”
(or “phase space density”) of the system.

Obviously, f ≥ 0 everywhere, since we do not allow negative star densities.
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The Distribution Function

Naturally, integrating over all phase space:∫
f (x, v, t)d3xd3v = N (5.1)

Alternatively, we can normalize it to have:∫
f (x, v, t)d3xd3v = 1 (5.2)

Then f (x, v, t)d3xd3v is the probability that at time t a randomly chosen star has
phase-space coordinates in the given range.
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Phase space flow

If we know the initial coordinates and velocities of every star, then we can use
Newton’s laws to evaluate their positions and velocities at any other time i.e. given
f (x, v, t0) then we should be able to determine f (x, v, t) for any t. With this aim, we
consider the flow of points in phase space, with coordinates (x,v), that arises as stars
move along in their orbits. We can set the phase space coordinates

(x, v) ≡ w ≡ (w1,w2,w3,w4,w5,w6)

so the velocity of the flow (which is the time derivative of the coordinates) may be
written as

ẇ = (ẋ, v̇) = (v,−∇Φ).

ẇ is a six-dimensional vector which bears the same relationship to the six-dimensional
vector w as the three-dimensional fluid flow velocity v = ẋ.
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Phase space flow

Any given star moves through phase space, so the probability of finding it at any given
phase-space location changes with time. In what way?

However, the flow in phase space conserves stars, hence we can derive the equation of
conservation of the phase space probability analogous to the fluid continuity equation.
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The fluid continuity equation

For an arbitrary closed volume V fixed in space and bounded by surface S , the mass of
fluid in the volume is

M(t) =

∫
V

d3xρ(x, t) (5.3)

The fluid mass changes with time at a rate

dM

dt
=

∫
V

d3x
∂ρ

∂t
(5.4)

But, the mass flowing out through the surface area element d2S per unit time ρv · d2S.
Thus:

dM

dt
= −

∮
S

d2S · (ρv) (5.5)

Or ∫
V

d3x
∂ρ

∂t
+

∮
S

d2S · (ρv) = 0 (5.6)
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∫
V

d3x
∂ρ

∂t
+

∮
S

d2S · (ρv) = 0

can be re-written with the use of the divergence theorem:∫
V

d3x

[
∂ρ

∂t
+ ∇ · (ρv)

]
= 0 (5.7)

Since the result holds for any volume:

∂ρ

∂t
+ ∇ · (ρv) = 0 (5.8)

Which in Cartesian coordinates looks like this:

∂ρ

∂t
+

∂

∂xj
(ρvj) = 0 (5.9)

using the summation convention

A · B =
3∑

i=1

AiBi = AiBi
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The continuity of flow in phase space

Since ẋ = v , for fluids:

∂ρ

∂t
+

∂

∂x
· (f ẋ) = 0

The analogous equation for the conservation of probability in phase space is:

∂f

∂t
+

∂

∂w
· (f ẇ) = 0 (5.10)

Note that writing it as a continuity equation carries with it the assumption that the
function f is differentiable. This means that close stellar encounters where a star can
jump from one point in phase space to another are excluded from this description.
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The continuity of flow in phase space

Let us have a closer look at the second term in ∂f
∂t + ∂

∂w · (f ẇ)= 0

∂(f ẇi )

∂wi
= ẇi

∂f

∂wi
+ f

∂ẇi

∂wi
(5.11)

The flow in six-space is an interesting one, since

6∑
i=1

∂(ẇi )

∂wi
=

3∑
i=1

(
∂vi
∂xi

+
∂v̇i
∂vi

)
=

3∑
i=1

− ∂

∂vi

(
∂Φ

∂xi

)
= 0 (5.12)

Here ∂vi
∂xi

= 0 because in this space vi and xi are independent coordinates, and the last
step follows because Φ, and hence ∇Φ does not depend on the velocities. We can use
this equation to simplify the continuity equation, which now becomes

∂f

∂t
+

6∑
i=1

ẇi
∂f

∂wi
= 0 (5.13)
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or,
∂f

∂t
+ ẇ .∇6f = 0,

or (in terms of xi and vi , and using summation convention with i = 1 to 3.)

∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0,

or (in vector form)

Collisionless Boltzmann Equation

∂f

∂t
+ v .∇f −∇Φ . ∂f

∂v
= 0 (5.14)

where ∂f
∂v is like ∇f , but in the velocity coordinate v rather than the spatial coordinate

x.
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The Liouville’s Theorem

The meaning of the collisionless Boltzmann equation can be seen by extending to six
dimensions the concept of the Lagrangian derivative. We define (using the summation
convention here and forever more)

Df

Dt
≡ ∂f

∂t
+ ẇi

∂f

∂wi
(5.15)

df
dt represents the rate of change of density in phase space as seen by an observer who
moves through phase space with a star with phase space velocity ẇ. The collisionless
Boltzmann equation is then simply

Df

Dt
= 0 (5.16)

Therefore the flow of stellar phase points through phase space is incompressible – the
phase-space density of points around a given star is always the same.

33 / 101



Galaxies Part II

Collisionless Systems:
Introduction

Relaxation time

Gravitational Drag /
Focusing

The Collisionless
Boltzman Equation

The Distribution
Function

Phase space flow

The fluid continuity
equation

The continuity of flow in
phase space

In cylindrical polars

Limitations and links
with the real world

The Jeans Equations

Application of Jeans
equations

The Virial Theorem

The Collisionless Boltzman Equation
The Liouville’s Theorem = Preservation of the phase space density

Compare start...

...and finish
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In cylindrical polars

Be careful when writing down the collisionless Boltzmann equation in non-Cartesian
coordinates! For example, in cylindrical polars (axial symmetry)

R̈ − Rφ̇2 = −∂Φ

∂R

1

R

d

dt

(
R2φ̇

)
= − 1

R

∂Φ

∂φ

z̈ = −∂Φ

∂z

with
vR = Ṙ

vφ = Rφ̇ ( not just φ̇)

vz = ż

Since dx = dReR + Rdφeφ + dzez
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In cylindrical polars

�� ��R̈ − Rφ̇2 = −∂Φ
∂R

�



�
	1

R
d
dt

(
R2φ̇

)
= − 1

R
∂Φ
∂φ

�� ��z̈ = −∂Φ
∂z

�� ��vR = Ṙ
�� ��vφ = Rφ̇

�� ��vz = ż

Then start with

∂f

∂t
+ Ṙ

∂f

∂R
+ φ̇

∂f

∂φ
+ ż

∂f

∂z
+ v̇R

∂f

∂vR
+ v̇φ

∂f

∂vφ
+ v̇z

∂f

∂vz
= 0

and this becomes

∂f

∂t
+vR

∂f

∂R
+
vφ
R

∂f

∂φ
+vz

∂f

∂z
+

(
v2
φ

R
− ∂Φ

∂R

)
∂f

∂vR
− 1

R

(
vRvφ +

∂Φ

∂φ

)
∂f

∂vφ
− ∂Φ

∂z

∂f

∂vz
= 0

(5.17)
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Limitations and links with the real world

1 Stars are born and die! Hence they are not really conserved. Therefore, more
appropriately:

Df

Dt
=
∂f

∂t
+ v

∂f

∂x
− ∂Φ

∂x

∂f

∂v
= B − D (5.18)

where B(x, v, t) and D(x, v, t) are the rates per unit phase-space volume at which stars
are born and die.

But v∂f /∂x ≈ vf /R = f /tcross

Similarly, ∂Φ/∂x ≈ a ≈ v/tcross , hence ∂Φ/∂x ∂f /∂v ≈ af /v ≈ f /tcross
Therefore, the important ratio

γ =

∣∣∣∣ B − D

f /tcross

∣∣∣∣� 1 (5.19)

i.e. the fractional change in the number of stars per crossing time is small

40 / 101



Galaxies Part II

Collisionless Systems:
Introduction

Relaxation time

Gravitational Drag /
Focusing

The Collisionless
Boltzman Equation

The Distribution
Function

Phase space flow

The fluid continuity
equation

The continuity of flow in
phase space

In cylindrical polars

Limitations and links
with the real world

The Jeans Equations

Application of Jeans
equations

The Virial Theorem

The Collisionless Boltzman Equation
Limitations and links with the real world

Density of stars at a particular location x

ν(x) ≡
∫

d3vf (x, v) (5.20)

Probability distribution of stellar velocities at x

Px(v) =
f (x, v)

ν(x)
(5.21)

For lines of sight through the galaxy, defined by s - a unit vector from observer to the
galaxy.
The components of x and v vectors parallel and perpendicular to the line of sight are:

x‖ ≡ s · x
v‖ ≡ s · v

x⊥ ≡ x− x‖s

v⊥ ≡ v − v‖s
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The distribution of the line-of-sight velocities at x⊥

F (x⊥, v‖) =

∫
dx‖ν(x)

∫
d2v⊥Px(v‖s + v⊥)∫
dx‖ν(x)

The mean line-of-sight velocity:

v̄‖(x⊥) ≡
∫

dv‖v‖F (x⊥, v‖)

The line-of-sight velocity dispersion:

σ2
‖(x⊥) ≡

∫
dv‖(v‖ − v̄‖)

2F (x⊥, v‖)
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• The distribution function f is a function of seven variables, so solving the
collisionless Boltzmann equation in general is hard.

• So need either simplifying assumptions (usually symmetry), or try to get insights
by taking moments of the equation.

• We cannot observe f , but can determine ρ and line profile (which is the average
velocity along a line of sight v r and v2

r .
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Start with the collisionless Boltzmann equation -using the summation convention

∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0 (5.22)

and take the zeroth moment integrating over d3v.

∂

∂t

∫ ∫ ∫ ∞
∞

fd3v +

∫ ∫ ∫
vi
∂f

∂xi
d3v − ∂Φ

∂xi

∫ ∫ ∫
∂f

∂vi
d3v = 0 (5.23)

where for the first term we can take the differential with respect to time out of the
integral since the limits are independent of t, and in the third term Φ is independent of
v so the ∂Φ

∂xi
term comes out.
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�� ��∂
∂t

∫∫∫∞
∞ fd3v +

∫∫∫
vi
∂f
∂xi

d3v − ∂Φ
∂xi

∫∫∫
∂f
∂vi

d3v = 0

Now

ν(x, t) =

∫ ∫ ∫ ∞
−∞

fd3v

is just the number density of stars at x (and if all stars have the same mass m then
ρ(x, t) = mν(x, t)). So the first term is just

∂ν

∂t
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�� ��∂
∂t

∫∫∫∞
∞ fd3v +

∫∫∫
vi
∂f
∂xi

d3v − ∂Φ
∂xi

∫∫∫
∂f
∂vi

d3v = 0

Also
∂

∂xi
(vi f ) =

∂vi
∂xi

f + vi
∂f

∂xi

and
∂vi
∂xi

= 0

since vi and xi are independent coordinates, and so

∂

∂xi
(vi f ) = vi

∂f

∂xi
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Zeroth moment�� ��∂

∂t

∫∫∫∞
∞ fd3v +

∫∫∫
vi
∂f
∂xi

d3v − ∂Φ
∂xi

∫∫∫
∂f
∂vi

d3v = 0

Hence the second term above becomes

∂

∂xi

∫ ∫ ∫
vi fd

3v

and if we define an average velocity v i by

v i =
1

ν

∫ ∫ ∫
vi fd

3v

(so interpret f as a probability density) then the term we are considering becomes

∂

∂xi
(νv i )
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Zeroth moment�� ��∂

∂t

∫∫∫∞
∞ fd3v +

∫∫∫
vi
∂f
∂xi

d3v − ∂Φ
∂xi

∫∫∫
∂f
∂vi

d3v = 0

The last term involving ∫ ∫ ∫
∂f

∂vi
d3v = f |∞−∞= 0

since we demand that f → 0 as v→∞.

And so the zeroth moment equation becomes

∂ν

∂t
+

∂

∂xi
(νv i ) = 0 (5.24)

which looks very like the usual fluid continuity equation

∂ρ

∂t
+

∂

∂xi
(ρvi ) = 0
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∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0

Multiply the collisionless Boltzmann equation ↑ by vj and then integrate over d3v.

Then since
∂vj
∂t

= 0

we have ∫
vj
∂f

∂t
d3v =

∂

∂t

∫
fvjd

3v

So the first moment equation becomes

∂

∂t

∫
fvjd

3v +

∫
vivj

∂f

∂xi
d3v − ∂Φ

∂xi

∫
vj
∂f

∂vi
d3v = 0 (5.25)
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∂t

∫
fvjd

3v +
∫
vivj

∂f
∂xi

d3v − ∂Φ
∂xi

∫
vj
∂f
∂vi

d3v = 0

Looking at each of the terms in equation (5.25):

First term = ∂
∂t (νv j) by definition.

Second term = ∂
∂xi

(νvivj), where

vivj =
1

ν

∫
vivj fd

3v

Third term: ∫
vj
∂f

∂vi
d3v = [fvj ]

∞
−∞ −

∫
∂vj
∂vi

fd3v = −δijν
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�� ��∂
∂t

∫
fvjd

3v +
∫
vivj

∂f
∂xi

d3v − ∂Φ
∂xi

∫
vj
∂f
∂vi

d3v = 0

So first moment equation is

∂

∂t
(νv j) +

∂

∂xi
(νvivj) + ν

∂Φ

∂xj
= 0 (5.26)

We can manipulate this a bit further - subtracting v j×
�� ��∂ν
∂t + ∂

∂xi
(νv i ) = 0

gives

ν
∂v j

∂t
− v j

∂

∂xi
(νvi ) +

∂

∂xi
(νvivj) = −ν ∂Φ

∂xj
(5.27)
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�
�
�ν

∂v j

∂t − v j
∂
∂xi

(νvi ) + ∂
∂xi

(νvivj) = −ν ∂Φ
∂xj

Now define
σ2
ij ≡ (vi − v i )(vj − v j) = vivj − vi vj

(this is a sort of dispersion). Thus vivj = vi vj + σ2
ij where the vi vj refers to streaming

motion and the σ2
ij to random motion at the point of interest. Using this we can tidy

up (5.27) to obtain

ν
∂v j

∂t
+ νvi

∂vj
∂xi

= −ν ∂Φ

∂xj
− ∂

∂xi

(
νσ2

ij

)
(5.28)

This has a familiar look to it cf the fluid equation

ρ
∂u

∂t
+ ρ(u .∇)u = −ρ∇Φ−∇p

So the term in σ2
ij is a “stress tensor” and describes anisotrpoic pressure.
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Note that σ2
ij is symmetric, so it can be diagonalised. Ellipsoid with axes σ11, σ22, σ33

where 1, 2, 3 are the diagonalising coordinates is called the velocity ellipsoid.

If the velocity distribution is isotropic then we can write σ2
ij =

(
p
ν

)
δij for some p, and

the get −∇p in equation (5.28).

(5.24) and (5.26) are the Jeans equations. (5.26) can be replaced by (5.28).

These equations are valuable because they relate observationally accessible quantities.
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However...

The trouble is we have not solved anything. In a fluid we use thermodynamics to
relate p and ρ, but do not have that here. These equations can give some
understanding, and can be useful in building models, but not a great deal more.

Importantly, the solutions of the Jeans equation(s) are not guaranteed to be physical
as there is no condition f > 0 imposed.

Moreover, this is an incomplete set of equations. If Φ and ν are known, there are still
nine unknown functions to determine: 3 components of the mean velocity v̄ and 6
components of the velocity dispersion tensor σ2. Yet we only have 4 equations: one
zeroth order and 3 first order moments.

Multiplying CBE further through by vivk and integrating over all velocities will not
supply the missing information.

We need to truncate or close the regression to even higher moments of the velocity
distribution.

Such closure is possible in special circumstances
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Isotropic velocity dispersion

Take equation (5.28)

ν
∂v j

∂t
+ νvi

∂vj
∂xi

= −ν ∂Φ

∂xj
− ∂

∂xi

(
νσ2

ij

)
and assume at each point:

• steady state ∂
∂t = 0

• isotropic σ2
ij = σ2δij

• non-rotating vi = 0

So no mean flow, and velocity dispersion is the same in all directions (but σ2 = σ2(r)).
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Isotropic velocity dispersion

Then

ν
∂v j

∂t
+ νvi

∂vj
∂xi

= −ν ∂Φ

∂xj
− ∂

∂xi

(
νσ2

ij

)
becomes

−ν∇Φ = ∇(νσ2)

• Cluster with spherical symmetry - if we know ν(r) or ρ(r) = mν(r), then from
Poisson’s equation ∇2Φ = 4πGρ, the potential Φ(r) can be determined. Then
can solve for σ2(r)

• So given a density distribution ρ(r) and the assumption of isotropy we can find
σ(r), i.e. can find a fully self-consistent model for the internal velocity structure
of the cluster / galaxy.

• Minor difficulties: no guarantee (1) it is correct (is isotropic everywhere possible?)
or (2) it works (what if σ2 < 0 in the formal solution?).
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Jeans equations for cylindrically symmetric systems

Start with the collisionless Boltzmann equation and set ∂
∂φ = 0 [not vφ = 0!]. So we

have, from the cylindrical polar version of the equation (5.17)

∂f

∂t
+ vR

∂f

∂R
+ vz

∂f

∂z
+

(
v2
φ

R
− ∂Φ

∂R

)
∂f

∂vR
− 1

R
(vRvφ)

∂f

∂vφ
− ∂Φ

∂z

∂f

∂vz
= 0

Then for the zeroth moment equation
∫∫∫

dvRdvφdvz .
Time derivative term:∫ ∫ ∫

∂f

∂t
dvRdvφdvz =

∂

∂t

∫ ∫ ∫
fdvRdvφdvz =

∂ν

∂t
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Velocity terms:∫ ∫ ∫ (
vR
∂f

∂R
+ vz

∂f

∂z
+

v2
φ

R

∂f

∂vR
− 1

R
vRvφ

∂f

∂vφ

)
dvRdvφdvz

=
∂

∂R

∫ ∫ ∫
vR fdvRdvφdvz +

∂

∂z

∫ ∫ ∫
vz fdvRdvφdvz +

1

R

∫ ∫ ∫
v2
φ

∂f

∂vR
dvRdvφdvz

−
∫ ∫ ∫ [

∂

∂vφ

(
vRvφf

R

)
− f

∂

∂vφ

(vRvφ
R

)]
dvRdvφdvz ↑

↑ 0 (div theorem) 0 (div theorem)

=
∂

∂R

∫ ∫ ∫
vR fdvRdvφdvz +

1

R

∫ ∫ ∫
vR fdvRdvφdvz +

∂

∂z

∫ ∫ ∫
vz fdvRdvφdvz

=
1

R

∂

∂R
(RνvR) +

∂

∂z
(νvz)

where

vR =
1

ν

∫ ∫ ∫
vR fdvRdvφdvz and vz =

1

ν

∫ ∫ ∫
vz fdvRdvφdvz
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Terms with the potential Φ:∫ ∫ ∫
∂Φ

∂z

∂f

∂vz
dvRdvφdvz =

∂Φ

∂z

∫ ∫ ∫
∂f

∂vz
dvRdvφdvz = 0

and ∫ ∫ ∫
∂Φ

∂R

∂f

∂vR
dvRdvφdvz =

∂Φ

∂R

∫ ∫ ∫
∂f

∂vR
dvRdvφdvz = 0

Hence
∂ν

∂t
+

1

R

∂

∂R
(RνvR) +

∂

∂z
(νv z) = 0 (5.29)

This is the zeroth order moment equation.
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There are three first moment equations, corresponding to each of the v components,
where we take the collisionless Boltzmann equation ×vR , vφ, vz and

∫∫∫
dvRdvφdvz .

The results are

∂(νvR)

∂t
+
∂(νv2

R)

∂R
+
∂(νvRvz)

∂z
+ ν

(
v2
R − v2

φ

R
+
∂Φ

∂R

)
= 0 (5.30)

∂(νvφ)

∂t
+
∂(νvRvφ)

∂R
+
∂(νvφvz)

∂z
+

2ν

R
vφvR = 0 (5.31)

and
∂(νv z)

∂t
+
∂(νvRvz)

∂R
+
∂(νv2

z )

∂z
+
νvRvz
R

+ ν
∂Φ

∂z
= 0. (5.32)

Now, this is something powerful.
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• Spheroidal components with isotropic velocity dispersion

• Asymmetric drift

• Local mass density

• Local velocity ellipsoid

• Mass distribution in the Galaxy out to large radii
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Asymmetric drift

There is a lag and the lag increases with the age of the stellar tracers and so does the
random component of their motion.
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Asymmetric drift

The distribution of azimuthal velocities ṽφ = vφ − vc is very skew. This asymmetry
arises from two effects.

• Stars near the Sun with ṽφ < 0 have less angular momentum and thus have
Rg < R0 compared to stars with ṽφ > 0 and Rg > R0. The surface density of stars
declines exponentially, hence there are more stars with smaller Rg .

• The velocity dispersion σR declines with R, so the fraction of stars with
Rg = R0 − δR is larger than the fraction of stars with Rg = R0 + δR. Thus there
are more stars on eccentric orbits that can reach the Sun with ṽφ < 0
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Asymmetric drift

The epicyclic approximation:

[vφ − vc(R0)]2

v2
R

' −B
A− B

= − B

Ω0
=

K 2

4Ω2
' 0.5
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Asymmetric drift

The velocity of the asymmetric drift

va ≡ vc − v̄φ

Jeans tells us that

∂(νvR)

∂t
+
∂(νv2

R)

∂R
+
∂(νvRvz)

∂z
+ ν

(
v2
R − v2

φ

R
+
∂Φ

∂R

)
= 0

We assume

• The Galactic disk is in the steady state

• The Sun lies sufficiently close to the equator, at z = 0

• The disk is symmetric with respect to z and hence ∂ν/∂z = 0

So,

R

ν

∂(νv2
R)

∂R
+ R

∂(vRvz)

∂z
+ v2

R − v2
φ + R

∂Φ

∂R
= 0 (5.33)
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�
	R

ν

∂(νv2
R )

∂R + R ∂(vRvz )
∂z + v2

R − v2
φ + R ∂Φ

∂R = 0

Define
σ2
φ = v2

φ − vφ
2

Remember that

v2
c = R

∂Φ

∂R
Therefore

σ2
φ − v2

R − R

ν

∂(νv2
R)

∂R
− R

∂(vrvz)

∂z
= v2

c − vφ
2 (5.34)

= (vc − vφ)(vc + vφ) = va(2vc − va)

If we neglect va compared to 2vc

va '
v2
R

2vc

[
σ2
φ

v2
R

− 1−
∂ ln(νv2

R)

∂ lnR
− R

v2
R

∂(vrvz)

∂z

]
(5.35)
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�
	R

ν

∂(νv2
R )

∂R + R ∂(vRvz )
∂z + v2

R − v2
φ + R ∂Φ

∂R = 0

Define
σ2
φ = v2

φ − vφ
2

Remember that

v2
c = R

∂Φ

∂R
Therefore

σ2
φ − v2

R − R

ν

∂(νv2
R)

∂R
− R

∂(vrvz)

∂z
= v2

c − vφ
2 (5.34)

= (vc − vφ)(vc + vφ) = va(2vc − va)

If we neglect va compared to 2vc

va '
v2
R

2vc

[
σ2
φ

v2
R

− 1−
∂ ln(νv2

R)

∂ lnR
− R

v2
R

∂(vrvz)

∂z

]
(5.35)
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Asymmetric drift

This is Stromberg’s asymmetric drift equation

va '
v2
R

2vc

[
σ2
φ

v2
R

− 1−
∂ ln(νv2

R)

∂ lnR
− R

v2
R

∂(vrvz)

∂z

]

• σ2
φ/v

2
R = 0.35

• ν and v2
R are both ∝ e−R/Rd with R0/Rd = 3.2

First three terms sum up to 5.8

• The last term is tricky, as it requires measuring the velocity ellipsoid outside the
plane of the Galaxy, it averages to between 0 and -0.8

Averaging over, the value in the brackets is 5.4± 0.4, so

va ' v2
R/(82± 6)kms−1
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But, what is measured?

69 / 101



Galaxies Part II

Collisionless Systems:
Introduction

Relaxation time

Gravitational Drag /
Focusing

The Collisionless
Boltzman Equation

The Jeans Equations

Application of Jeans
equations

Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

The Virial Theorem

Application of Jeans equations
Asymmetric drift

70 / 101



Galaxies Part II

Collisionless Systems:
Introduction

Relaxation time

Gravitational Drag /
Focusing

The Collisionless
Boltzman Equation

The Jeans Equations

Application of Jeans
equations

Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

The Virial Theorem

Application of Jeans equations
Asymmetric drift

Something has been heating the disk! Curious what that might be.

• Heating by MACHOs

• Scattering of disk stars by molecular clouds

• Scattering by spiral arms
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...MACHOs???

MACHO = MAssive Compact Halo Object.

This was the primary candidate for the baryonic Dark Matter (as considered only 10 years ago).

Anything dark, massive and not fuzzy goes:

• black holes

• neutron stars

• very old white dwarfs = black dwarfs?

• brown dwarfs

• rogue planets
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Unfortunately, any significant contribution of MACHOs to the Galaxy’s mass budget is
ruled out, due to

• they are too efficient in heating the disk and predict the amplitude of the effect to
grow faster with time than observed

• can be detected directly through observations of gravitational microlensing effect.
While the first claims put fMACHO ∼ 20%, it is consistent with zero.
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We know that the irregularities in the Galaxy’s gravitational potential heat the disk
and (re)shape the velocity distribution of the disk stars.

We do not know exactly which phenomenon is the primary source of heating

Most likely, it is the combined effects of spiral transients and molecular clouds
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We predicted va ' v2
R/(82± 6)kms−1

The measured value from above:

va = v2
R/(80± 5)kms−1
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Local mass density

The mass density in the solar neighborhood.
Equation (5.32) can be written as

∂(νv z)

∂t
+

1

R

∂(RνvRvz)

∂R
+
∂(νv2

z )

∂z
+ ν

∂Φ

∂z
= 0

Take this equation and assume a steady state so ∂
∂t = 0, so have

1

R

∂(RνvRvz)

∂R
+
∂(νv2

z )

∂z
= −ν ∂Φ

∂z
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Local mass density

We are interested in the density in a thin disk, where the density falls off much faster
in z than in R. Typically disk a few 100pc thick, with a radial scale of a few kpc, so

∂

∂z
∼ 10

∂

∂R
∼ 10

1

R

so neglect ∂
∂R term. So

1

ν

∂

∂z
(νv2

z ) = −∂Φ

∂z
i.e.vertical pressure balances vertical gravity. This is the Jeans equation for
one-dimensional slab.
Also can show that Poisson’s equation in a thin disk approximation is

∂2Φ

∂z2
= 4πGρ

where ρ is the total mass density.
So have

∂

∂z

1

ν

∂

∂z
(νv2

z ) = −4πGρ.
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Local mass density

Note that by f we do not necessarily mean all stars, it could be any well-defined
subset, such as all G stars (say).

The ν is the number density of G stars or whatever type is chosen. We have not linked
ν and Φ (or ν and ρ) as was done in the previous example of a self-consistent spherical
model.

Thus if for any population of stars we can measure v2
z and ν as a function of height z

we can calculate the total local density ρ. This involves differentiation of really noisy
data, so the results are very uncertain.
Using this technique for F stars + K giants Oort found

ρ0 = ρ(R0, z = 0) = 0.15 M� pc−3= Oort limit.
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Local mass density

Note that one can determine instead

Σ(z) =

∫ z

−z
ρdz ′ = − 1

2πGν

∂

∂z
(νv2

z )

more accurately (since there is one less difference, or differential, involved).

Oort: Σ(700pc) ' 90 M� pc−2

This compares with the observable mass:
Σ(1.1kpc) ' 71± 6 M� pc−2 (Kuijken & Gilmore, 1991)

The baryons account for Σ(stars plus gas) ' 41± 15 M� pc−2 (Binney & Evans,
2001)

79 / 101



Galaxies Part II

Collisionless Systems:
Introduction

Relaxation time

Gravitational Drag /
Focusing

The Collisionless
Boltzman Equation

The Jeans Equations

Application of Jeans
equations

Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

The Virial Theorem

Application of Jeans equations
Local mass density

Or we can estimate Dark Matter halo’s contribution to Σ by supposing that

• the halo is spherical

• the circular speed vc = v0 = constant

• without the halo, vc = (GMd/r)1/2

Then, the halo mass M(r) satisfies G [M(r) + Md ] = rv2
0

The halo’s density:

ρh =
1

4πr2

dM

dr
=

v2
0

4πGr2
= 0.014M�pc

−3

(
v0

200kms−1

)2(
R0

8kpc

)−2

The halo’s contribution Σh
1.1 = 2.2 kpc× ρh = 30.6M�pc

−2

So local dark matter is relatively tightly constrained, and the Sun lies in transition
region in which both disk and halo contribute significant masses.
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Jeans equation for spherical systems:

d(νv2
r )

dr
+ ν

(
dΦ

dr
+

2v2
r − v2

θ − v2
φ

r

)
= 0 (5.36)

For the stationary and spherically symmetric Galactic halo, the radial velocity dispersion
σr ,∗ of stars with density ρ∗ obeys the above Jeans equation (albeit modified slightly):

1

ρ∗

d(ρ∗σ
2
r ,∗)

dr
+

2βσ2
r ,∗

r
= −dΦ

dr
= −v2

c

r
(5.37)

where the velocity anisotropy parameter is

β ≡ 1−
σ2
θ + σ2

φ

2σ2
r

= 1−
v2
θ + v2

φ

2v2
r

(5.38)

Thus, the Jeans equation allows us to determine a unique solution for the mass profile
if we know σ2

r ,∗, ρ∗ and β(r).
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The expected radial velocity dispersion for a tracer population is derived by integrating
the Jeans equation:

σ2
r ,∗ =

1

ρ∗e
∫

2βdx

∫ ∞
x

ρ∗v
2
c e

∫
2βdx

′′

dx
′
, x = ln r (5.39)

However, the proper motions are not available for the majority of the tracers, therefore
we can only measure the line-of-sight velocity dispersion:

σGSR,∗(r) = σr ,∗(r)
√

1− βH(r) (5.40)

Where

H(r) =
r2 + R2

�
4r2

−
(r2 − R2

�)2

8r3R�
ln

r + R�
r − R�

(5.41)
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Alternatively,

M(r) = − rσ2
r

G

[
d ln ν

d ln r
+

d lnσ2
r

d ln r
+ 2β(r)

]
(5.42)
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Still, there are further complications. Namely, the two ingredients are uncertain

• the behavior of the stellar velocity anisotropy

• stellar halo density profile at large radii
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from Battaglia et al, 2005
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The Virial Theorem

We have obtained the first moment of CBE by multiplying it through by vj and
integrating over all velocities. This allowed us to reduce an equation for 6D
distribution function f to an equation for 3D density ν and the velocity moments:

∂

∂t
(νv j) +

∂

∂xi
(νvivj) + ν

∂Φ

∂xj
= 0 (5.43)

Now, let us multiply the above equation ↑ by xk and integrate over all positions,
converting these differential 1st moment equations into a tensor equation relating the
global properties of the galaxy such as kinetic energy.∫

d3xxk
∂(ρv j)

∂t
= −

∫
d3xxk

∂(ρvivj)

∂xi
−
∫

d3xρxk
∂Φ

∂xj
(5.44)
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�
	∫

d3xxk
∂(ρv j )
∂t = −

∫
d3xxk

∂(ρvivj )
∂xi

−
∫
d3xρxk

∂Φ
∂xj

By definition, the Chandrasekhar potential-energy tensor:

Wjk ≡ −
∫

d3xρ(x)xj
∂Φ

∂xk
(5.45)

Also, by definition:

Φ(x) ≡ −G
∫

d3x
′ ρ(x

′
)

|x′ − x|
(5.46)

Which makes W on substituting Φ:

Wjk = G

∫
d3xρ(x)xj

∂

∂xk

∫
d3x

′ ρ(x
′
)

|x′ − x|
(5.47)
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�
	∫

d3xxk
∂(ρv j )
∂t = −

∫
d3xxk

∂(ρvivj )
∂xi

−
∫
d3xρxk

∂Φ
∂xj

Taking the differentiation inside the integral, re-labeling the dummy variables x and x
′

and writing Wjk twice, we get:

Wjk = −1

2
G

∫
d3x

∫
d3x

′
ρ(x)ρ(x

′
)

(x
′

j − xj)(x
′

k − xk)

|x′ − x|3
(5.48)

Therefore, W is symmetric, i.e. Wjk = Wkj . Taking the trace:

trace(W) ≡
3∑

j=1

Wjj = −1

2
G

∫
d3xρ(x)

∫
d3x

′ ρ(x
′
)

|x′ − x|
=

1

2

∫
d3xρ(x)Φ(x) (5.49)

This is total potential energy of the body W .

W = −
∫

d3xρx∇Φ (5.50)
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�
	∫

d3xxk
∂(ρv j )
∂t = −

∫
d3xxk

∂(ρvivj )
∂xi

−
∫
d3xρxk

∂Φ
∂xj

With the help of divergence theorem:∫
d3xxk

∂(ρvivj)

∂xi
= −

∫
d3xδkiρvivj = −2Kkj (5.51)

Here we have defined the kinetic-energy tensor:

Kjk ≡
1

2

∫
d3xρvjvk (5.52)

Remembering that σ2
ij ≡ (vi − v i )(vj − v j) = vivj − vi vj , contributions from ordered T

and random Π motion:

Kjk = Tjk +
1

2
Πjk , Tjk ≡

1

2

∫
d3xρv jvk , Πjk ≡

∫
d3xρσ2

jk (5.53)
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�
	∫

d3xxk
∂(ρv j )
∂t = −

∫
d3xxk

∂(ρvivj )
∂xi

−
∫
d3xρxk

∂Φ
∂xj

Taking the time derivative outside and averaging the (k, j) and the (j , k) components
of the above equation ↑

1

2

d

dt

∫
d3xρ(xkv j + xjvk) = 2Tjk + Πjk + Wjk (5.54)

where we have taken advantage of the symmetry of T,Π,W under exchange of indices
If we define moment of inertia tensor

Ijk ≡
∫

d3xρxjxk and
dIjk
dt

=

∫
d3xρ(xkv j + xjvk) (5.55)

Tensor Virial Theorem

1

2

d2Ijk
dt2

= 2Tjk + Πjk + Wjk (5.56)
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The Virial Theorem
• The theorem is derived for collisionless systems, but can be proven for

self-gravitating collisional systems too.

• This is the equation of energy balance in systems in equilibrium under gravity.

• Can be extended to include energy from turbulence and convective motions,
magnetic energy etc �

�
�
�1

2
d2Ijk
dt2 = 2Tjk + Πjk + Wjk

In a steady state Ï = 0, the trace of the Tensor Virial Theorem equation above is:

Scalar Virial Theorem

2K + W = 0 (5.57)

where

K ≡ trace(T) +
1

2
trace(Π) (5.58)
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Curiously, if E is the energy of the system then

E = K + W = −K =
1

2
W (5.59)
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The Virial Theorem
The kinetic energy of a stellar system with mass M where stars move at mean-square
speed 〈v2〉 is

K =
1

2
M〈v2〉 (5.60)

The virial theorem states that:

〈v2〉 =
|W |
M

=
GM

rg
(5.61)

This is the fastest way to get the mass of the system! Here the gravitational radius rg

rg ≡
GM2

|W |
(5.62)

For example, for a homogeneous sphere of radius a and density ρ, the potential energy:

W = −16π2

3
Gρ2

∫ a

0

drr4 = −16

15
π2Gρ2a5 = −3

5

GM2

a
(5.63)

And rg = 5
3a
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The Virial Theorem
Applications Virial Theorem

• Despite the elegance of the Virial Theorem, its applications are not
straightforward.

• This is because neither 〈v2〉 or rg are readily available for most systems.

• Instead of 〈v2〉, the line of sight velocity dispersion 〈v2
‖ 〉 is used.

• And isotropy is assumed (not going to work in many situations)

〈v2〉 = 3〈v2
‖ 〉

• Instead of gravitational radius rg the rough extent of the system is used

• or use the so-called half-mass radius rh obtained by integrating light and assuming
mass/light ratio. It can be shown that for variety of systems rh/rg ∼ 1

2

See Eddington (1916). Einstein (1921) used the Virial Theorem to estimate the mass
of globular clusters.
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AKA Abel 1656, D ∼ 100 Mpc, N > 1000 galaxies
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