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Collisionless Systems
Collisionless Systems:

Introduction Introduction

m The use of the word “collisionless” is a technical one, specific to stellar dynamics.
It does not simply mean there are no physical collisions between stars - it is a stronger
statement than that.

Aiming to describe the strucure of a self-gravitating collection of stars, such as a star
cluster or a galaxy.

e.g. globular cluster N ~ 10° stars, r; ~ 10 pc ~ 3 x 107 m.
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Collisionless Systems
Introduction
1. Gravity is a long range force. For example, if the star density is uniform, then a
star at the apex of a cone sees the same force from a region of a given thickness
independent of its distance.
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= the force acting on a star is determined by distant stars and large-scale structure of
the galaxy. The force is zero if uniform density everywhere, but # 0 if the density falls

off in one direction, for example.
This is unlike molecules of gas where forces are strong only during close collisions
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Collisionless Systems:

Introduction Introduction

2 Stars almost never collide physically.

Distance to nearest star in a globular cluster is

d~ (1;60)l ~0.1pc~3x10%m>>r ~10°m.
3

r<d<r

This means that we can mentally smooth out the stars into a mean density p and use
that to calculate a mean gravitational potential ® and use that to calculate the orbits
of the individual stars. The forces on a given star do not vary rapidly.

If this is a good approximation then the system is said to be “collisionless”..
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Relaxation time

Between 2 and oo

If the system consisted of an infinite number of stars which are themselves
point masses then the collisionless approximation would be perfect.

Relaxation time

If instead we have a binary system then the approximation is dire - it does not
work at all.

So somewhere between N = 2 and N = oo it becomes OK. What is the criterion for
this?
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Relaxation time

Relaxation time

Between 2 and oo

If the system consisted of an infinite number of stars which are themselves
point masses then the collisionless approximation would be perfect.

If instead we have a binary system then the approximation is dire - it does not
work at all.

So somewhere between N = 2 and N = oo it becomes OK. What is the criterion for
this?

Consider a system of N stars each of mass m, and look at the motion of one star as it
crosses the system. Now look at

@ the path under the assumption that the mass of the stars is smoothed out

® the real path using individual stars

What we want to do is estimate the difference between the two - or, in particular, the
difference in the resultant transverse (relative to the initial motion) velocity of the star
we have chosen to follow.
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Relaxation time
Weak encounters
For the real path we will use an impulse approximation to start with. On the real path
the star undergoes encounters with other stars which perturb the straight path. One
encounter with a star of mass m at (0, b), i.e. impact parameter b as shown:
Gm? Gm?b

F:i 0:7
YT T e L)

3
Gm? vt\2] 2 )
Fy—bz{”(b)} = my

Relaxation time

on the path x = vt

> > o
- 09 - %’" (1+s%) ids
v
Setting s = tan 6 allows us to integrate this e
2G
Av, = m

bv
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Weak encounters
We could have obtained this sort of approximation more quickly by noting that

|Av, | = Force at closest approach x time spent near perturber =

db

Gi 2b
X
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Relaxation time

Weak encounters

We could have obtained this sort of approximation more quickly by noting that

|Av, | = Force at closest approach x time spent near perturber = % X Q—‘f’.

How many encounters at distance b are there? The surface density of stars is ~ ﬂ—%z,
so the number of stars with b in the range(b, b + db) is db

N
on = W2Tf—b db -

Each encounter produces an effect Av,, but the vectors are randomly oriented.
Therefore the mean value of the effect is zero, but the sum of the 5vi is non-zero.
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Relaxation time

Weak encounters
We could have obtained this sort of approximation more quickly by noting that

|Av, | = Force at closest approach x time spent near perturber = Cm o 2b

How many encounters at distance b are there? The surface density of stars is ~ ﬂ—%z,
so the number of stars with b in the range(b, b + db) is db
N
(5” = Wz’ffb db -

Each encounter produces an effect Av,, but the vectors are randomly oriented.
Therefore the mean value of the effect is zero, but the sum of the (5vi is non-zero.

2Gm\ " 2N
—— | —bdb
( by ) R? d

We need to integrate this over all b, so

Gm
Av? = N =
i /0 8 <Rv> b

So v2 changes by an amount

9/101



Galaxies Part Il

Relaxation time

Relaxation time

Weak encounters
R 2
Gm\ "~ db
AV = 8N|— ) =
= /o (Rv> b

There is a problem here, and that is the lower limit O for the integral. The
approximation we have used breaks down then, so replace 0 by by,i,, the expected
closest approach - i.e. such that

N
W( I2nin7r) =1
SO .
brnin ~ R/NE
Then

Gm\?

where A = R/bpin.
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Weak encounters

Let us check for consistency that approximation we have used is OK.

When b = by,in. We have the requirement that v, /v << 1,
so require 2Gm/bv? << 1, or b >> 2Gm/v?.

But from the Virial theorem v2 ~ GM/R ~ GNm/R, so need
b >>2GmR/GNm =2R/N, i.e. b/R >>2/N.

For bumin have byin/R ~ 1/N% >> 1/N, so the approximation is OK.
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Relaxation time
Weak encounters

Relaxation time

Let us check for consistency that approximation we have used is OK.

When b = by,in. We have the requirement that dv, /v << 1,
so require 2Gm/bv? << 1, or b >> 2Gm/v?.
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Relaxation time

Weak encounters

Let us check for consistency that approximation we have used is OK.

When b = by,in. We have the requirement that dv, /v << 1,
so require 2Gm/bv? << 1, or b >> 2Gm/v?.

But from the Virial theorem v2 ~ GM/R ~ GNm/R, so need
b>>2GmR/GNm =2R/N, i.e. b/R >>2/N.

For buyin have byin/R ~ 1/N% >> 1/N, so the approximation is OK.
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Relaxation time

The time to erase the memory of the past motion

2 .
So we conclude that v? changes by an amount Av? ~ 8N (%7)" InA at each crossing.

The collisionless approximation will fail after neax crossings, where

2
. Gm
nrelaXAvi ~Vv? ie. Nrelax8N < InA ~ v?

Rv
and using v? ~ %R'" this becomes
o\ 2
v N
2 .
MrelaxS8N [ — | InA ~v° ie. Npglax ~ ——
* Nv * 8InA
The relaxation time is
trelax = Mrelax X teross =2 nrelax;

and the crossing time
R3

~ A —

tCI‘OSS GNm
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Relaxation time
Relaxation time
Notes:

@ In\N~InN, so nyglax ~ m%'
@® relaxation time is the timescale on which stars share energy with each other.

© can model a system as collisionless only if t << trelax.

Estimates of timescales:

o Galaxies: N ~ 10, teross ~ 108 yr, Nyelax ~ 5 x 108, so
trelax ~ 5 X 108ter0ss ~ 5 x 100 yr. This is much greater than a Hubble time, so
galaxies are not relaxed.

e Globular clusters: N ~ 10°, t.;oss ~ 10pc/20km s=% ~ 5 x 10° yr, so
trelax ~ 4 x 10% yr. Their ages are somewhat greater than this, so globular
clusters are relaxed, and hence spherical.
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Gravitational Drag / Focusing

Consider a large mass M moving with speed v through a sea of stationary masses m,

Ecnivitand By ) density p. In the frame of the mass M:
ocusing
m
Ve >
v ’—\
v .. so not only is v affected, but
v there is also a contribution to v;.

v ®
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Gravitational Drag /
Focusing

Relative to M have a Keplerian orbit with the angular momentum h = bv = r21/'1 The

orbit, as you remember:
GM

L Ceos( ) + o
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Gravitational Drag /
Focusing

Get C, 1 by differentiating this 1

dr -
i Cr*esin(vp — 1))
As ¢ — 0 % — —V so
—v = Cbvsin(—1y)
Also, since r — oo then oM
0 = Ccosg + 22

so
tanvy = —bv?/GM

16 /101



Galaxies Part Il

Gravitational Drag /
Focusing

Gravitational Drag / Focusing

Now 7 — 9deﬂ = 2(7‘(‘ — ’(/)0), SO Gdeﬂ = 2’(#0 — .

=
tan aca ) _ 1
2 © tantyg

2 T b2

and so

Then Ogen = 5 if o = 3%, or tanyyg = —1 =

by ~ —-
v
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Gravitational Drag / Focusing

To estimate the drag force, we assume that all particles with b < b, lose all their
momentum to M (i.e. v~ v at b))

So the force on M = rate of change of momentum = b3 pv? (consider cylinder
vdt x b? within which each star contributes v)

So )
dv 5 ( GM
or
& GM
ar = P2

This is known as dynamical friction.

18
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Gravitational Drag /
Focusing

Gravitational Drag / Focusing

Note:

@ We have assumed that the mass is moving at velocity v with respect to the
background. In general the background will have a velocity dispersion . We have
effectively assumed in the above that v >> . If v << ¢ then we expect
negligible drag since the particle barely “knows” it is moving. The general result
(see Binney & Tremaine, p643 onwards) is that drag is caused by particles with
velocities 0 < u < v.

@® Force F o M2, and the wake mass is «c M
® Fx %
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Gravitational Drag / Focusing

NGC 2207

Gravitational Drag /
Focusing
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Gravitational Drag /
Focusing

Gravitational Drag / Focusing

Galactic cannibalism

A satellite with 0 ~ 50 km/s in a
galaxy with o ~ 200 km/s will spiral
from 30 kpc in 10 Gyr.

Decay of black-hole orbits

for Mgy > 10°M, only few Gyr to go
from 10 kpc to 0

Friction between the Galactic bar and
the Dark Matter halo

Formation and evolution of binary
black holes

The fates of globular clusters

Applications of dynamical friction

distance (kpc)

time (Gyr)

Figure 8.3 The decay of the orbits of the Magellanic Clouds around our Galaxy. The
upper curves show the radius of the Clouds from the Galactic center (thick line for the
Large Cloud and thin line for the Small Cloud), and the lower, dashed curve shows the
distance between the Large and Small Cloud. The Galaxy potential is that of a singular
isothermal sphere with circular speed ve = 220kms~?, and the drag force is computed
using Chandrasekhar’s formula (8.7). The initial conditions at ¢ = 0 are chosen to repro-
duce the observed distances and radial velocities of the Clouds and the kinematics of the
Magellanic Stream (Gardiner, Sawa, & Fujimoto 1994).
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Phase space flow
The fluid continuity
equation

The continuity of flow in
phase space

In cylindrical polars
Limitations and links
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The Collisionless
Boltzman Equation

o If the interactions are rare, then the orbit of any star can be calculated as if the
The Distribution system’s mass was distributed smoothly.
Phase space flow
The fluid continuity

e But, as we just saw, eventually the true orbit deviates from the model orbit.
equation

The continuity of flow in

phase space

In cylindrical polars

Limitations and links
with the real world
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The Collisionless Boltzman Equation

The Collisionless
Boltzman Equation

o If the interactions are rare, then the orbit of any star can be calculated as if the
system’s mass was distributed smoothly.

The Distribution
Function

Phase space flow

D () et e But, as we just saw, eventually the true orbit deviates from the model orbit.
equation i . . .

e el e Luckily, as long as we consider timescales < t,e.x we are fine

In cylindrical polars

Limitations and links
with the real world

23/101



Galaxies Part Il

The Collisionless Boltzman Equation

The Collisionless
Boltzman Equation

If the interactions are rare, then the orbit of any star can be calculated as if the
The Distribution system’s mass was distributed smoothly.

Phase space flow

The fluid continuity

But, as we just saw, eventually the true orbit deviates from the model orbit.
equation . . . .
The continuity of flow in Luckily, as long as we consider timescales < t,ex We are fine

phase space
In fact, for galaxies, treax >> tyupbre- Perfect!

In cylindrical polars
Limitations and links
with the real world
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The Collisionless Boltzman Equation

e o If the interactions are rare, then the orbit of any star can be calculated as if the
The Distrbution system's mass was distributed smoothly.

e e But, as we just saw, eventually the true orbit deviates from the model orbit.
;:"tn of flow in e Luckily, as long as we consider timescales < t.j,x we are fine

[ et eole e In fact, for galaxies, trefx >> tHuppre. Perfect!

with the real world

e However, when modelling a collisionless system such as an elliptical galaxy it is

not practical to follow the motions of all constituent stars. Because there are too
many of them!
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The Collisionless Boltzman Equation

The Distribution Function

Let us assume that the stellar systems consist of a large number N of identical
particles with mass m (could be stars, could be dark matter) moving under a smooth
gravitational potential ®(x, t).

The Distribution
Function

Phase space flow Most problems are to do with working out the probability of finding a star in particular
The fluid continuity . . . .

equation geographical location about the galaxy, moving at a particular speed.

The continuity of flow in

phase space . . .. . . . .

In cylindrical polars Or, in other words, the probability of finding the star in the six-dimensional

Limitations and links . . .

with the reai world phase-space volume d3xd3v, which is a small volume d3x centred on x in the small

velocity range d3v centred on v.

At any time t a full description of the state of this system is given by specifying the
number of stars f(x, v, t)d3xd3v, where f(x,v, t) is called the “distribution function”
(or “phase space density”) of the system.

Obviously, f > 0 everywhere, since we do not allow negative star densities.
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The Collisionless Boltzman Equation
Collisionless Systems:

Introduction The Distribution Function
Relaxation time

Gravitational Drag
Focusing

The Collisionless Naturally, integrating over all phase space:

Boltzman Equation

The Distribution
Function

Phase space flow 3,43y —
The fluid continuity f(X, v, t)d xd’v = N (5_]_)
equation

The continuity of flow in
phase space

In cylindrical polars
Limitations and links
with the real world
The Jeans Equations

Application of Jeans
equations

The Virial Theorem
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The Collisionless Boltzman Equation

The Distribution Function

Naturally, integrating over all phase space:

The Distribution
Function

/ F(x, v, {)xd = N (5.1)

The fluid continuity
equation

The continuity of flow in

phase space Alternatively, we can normalize it to have:

In cylindrical polars

Limitations and links
with the real world

/f(x,v7 t)d3xd3v =1 (5.2)

Then f(x,v, t)d3xd3v is the probability that at time t a randomly chosen star has
phase-space coordinates in the given range.
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The Distribution
Function

Phase space flow

The fluid continuity
equation

The continuity of flow in
phase space

In cylindrical polars
Limitations and links
with the real world

The Collisionless Boltzman Equation

Phase space flow

If we know the initial coordinates and velocities of every star, then we can use
Newton's laws to evaluate their positions and velocities at any other time i.e. given
f(x,v, to) then we should be able to determine f(x,v, t) for any t. With this aim, we
consider the flow of points in phase space, with coordinates (x,v), that arises as stars
move along in their orbits. We can set the phase space coordinates

(X7V) =w= (W1, Wp, W3, Wy, Ws, W6)

so the velocity of the flow (which is the time derivative of the coordinates) may be

written as
w = (x,v) = (v, - V).

W is a six-dimensional vector which bears the same relationship to the six-dimensional
vector w as the three-dimensional fluid flow velocity v = x.

26
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The Distribution
Function

Phase space flow

The fluid continuity
equation

The continuity of flow in
phase space

In cylindrical polars

Limitations and links
with the real world

The Collisionless Boltzman Equation

Phase space flow

Any given star moves through phase space, so the probability of finding it at any given
phase-space location changes with time. In what way?

However, the flow in phase space conserves stars, hence we can derive the equation of
conservation of the phase space probability analogous to the fluid continuity equation.
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Phase space flow
The fluid continuity
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The continuity of flow in
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The Collisionless Boltzman Equation

The fluid continuity equation
For an arbitrary closed volume V fixed in space and bounded by surface S, the mass of
fluid in the volume is

M(t) = /V Prp(x, t) (5.3)

The fluid mass changes with time at a rate
dm ap
— = [ &x=— 4
dt /V *ot (54)

But, the mass flowing out through the surface area element d?S per unit time pv - d°S.
Thus:

- ji a8 - (pv) (55)

/ a2x P + j'{ d?*S - (pv) =0 (5.6)
v Ot s
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op
3, 9P 2q . _
/deat+j£d5(pv) 0

can be re-written with the use of the divergence theorem:

0
v ot

The Distribution Since the result holds for any volume:
Phase space flow
;rh:aﬂizi: continuity ap
thc tcont'mu'\ty of flow in —+V. (PV) =0 (58)
phase space ot
In cylindrical polars . . . . . .
\inv;ua}u\tuvs(‘uu}whd ks Which in Cartesian coordinates looks like this:

ap 0

— 4+ —(pv;) =0 5.9

using the summation convention

3
A-B:ZA,-B,- = AB;
i=1
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The Distribution
Function

Phase space flow

The fluid continuity
equation

The continuity of flow in
phase space

In cylindrical polars

Limitations and links
with the real world

The Collisionless Boltzman Equation

The continuity of flow in phase space

Since x = v, for fluids:

dp 0
EL T (Fx) =
at T ax (X =0
The analogous equation for the conservation of probability in phase space is:
of 0
L (fw) =
at T ow (W) =0

(5.10)

Note that writing it as a continuity equation carries with it the assumption that the
function f is differentiable. This means that close stellar encounters where a star can
jump from one point in phase space to another are excluded from this description.
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The Collisionless Boltzman Equation

The continuity of flow in phase space
Let us have a closer look at the second term in 2+ -2 (f\r)=0
o(fw; . of Ow;
( ’) = Wj— + f !

(9W,' (9W,' aWi

The flow in six-space is an interesting one, since

(5.11)

The Distribution
Function

Phase space flow

The fluid continuity
equation 6 3 3
The continuity of flow in . N
phase space Y a( W,) a Vi aV,' 8 acb
In cylindrical polars - + - —_ e = 0 (512)
Limitations and links . aW,' " 8x,- 8v,- . 8V,’ 8X,'
with the real world i=1 i=1 i=1

Here g;'f = 0 because in this space v; and x; are independent coordinates, and the last

step foliows because ®, and hence V& does not depend on the velocities. We can use
this equation to simplify the continuity equation, which now becomes

iy ult o (5.13)
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Application of Jeans
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The Collisionless Boltzman Equation

The continuity of flow in phase space

or,

of .
Eﬁ-W-Vef:O,

or (in terms of x; and v;, and using summation convention with i =1 to 3.)

of _ of _000f
ot VI@X,' Ox; 8v,-_ ’

or (in vector form)

Collisionless Boltzmann Equation

of of
5 TV Vf -V - =0 (5.14)

where % is like V£, but in the velocity coordinate v rather than the spatial coordinate
X.

32 /101



Galaxies Part Il

The Distribution
Function

Phase space flow

The fluid continuity
equation

The continuity of flow in
phase space

In cylindrical polars

Limitations and links
with the real world

The Collisionless Boltzman Equation

The Liouville’s Theorem

The meaning of the collisionless Boltzmann equation can be seen by extending to six
dimensions the concept of the Lagrangian derivative. We define (using the summation
convention here and forever more)

Df _of . Of

% represents the rate of change of density in phase space as seen by an observer who
moves through phase space with a star with phase space velocity w. The collisionless

Boltzmann equation is then simply

Df

—— =0

Dt
Therefore the flow of stellar phase points through phase space is incompressible — the
phase-space density of points around a given star is always the same.

(5.16)
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Application of Jeans
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The Collisionless Boltzman Equation

The Liouville’'s Theorem = Preservation of the phase space density

Compare start..

preet YUIT L

- . .
it ) ‘ﬁ‘ Jli.‘ﬁl‘ 4!'\‘

34 /101



The Collisionless Boltzman Equation

The Liouville’'s Theorem = Preservation of the phase space density
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The Liouville’'s Theorem = Preservation of the phase space density
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The Collisionless Boltzman Equation

The Liouville’'s Theorem = Preservation of the phase space density
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The Distribution
Function

Phase space flow

The fluid continuity
equation

The continuity of flow in
phase space

In cylindrical polars

Limitations and links
with the real world

The Collisionless Boltzman Equation
In cylindrical polars
Be careful when writing down the collisionless Boltzmann equation in non-Cartesian
coordinates! For example, in cylindrical polars (axial symmetry)

_o®
R

() a

R~ R¢? =
R0

_ 0%
0z

with .
VR = R

Vo = R¢ ( not just d))
V, =2

Since dx = dRer + Rd¢ey + dze,
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The Distribution
Function

Phase space flow

The fluid continuity
equation

The continuity of flow in
phase space

In cylindrical polars

Limitations and links
with the real world

The Collisionless Boltzman Equation

In cylindrical polars

Rrd = )4 (%9) = 48 = ) (= A = W)=
Then start with

of -a ¢7+zaf+v of . of of
ot " o Rove -

and this becomes

R OR

of  Of vy Of  Of <v§ 8¢> of 1( a¢> of 0 of
+ Vg —_— VRV¢

ot "R "R a0z dvr R 96 ) v, vz ov,
(5.17)
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The Distribution
Function

Phase space flow

The fluid continuity
equation

The continuity of flow in
phase space

In cylindrical polars
Limitations and links
with the real world

The Collisionless Boltzman Equation

Limitations and links with the real world

@ Stars are born and die! Hence they are not really conserved. Therefore, more
appropriately:

Df of Of 0¢0f

Br=at T Vax  axaw =2 P (5.18)
where B(x,v, t) and D(x,v, t) are the rates per unit phase-space volume at which stars
are born and die.
But Vaf/ax ~ Vf/R = f/tcross

Similarly, 0®/0x /2 a & v/tc0ss, hence OP/Ox Of OV = af /v &2 [ [teross
Therefore, the important ratio

B-D

P 1 1
f/ tCI'OSS << (5 9)

-

i.e. the fractional change in the number of stars per crossing time is small
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The Collisionless Boltzman Equation
Limitations and links with the real world
Density of stars at a particular location x

v(x) = /d3vf(x,v) (5.20)

Forction pution Probability distribution of stellar velocities at x

Phase space flow

The fluid continuity

equation ‘ f(x.v

The continuity of flow in PX(v) = ( ’ ) (521)

phase space

v(x)
Simitaticnlandlinis For lines of sight through the galaxy, defined by s - a unit vector from observer to the
galaxy.
The components of x and v vectors parallel and perpendicular to the line of sight are:

In cylindrical polars

XHES-X
V”ES~V
XJ_EX_XHS

Vi EV*VHS
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The Distribution
Function

Phase space flow

The fluid continuity
equation

The continuity of flow in
phase space

In cylindrical polars
Limitations and links
with the real world

The Collisionless Boltzman Equation

Limitations and links with the real world

The distribution of the line-of-sight velocities at x|

X V(X 2v P (v v
P = L PP )

The mean line-of-sight velocity:

VH(XL) = /dev” F(XL, VH)

The line-of-sight velocity dispersion:

aﬁ(xL) = /dV\|(V|| — V”)zF(XL, V”)
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The Jeans Equations

A — e The distribution function f is a function of seven variables, so solving the
et MEIEt collisionless Boltzmann equation in general is hard.

First moment

e So need either simplifying assumptions (usually symmetry), or try to get insights
by taking moments of the equation.

e We cannot observe f, but can determine p and line profile (which is the average
velocity along a line of sight v, and v?2.
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The Jeans Equations

Zeroth moment

Start with the collisionless Boltzmann equation -using the summation convention

of | OF 0% 0f _
Zeroth moment ot ! Ox; ox; Ov; -

First moment

(5.22)

and take the zeroth moment integrating over d°v.

LI ]2 [ oo o

where for the first term we can take the differential with respect to time out of the
integral since the limits are independent of t, and in the third term ® is independent of
v so the % term comes out.

44 /101



Galaxies Part Il

The Jeans Equations

Zeroth moment

(G IS Py [f] vighd®v— 52 []) SEdPv = 0]

Zeroth moment

First moment

Now

y(x,t):///::J fdv

is just the number density of stars at x (and if all stars have the same mass m then
p(x, t) = mu(x,t)). So the first term is just

ov
ot
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The Jeans Equations

Zeroth moment

(B I @+ 1 iy — 22 11T 2

gL d®v = O}
Zeroth moment A|SO
m— i(v-f) ov; Fiv of
Ox;* ' Ox; '8x,-
and 9
Vi -
8x,- =0
since v; and x; are independent coordinates, and so
0 of
—(vif) = vj—
8X,' (V ) v 8X,'
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The Jeans Equations

Zeroth moment
(G I @+ 1 vy — 32 1) v =]

Hence the second term above becomes

Zeroth moment a 3
First moment V,'fd \"
8x,-

and if we define an average velocity Vv; by

V,-zl///v,-fd?)v
14

(so interpret f as a probability density) then the term we are considering becomes

0(>)<,- (vvy)
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Zeroth moment

First moment

The Jeans Equations

Zeroth moment

(G I v IS i = 32 JJ] v =0]

The last term involving
///af&v—ﬂ“ =0
8v,- T s

since we demand that f — 0 as v — oo.

And so the zeroth moment equation becomes

o 9
ot Ox;

(VV,') =0

which looks very like the usual fluid continuity equation

ap B
a—’— 8X,' (pV,) _0

(5.24)
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The Jeans Equations

First moment

of | Of 99 0f _
ot " ox  ox v

Multiply the collisionless Boltzmann equation 1 by v; and then integrate over d®v.

Zeroth moment
First moment

Then since 9
9 _
ot 0
we have of
8td3v_ T /vad3

So the first moment equation becomes

9] 3 of 5 00 of 5
a/fvjdv+/v,vja—x’_dv—aXl_/vJav’dv—0 (5.25)
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The Jeans Equations

First moment

[%ffvjd“”erfv,-ng—;dav— 2 [vigtdiv = 0}

Looking at each of the terms in equation (5.25):

Zeroth moment

First moment First term = %(VVJ') by definition.

(vV;v;), where

1
Vivj = ;/V,'ijd?’v

Second term =

Third term:

3v =[], /8” fd®v = —Gv

J s
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The Jeans Equations

First moment

E%ffvjd“”erfv,-ng—;davf —fvjaf d3v = OJ

So first moment equation is

Zeroth moment
First moment

0, _ o, o
a(uvj) + p (vvivj) + l/a—xj =0 (5.26)
We can manipulate this a bit further - subtracting v; [881; + a%,» (vv;) = 0}
gives
8v _ 0, _ 0 oo
51’J Vi— % (vv;) + o (vvivy) = —Va—xj (5.27)
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Zeroth moment
First moment

The Jeans Equations

First moment

ov, — __ _
[ 6\;‘] vjé% (vvi) + 8%,' (vviv)) = giﬂ

Now define

or=vi—vi)(vi— V) =Viv, -V v}

(this is a sort of dispersion). Thus V;v; = V; vj + 0,-21- where the V; V; refers to streaming
motion and the o2 to random motion at the point of interest. Using this we can tidy

up (5.27) to obtain

V—‘ —|—1/v-avj = —l/a¢ 0 (1/ 2)
ot Vox, T Vox  oxi C

This has a familiar look to it cf the fluid equation

= — q) —
Por +p( -V)u pVé —Vp

So the term in 02 is a “stress tensor” and describes anisotrpoic pressure.

(5.28)
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The Jeans Equations

Note that 0,-2- is symmetric, so it can be diagonalised. Ellipsoid with axes 011, 027, 033
where 1, 2, 3 are the diagonalising coordinates is called the velocity ellipsoid.

Zeroth moment
First moment

If the velocity distribution is isotropic then we can write a,-zj = (5) d; for some p, and
the get —Vp in equation (5.28).

(5.24) and (5.26) are the Jeans equations. (5.26) can be replaced by (5.28).

These equations are valuable because they relate observationally accessible quantities.
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Collisionless Systems
Introduction

Relaxation time

Gravitational Drag
Focusing

The Collisionless
Boltzman Equation
The Jeans Equations
Zeroth moment
First moment
Application of Jeans

equations

The Virial Theorem

The Jeans Equations

James Hopwood Jeans
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The Jeans Equations

However...

The trouble is we have not solved anything. In a fluid we use thermodynamics to
relate p and p, but do not have that here. These equations can give some
understanding, and can be useful in building models, but not a great deal more.

S Importantly, the solutions of the Jeans equation(s) are not guaranteed to be physical
First moment as there is no condition f > 0 imposed.

Moreover, this is an incomplete set of equations. If ® and v are known, there are still
nine unknown functions to determine: 3 components of the mean velocity v and 6
components of the velocity dispersion tensor o2. Yet we only have 4 equations: one
zeroth order and 3 first order moments.

Multiplying CBE further through by v;vx and integrating over all velocities will not
supply the missing information.

We need to truncate or close the regression to even higher moments of the velocity
distribution.

Such closure is possible in special circumstances
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Application of Jeans equations

Isotropic velocity dispersion

Take equation (5.28)

0v; | 0y, 00 _ 0 2

V—— VVy— = V77— — — \VO;;
ot "Ox; Ox;  Ox;

Ls_otrop‘ic velocity

ispersion

Jeans equations for and assume at each point:

cylindrically symmetric
systems

Azt of e steady state % =0

axisymmetric Jeans
equations

e isotropic 0 = 024

e non-rotating v; =0

So no mean flow, and velocity dispersion is the same in all directions (but 02 = o2(r)).
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Isotropic velocity dispersion

Then
ov;j _ 0y _ o0d 0 5
I/E—"_Z/V’axi = Vaixj 87)(,(VO-U)
becomes
—vVo = V(vo?)

o Cluster with spherical symmetry - if we know v(r) or p(r) = mv(r), then from
Poisson's equation V2® = 47 Gp, the potential ®(r) can be determined. Then
can solve for o%(r)

e So given a density distribution p(r) and the assumption of isotropy we can find
o(r), i.e. can find a fully self-consistent model for the internal velocity structure
of the cluster / galaxy.

e Minor difficulties: no guarantee (1) it is correct (is isotropic everywhere possible?)
or (2) it works (what if 02 < 0 in the formal solution?).
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Jeans equations for cylindrically symmetric systems

Start with the collisionless Boltzmann equation and set 5> = 0 [not v = 0!]. So we

have, from the cylindrical polar version of the equation (5 17)

of | of _of [vi a0\ of 1 of
R OR

ot VYRR T Voo, v~ RURY) By~

Then for the zeroth moment equation [ [ dvgdvydv,.
Time derivative term:

od of

ﬁavz -

of 0 v
///adv,qdv(;sdvz = a// fdvrdvydv, = T
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application

of Jeans equations

Jeans equations for cylindrically symmetric systems

Velocity terms:

81‘ (‘3f V¢ of 1 of
/// (vR —l— R av RVRV¢8V¢> dvrdvgdv,
0 1 of
67/?/// vaddev¢dvz+$/// vzfddevd)dvz—ﬁ—ﬁ/// V¢2’8 dvrdvydv,

_/// 9 (vevef _fﬂ(vw
8V¢ R aV¢ R
3R /// vrfdvrdvydv, +

R@R

1
VR = ;/// vgrfdvgdvydv, and Vv, =

10 (div theorem)

S (RUVR) + o (172)

) ] dvrdvydv, T

(div theorem)

l/// v fdvrdvgdv,
v

///vaddev¢dvz 9 /// v fdvrdvgdv,
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Jeans equations for cylindrically symmetric systems

Terms with the potential ¢:

/// 0% of ddev¢dvz = /// dvrdvydv, =0

and
0% of
// IR Rddev¢dvz = // ddev¢dvz =0
Hence 9 19 9
v _
81’ +5 aR(RVVR)J'_ai( z)—o (5.29)

This is the zeroth order moment equation.
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Jeans equations for cylindrically symmetric systems

There are three first moment equations, corresponding to each of the v components,
where we take the collisionless Boltzmann equation Xvg, v, v, and [[[ dvgdvydv,.

The results are

R T oR

ovvg) | d(vv3) LR | <v,%—v§5 a¢> o

ot OR 0z

vy) | ) v |
at T or a8z T RWRTO

and
Owvey) | O(wvRvz)  Owv3) | vvRv: 0P
ot | oR 8z R Vaz

Now, this is something powerful.

=0.

(5.30)

(5.31)

(5.32)
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Spheroidal components with isotropic velocity dispersion
Asymmetric drift

Local mass density

Local velocity ellipsoid

Mass distribution in the Galaxy out to large radii
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Application of Jeans equations

Asymmetric drift

600 — —
400 - Figure 4.17 The distribution
| | of vy components of 4787 F
Isotropic velocity N and G stars that have space
j”wmm ) r 7 velocities in Nordstrom et al.
leans equations for
cylindrically symmetric L 4 (2004). Stars with a high prob-
Z‘V;;Tij:ﬂan o 200 L | a.l_aility of _h_a.ving variable ra-
axisymmetric Jeans dial velocities are excluded.
equations r ] The smooth curve shows the
+ B distribution predicted by the
L | Schwarzschild DF for a popu-
‘ - ‘ L lation with the same value of
%200 ~100 0 100 vy " =3d4kms™".
Vg—Ve

There is a lag and the lag increases with the age of the stellar tracers and so does the
random component of their motion.
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Asymmetric drift

The distribution of azimuthal velocities Vy = v4 — v. is very skew. This asymmetry
arises from two effects.

e Stars near the Sun with 74 < 0 have less angular momentum and thus have

Rg < Ry compared to stars with 75 > 0 and Ry > Rp. The surface density of stars
declines exponentially, hence there are more stars with smaller R,.

e The velocity dispersion og declines with R, so the fraction of stars with
Rg = Ry — 0R is larger than the fraction of stars with R, = Ry 4 6R. Thus there
are more stars on eccentric orbits that can reach the Sun with ¥, < 0
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

600

400

200 —

The epicyclic approximation:

[vs —ve(RO)I>  _—B

VR

2 “A-B

Asymmetric drift

Figure 4.17 The distribution
of vy components of 4787 F
and G stars that have space
velocities in Nordstrém et al.
(2004). Stars with a high prob-
ability of having variable ra-
dial velocities are excluded.
The smooth curve shows the
distribution predicted by the
Schwarzschild DF for a popu-
lation with the same value of

U% =34kms~ 1.
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Asymmetric drift

The velocity of the asymmetric drift
Va = Ve — Vg

Jeans tells us that

ot OR 0z R

vvg) | d(vv3) L OwR) | <v,% —v2

We assume
e The Galactic disk is in the steady state
e The Sun lies sufficiently close to the equator, at z =10

oP

R

):0

e The disk is symmetric with respect to z and hence dv/0z =0

So,

R d(vv3)
— R
v OR + 0z

O(VrV;) oo
_ R _
—|—vR v + R 0

(5.33)
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Asymmetric drift

[R B(VVR) + RO(VRVZ) + VR 2 + R% :0]
Define _
o’i = Vg — V¢2
Remember that
oo

Vi =R—

¢ OR
Therefore

— ROWE) _O(vvs)
GVR Ty ar RTg v W

(5.34)
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Asymmetric drift

v

[R B(VVR) + RO(VRVZ) + VR ng + R8¢‘ —0]

Define

Remember that

Therefore

2
U¢_VR

If we neglect v, compared to 2v,

=V

_ po®

e = "oR
ROwZ) Ov)  » .
v or Ry TV W

(ve = Vg)(ve +Vp) = va(2ve — va)

VR |ol o dln(d) R I(Vv)
2T 2VC V2 aInR V2 82

(5.34)

(5.35)
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Asymmetric drift

This is Stromberg’s asymmetric drift equation

e 02/v3 =035
e v and VT% are both oc e R/Rd with Ry/Rd = 3.2

First three terms sum up to 5.8

o The last term is tricky, as it requires measuring the velocity ellipsoid outside the
plane of the Galaxy, it averages to between 0 and -0.8

Averaging over, the value in the brackets is 5.4 + 0.4, so

v, ~ v2/(82 4 6)kms !
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Asymmetric drift

But, what is measured?
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Collisionless Systems:

Introduction
Relaxation time

Gravitational Drag
Focusing

The Collisionless
Boltzman Equation

The Jeans Equations

Appl

equations

cation of Jeans

Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

The Virial Theorem

Application of Jeans equations
Asymmetric drift

80 T — T

40 i : -

NS LA i,
" ; § 0

;3 3t LY

e

3338 &
¢ : iﬂ

velocity dispersion (km/s)

Age (Gyr)

Figure 8.11 The velocity dispersion of stars in the solar neighborhood as a function
of age, from Nordstrém et al. (2004). From bottom to top, the plots show the vertical
dispersion -, the azimuthal dispersion oy, the radial dispersion ¢, and the RmS velocity
(0'17i + o‘é +D‘§)l/2. The lines show fits of the form o; oc £ where t is the age; from bottom
to top the best-fit exponents a are 0.47, 0.34, 0.31, and 0.34.
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Application of Jeans equations
Asymmetric drift

Collisionless Systems
Introduction

Relaxation time

Gravitational Drag
Focusing

The Collisionless
Boltzman Equation

The Jeans Equations

PR - Something has been heating the disk! Curious what that might be.

equations

Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

The Virial Theorem
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Asymmetric drift

Something has been heating the disk! Curious what that might be.
e Heating by MACHOs
e Scattering of disk stars by molecular clouds

e Scattering by spiral arms
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Asymmetric drift

...MACHOs?7?

MACHO = MAssive Compact Halo Object.

This was the primary candidate for the baryonic Dark Matter (s considered only 10 years ago).

Anything dark, massive and not fuzzy goes:

e black holes

e neutron stars

very old white dwarfs = black dwarfs?

brown dwarfs

e rogue planets
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Asymmetric drift

Unfortunately, any significant contribution of MACHOs to the Galaxy's mass budget is
ruled out, due to

e they are too efficient in heating the disk and predict the amplitude of the effect to
grow faster with time than observed

e can be detected directly through observations of gravitational microlensing effect.
While the first claims put fyacao ~ 20%, it is consistent with zero.
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Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Asymmetric drift

We know that the irregularities in the Galaxy's gravitational potential heat the disk
and (re)shape the velocity distribution of the disk stars.

We do not know exactly which phenomenon is the primary source of heating

Most likely, it is the combined effects of spiral transients and molecular clouds
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Collisionless Systems:

Introduction

Grav

Focusing

ational Drag

The Collisionless
Boltzman Equation

The Jeans Equations

Application of Jeans
equations

Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

The Virial Theorem

The

Application of Jeans equations
Asymmetric drift

Relaxation time We predicted v, ~ v_,%/(82 + 6)kms !

4-07 T T T T T T T T T T ]
30 .
Tt A
E ool E#‘ A
A . o4
2 ox gt 1
oF w&q? H ]
0j P B M C ]
0 500 1500 2000

1000
$2 [km s1]?

Figure 4.21 The asymmetric drift v, for different stellar types is a linear function of the
random velocity S? of each type. The vertical coordinate is actually vy +7y,o where Ty o
is the azimuthal velocity of the Sun relative to the LSR (after Dehnen & Binney 1998b).

measured value from above:

v, = v2/(80 + 5)kms
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Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations

Local mass density
The mass density in the solar neighborhood.
Equation (5.32) can be written as

ot R OR oz Va0

0Wwv.) | 1ORvvE) | 0vE) | 0%

Take this equation and assume a steady state so % =0, so have

LO(RvVRY;)  owvp) _ 0%

R OR 0z 0z

76

101



Galaxies Part Il

Application of Jeans equations
Local mass density
We are interested in the density in a thin disk, where the density falls off much faster
in z than in R. Typically disk a few 100pc thick, with a radial scale of a few kpc, so
0 0

1
2 o102 ~10=
0z OaR OR

so neglect % term. So

Isotropic velocity lg(yﬁ) — _8(13
mpug equations for v 82 z 82
RGeS i.e.vertical pressure balances vertical gravity. This is the Jeans equation for
Application of . .
axisymmetric Jeans one-dimensional slab.
equations. . , . . . . . . .
Also can show that Poisson’s equation in a thin disk approximation is
o
5 =4nGp
0z
where p is the total mass density.
So have 510
—=——(wv2) = —4nGp.
0z v Oz
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Application of
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equations

Application of Jeans equations

Local mass density

Note that by f we do not necessarily mean all stars, it could be any well-defined
subset, such as all G stars (say).

The v is the number density of G stars or whatever type is chosen. We have not linked
v and ® (or v and p) as was done in the previous example of a self-consistent spherical
model.

Thus if for any population of stars we can measure v2 and v as a function of height z
we can calculate the total local density p. This involves differentiation of really noisy
data, so the results are very uncertain.

Using this technique for F stars + K giants Oort found

po = p(Ro,z = 0) = 0.15 Mg pc 3= Oort limit.
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Application of
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Application of Jeans equations

Local mass density

Note that one can determine instead

I T
Z(Z)_/ pdz’ = 27 Gr BZ(VVZ)

—Z

more accurately (since there is one less difference, or differential, involved).
Oort: ¥(700pc) ~ 90 M, pc—2

This compares with the observable mass:
¥ (1.1kpc) ~ 71 4+ 6 Mg pc—2 (Kuijken & Gilmore, 1991)

The baryons account for ¥ (stars plus gas) ~ 41 & 15 My pc—2 (Binney & Evans,

2001)

79 /101



Galaxies Part Il

Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

Application of Jeans equations
Local mass density
Or we can estimate Dark Matter halo's contribution to ¥ by supposing that
e the halo is spherical
e the circular speed v. = vy = constant
e without the halo, v. = (GM/r)'/?
Then, the halo mass M(r) satisfies G[M(r) + My] = rvZ

The halo's density:

1 dm V2 s Vo 2/ R\ 2
= — = =0.014M
Ph= 4rr2 dr ~ 47Gr? opC 200kms ! 8kpc

The halo's contribution £/ ; = 2.2 kpe x pp = 30.6Mypc 2

So local dark matter is relatively tightly constrained, and the Sun lies in transition
region in which both disk and halo contribute significant masses.
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Application of
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Application of Jeans equations
Mass profile of the Galaxy
Jeans equation for spherical systems:

Ao 2vZ—v2 -2
+y<+'j¢ =0 (5.36)

For the stationary and spherically symmetric Galactic halo, the radial velocity dispersion
oy« Of stars with density p. obeys the above Jeans equation (albeit modified slightly):

d(vv?)

r

dr

1 d(ps0?.) N 2807,  do V2

=——=--"= 5.37
pxdr r dr r ( )
where the velocity anisotropy parameter is
2 2 212
opt+o vyt
B=1--2 ¢3¢ _"¢ (5.38)

20’2 2Vr2

Thus, the Jeans equation allows us to determine a unique solution for the mass profile
if we know o7, p. and j(r).
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Application of Jeans equations
Mass profile of the Galaxy

The expected radial velocity dispersion for a tracer population is derived by integrating
the Jeans equation:

1 > " ’
2 2..[28d
o7, = pemd/ pvZel PP dx, x=inr (5.39)
However, the proper motions are not available for the majority of the tracers, therefore
we can only measure the line-of-sight velocity dispersion:
JGSR,*(r) 20,7*(r) 1fBH(r) (540)

Where

()_r2—|—Ré (rz—Ré)zI r+ Re

T T 8r3Rs "o R

(5.41)
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Gravitational Drag
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The Collisionless
Boltzman Equation

The Jeans Equations

Application of Jeans
equations

Isotropic velocity
dispersion

Jeans equations for
cylindrically symmetric
systems

Application of
axisymmetric Jeans
equations

The Virial Theorem
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dinv
dinr

2
dino;
dinr

Mass profile of the Galaxy

+28(r)

(5.42)
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Still, there are further complications. Namely, the two ingredients are uncertain

Isotropic velocity

dispersion i . X
Jeans equations for e the behavior of the stellar velocity anisotropy
systems . . .
Application of e stellar halo density profile at large radii

axisymmetric Jeans
equations
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Figure 2. Heliocentric line-of-sight velocities corrected for the Solar mo-
tion and the LSR motion (V ggr) for the sample used in this work (triangles,
red giants; asterisks, globular clusters; diamonds, field horizontal branch
stars; filled squares, satellite galaxies).

from Battaglia et al, 2005
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With constant velocity anisotropy
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Figure 1. Observed radial velocity dispersion (squares with error bars) over-
laid on two of the best-fitting models for the NFW mass distributions (dashed
line: ¢ = 10; solid line: ¢ = 18). The dotted curve corresponds to the Galacto-
centric radial velocity dispersion profile obtained using the preferred model
(B1) of Klypin et al. (2002). This figure replaces the bottom panel of fig. 4
in the original manuscript.
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Letting velocity anisotropy vary with radius
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Figure 2. Observed radial velocity dispersion (squares with error bars) over-
laid on the best-fitting model for the TF mass distribution (solid line). The
dashed line shows the Galactocentric radial velocity dispersion obtained
using the best-fitting parameters from Wilkison & Evans (1999) and the dot-
ted line using the best-fitting parameters from Sakamoto et al. (2003). The
dashed—double-dotted line shows o gsr, « for a TF model with mass equal to
the upper 1o value from our best fit and a velocity anisotropy equal to the
lower 1o B. This ficure replaces the riecht-hand panel of fie. 5 in the orieinal
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The Virial Theorem

We have obtained the first moment of CBE by multiplying it through by v; and
integrating over all velocities. This allowed us to reduce an equation for 6D
distribution function f to an equation for 3D density v and the velocity moments:

0 0 o

(7)) + 5 () + v~ =0 (5.43)

Ox; 0x;

Now, let us multiply the above equation T by xx and integrate over all positions,
converting these differential 1st moment equations into a tensor equation relating the
global properties of the galaxy such as kinetic energy.

/d3xxk6(§:j) = _/d3xka — /d3xpxk% (5.44)
i d
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Potential-energy tensor

[f d3xx 8(5?) =— fd3xkagT) — [ d3xpxic %]

By definition, the Chandrasekhar potential-energy tensor:

0P
Wik = —/d3xp(x)xja—Xk

Also, by definition:

d(x) = —G/d3x, p/(x,)

X' — x|

Which makes W on substituting $:

0 . p(X)
o 3 o 3
Wik G/d Xp(x)xfaxk /d X % —x]

(5.45)

(5.46)

(5.47)
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The Virial Theorem

Potential-energy tensor
[f d3xx, (pvj) = — [ d®xx 8(pwv, — [ d3xpxic ()X]

Taking the differentiation inside the integral, re-labeling the dummy variables x and x
and writing W/ twice, we get:

= —7G/d3 /d3xp ( J )?)_(X;_Xk) (5.48)

X" —x[3
Therefore, W is symmetric, i.e. Wy = W,;. Taking the trace:

3
_ _ 4 3y 3'/’() :} 35 o(x)P(x
trace(W f;lwﬂ_ G/d p()/d % 2/d p(x)®(x)  (5.49)

This is total potential energy of the body W.

W= — / d®xpxV o (5.50)
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Kinetic-energy tensor
[f d3xx, pv,) —f d3xx, 2 nv,vj — [ B3xpxi dx]

With the help of divergence theorem:

AN pvv;
/d?’XXkM = —/d?)X(Sk,'pTVj = —2Kkj (551)

8x,-
Potential-energy tensor . . .
Kinetic-anergy sensor Here we have defined the kinetic-energy tensor:
Tensor Virial Theorem
Scalar Virial Theorem

pplications Viria 1 —_
hppsamon Vira! Kix = §/d3xpvjvk (5.52)

Remembering that 05- = (v —v;)(v; — Vj) = V;v; — V; v}, contributions from ordered T
and random I1 motion:

1 1
Kix = Ti + Eﬂjk, T = 5 /d3XijVk, My = /d?’prJ?k (5.53)
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The Virial Theorem
[f d3xx, pvj) f d3x 8(pv,vj f d3xpxk 6X]

Taking the time derivative outside and averaging the (k,j) and the (j, k) components
of the above equation 1

2dt/d Xp XKV —|—vak)—2TJk—|-|_|Jk—|-VVJk (5.54)

where we have taken advantage of the symmetry of T, I, W under exchange of indices
If we define moment of inertia tensor

dl;
lik = /d3xpxjxk and dijtk = /d3xp(kaj + X V) (5.55)

Tensor Virial Theorem

1d2
2 dt2

= 2Tj + My + Wi (5.56)
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et e The theorem is derived for collisionless systems, but can be proven for
Relaxation time . . .« .
o self-gravitating collisional systems too.
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Focusing

e This is the equation of energy balance in systems in equilibrium under gravity.

o Can be extended to include energy from turbulence and convective motions,
magnetic energy etc

Collisionless
Boltzman Equation

The Jeans Equations

Application of Jeans

equations

The Virial Theorem [% t2 —2Tk+|_|k—|-|/\/]k}

Potential-energy tensor

Kinetic-energy tensor
Tensor Virial Theorem T - . .
Scalar Virial Theorem In a steady state | = 0, the trace of the Tensor Virial Theorem equation above is:

Applications Virial
Theorem

Scalar Virial Theorem

2K+ W =0 (5.57)

where

K = trace(T) + %trace(l'l) (5.58)
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Curiously, if E is the energy of the system then

E=K+W:—K=%W (5.59)
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The Virial Theorem

The kinetic energy of a stellar system with mass M where stars move at mean-square
speed (v?) is

1
K= 5/\/1<V2> (5.60)
The virial theorem states that:
2y _ W] _ GM
7 _ 27 5.61
=7 = (5.61)
This is the fastest way to get the mass of the system! Here the gravitational radius rg
GM?
fg = —o (5.62)
£ W
For example, for a homogeneous sphere of radius a and density p, the potential energy:
1672 a 1 GM?
w— _1om sz/ drrt = P28~ 3 (5.63)
3 0 15 a

And ry =

wlo;
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The Virial Theorem

Applications Virial Theorem

o Despite the elegance of the Virial Theorem, its applications are not
straightforward.

e This is because neither (v?) or r, are readily available for most systems.
o Instead of (v?), the line of sight velocity dispersion (vjf) is used.

e And isotropy is assumed (not going to work in many situations)
(v?) = 3(v})

e Instead of gravitational radius r, the rough extent of the system is used

e or use the so-called half-mass radius r, obtained by integrating light and assuming

mass/light ratio. It can be shown that for variety of systems r;,/rg ~ %

See Eddington (1916). Einstein (1921) used the Virial Theorem to estimate the mass

of globular clusters.
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AKA Abel 1656, D

~1

00 Mpc, N > 1000 galaxies

The Virial Theorem

Coma Cluster
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Fritz Zwicky and the Coma Cluster

THE ASTROPHYSICAL JOURNAL

AN INTERNATIONAL REVIEW OF SPECTROSCOPY AND
ASTRONOMICAL PHYSICS

VOLUME 86 OCTOBER 1937 NUMBER 3

ON THE MASSES OF NEBULAE AND OF
CLUSTERS OF NEBULAE

F. ZWICKY

ABSTRACT

Present estimates of the masses of nebulae are based on observations of the lumi-
nosities and infernal rotations of nebulae. It is shown that both these methods are
unreliable; that from the observed luminosities of extragalactic systems only lower
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m
.

Fi16. 3.—The Coma cluster of nebulae
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as yet unknown masses. The mass _#, as obtained from the virial
theorem, can therefore be regarded as correct only in order of mag-
nitude.

Combining (33) and (34), we find

M > 9 X 10%gr, (35)

The Coma cluster contains about one thousand nebulae. The aver-
age mass of one of these nebulae is therefore

M > 9 X 109gr=4.5X% 10° M. (36)

Inasmuch as we have introduced at every step of our argument in-
equalities which tend to depress the final value of the mass _#, the
foregoing value (36) should be considered as the lowest estimate for
the average mass of nebulae in the Coma cluster, This result is
somewhat unexpected, in view of the fact that the luminosity of an
average nebula is equal to that of about 8.5 X 107 suns, According
to (36), the conversion factor vy from luminosity to mass for nebulae
in the Coma cluster would be of the order

v = 500, (37)

as compared with about 4’ = 3 for the local Kapteyn stellar system.
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