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Circular and Nearly Circular Orbits

Rotation in a disk galaxy is the obvious example of such orbit.
Given a central force f, due to a fixed potential ®, we have

r?¢ = h = constant (3.2)
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Circular and Nearly Circular Orbits

31 3.2
For a circular orbit r = R =constant and ¢ = Q =constant.
Then (3.2) is satisfied trivially, and (3.1)=
do
RQ? = —f, = — (3.3)
dr r=R
soif = —GTM, then
GM GM\*
2 _ —
RIE =T = 0= (m)
and the period
21 R3
T=—=2
o “"Vem

From the earlier Keplerian orbit discussion, R = a = the radius of the orbit, or the
separation between the two stars for a binary system with circular orbits.
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Circular and Nearly Circular Orbits

Now consider an orbit which is nearly circular, so we take

r=R+¢e(t) withe << R

and _
¢ =Q+w(t) withw<<Q

If we choose to characterize orbits by their angular momentum, we keep the angular
momentum unchanged, and the (3.2)=

h=RQ = (R+e)*(Q+w)
= (R?+2Re)(Q+w)
R?Q +2RQ + R*w (3.4)
if we retain only terms to first order. Therefore
Rw = —2eQ (3.5)
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Circular and Nearly Circular Orbits

31 3.3

Now, using (3.1) and retaining only terms to first order, the perturbation’s behaviour is
described by:

& — (R+¢e)(Q +20w) = f(R+¢)

(3.6
£ — RQ? —eQ? — 2RQw = f(R) +¢f'(R) (3.7
RO? = —f(R) from (3.3), and using (3.5) —2RQw = 4eQ?, so we have
£43:Q% = f'(R) (3.8)
or £+ (32> —f'(R))e=0 (3.9)

31
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31 3.3

Now, using (3.1) and retaining only terms to first order, the perturbation’s behaviour is
described by:

& — (R+¢e)(Q +20w) = f(R+¢)

3.6)
£ — RQ? —eQ? — 2RQw = f(R) +¢f'(R) 7)
RO? = —f(R) from (3.3), and using (3.5) —2RQw = 4eQ?, so we have
£y 3:02 = f'(R) (3.8)
or £+ (32> —f'(R))e=0 (3.9)

This is stable simple harmonic motion if Q% =302 — f/(R) > 0 so, using (3.3), if
f(R) d
! Y (p3
f(R)+3—R <0<:>dR(R f)<0
e.g. f(R) ox —R™" is stable only if n < 3 i.e. unstable if potential is steep.
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Precession

To a first approximation, a particle circles the origin with a period T = 27/Q.
It executes radial motion with a period T, = 27/Qg where Q% = 302 — f/(R).
In general Qg # Q, so the orbit is not closed.

The orbit is like an ellipse which rotates (or precesses) with a period 27/, where
Q,=0-Qr

In general for galaxies precession is retrograde (i.e. opposite to the rotation direction of
the stars) since T, is usually less than T,. We'll see why later, but the basic results are
for a harmonic (uniform density) model A¢ = 7 in one radial period, and for Keplerian
orbits A¢ = 27 in one radial period, and real galaxies fall between these extremes

For Keplerian potential f(R) = —<¥, 02 = SM and f/(R) = 28¥, so

R3 1
Q% =302 — f/(R) = S = 02, so the orbits are closed.
Note: Often Q% is written K2, and K called the epicyclic frequency.

31



Galaxies Part Il

Precession

Epicyclic approximation
Example: pseudo black
hole potential

More general potentials
Circular orbits in the

z = 0 plane

Nearly circular orbits
close to the z = 0
plane

Another look at circular
orbit stability

Bar and spiral wave

Epicyclic approximation

Move to a frame in which the unperturbed particle is at rest, with the coordinates in

the direction of rotation and in the radial direction. This is necessarily a rotating frame.

Figure 3.7 An elliptical Kepler orbit
(dashed curve) is well approximated
by the superposition of motion at
angular frequency & around a small
ellipse with axis ratio %, and motion
of the ellipse’s center in the opposite
sense at angular frequency 2 around
a circle (dotted curve).
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Bar and spiral wave y=¢
X = Rw = —2eQ

The second equality from the conservation of angular momentum Rw = —2eQ.
So can use relation £ + (3Q% — f/(R)) € = 0, which becomes

y+Ky=0

9/31
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Examle; pseudo black so if we take y = —bcos(Kt), x = 2Qb cos(Kt), so

hole potential
More general potentials

Circular orbits in the
== 0 e 2Qb . )
Nearly circular orbits X = — sm(Kt) = asm(Kt)
close to the z = 0 K
plane
Another look at circular .
orbit stability defines a, and then
Bar and spiral wave 5 5

x* y

— + Z_ =1

b2
= motion is an ellipse which moves retrograde at frequency K and is such that

b= 2Qa

For Keplerian potential K = Q so b= a/2

[For harmonic potential (to come) K =2Q so b = 3]

In general epicycle is elongated along tangential direction.
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Quasi-circular orbits when the ratio of angular to radial frequency is rational (3/2, upper left; 2/3

lower left; 4, upper right; 1/4, lower right).
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Example: pgeudo black Q)(r) - _

hole potential

More general potentials r— Rs

Circular orbits in the

z = 0 plane
Nearly circular orbits do GM
close to the z = 0 f(r)zfizf

plane dr (I’ . R5)2

Another look at circular
f(R)

orbit stability
i el For a circular orbit Q2 = — == so

Also

SO
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ST s I di Stable circular orbits are those for which K2 > 0, so require

Nearly circular orbits
close to the z = 0 3 5
plane ( _ ) ( B )
Another look at circular 3(R—Rs)”>2R(R — Rs
orbit stability

Bar and spiral wave

so for R # Rs
3(R—R,) > 2R
or
R > 3Rs
This is reminiscent of a Schwarzschild black hole: R, = 26/
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Axisymmetric Potentials

In most of the things we are interested in, the density distribution is not always (or
even often) spherically symmetric, but it may be approximately axisymmetric. In such
cases we use cylindrical polar coordintes (R, ¢, z).

If p=p(R,z), then ®(r) = (R, 2).

Often also have plane symmetry, where p(R, z) = p(R, —z) (with choice of origin in
the plane of symmetry of course).

e.g. Spheroidal galaxy, or central bulge in a spiral

thin disk

and so, by addition, get the full galaxy potential

or fast rotating planet (Jupiter, Saturn) has equatorial bulge

or even the time averaged potential of the moon (for the study of long timescale
effects)
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Axisymmetric Potentials

So we have to consider orbits in axisymmetric potentials, where there is no
¢-dependence so ®(R, ¢,z) = ®(R, z).

The force 50 56
P~ (70 %)

Since there is no force in the ¢ direction, the angular momentum about the z-axis L, is
constant, so the equation of motion becomes

.. . o
J— 2 P —
R—R¢ 3R (3.10)
R2p =1L, (3.11)
. o
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We can remove the ¢ term from the first two to obtain

o0 12 90

R="9r "R~ 0r
where 2
Gep =P + 2Rz2
and since 2% is independent of z,
A

2:

0z

So we have reduced a 3D problem to a 2D one.

In astronomical situations we also have plane symmetry, so (R, z) = (R, —z).

(3.13)

(3.14)

General orbits are complicated, and beyond the scope of this course (but see Part Ill).

We will deal with circular and nearly circular orbits close to the z = 0 plane.
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S s n the Look for solution z =0, R = R. =constant, ¢ = Q =constant. Equation (3.14) is
Soeto the's 215 satisfied because 2 =0 at z =0, from the plane symmetry condition.
Lo e Equation (3.13)=
2 90

R3 ~ OR

Since R?Q. = L, then
%= % on
R=R.

as before.
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Nearly circular orbits close to the z = 0 plane

Stars on orbits in the plane in a flattened potential have no way of perceiving that the
potential they are moving in is not spherically symmetric. Therefore our deductions
apply: star oscillates between two extrema in the radial coordinate.

What happens to stars whose orbits carry them out of the plane?

R=R.+ x, and z = z, with x,z << R..
At z = x = 0, we have

agﬂ“ = 0 from symmetry, and

OPorr __ 0ot
a5 = 0 since R=0= 98
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We can expand the function ®.g about z = x = 0 to obtain

0P
0z

OPest
OR

Ser(Re +x,2) = Dog(Re,0) + x

(R:.0)
2z Pdog
21 0ROz

(Re,0)

L PO
21 9R?

L2 P
21 9z2

(Re,0) (Re,0)

(3.15)

(Re,0)

The linear terms are zero from the considerations above, and the cross term (xz)
coefficient is also zero from the plane symmetry.
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and from(3.14)

More general potentials

Nearly circular orbits close to the z = 0 plane

—25)
%= _aq)eﬁ . 32¢eff
Ox OR? (R..0)
s 0% _ PO
0z 022 (R.,0)
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Therefore the equations become

x = —K2%x
- the epcyclic frequency, and

3 =-V?z
- the vertical frequency.
Here

022 |, 0)
and
K2 — 0?® 312
OR? (R..0) R4
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But v 12
1
2 _ -7 _ =z
2:(R) = ROR ~ R*
- 90?2
K? = (R + 492)
IR (R..0)

[See example sheet 2].

Thus there are two types of precession - radial precession (or rotation of pericentre, as
before) 2, = Q — K, and vertical or nodal precession 2, = Q — V. The orbit is in a
tilted plane which rotates at rate 2.

A node is the place where the orbit crosses the z = 0 plane upwards (by convention,
also called the ascending node).
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More general potentials

Nearly circular orbits close to the z = 0 plane
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Binney and Tremain, Fig 3.4 Orbits in axisymmetric potential.
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Another look at circular orbit stability

Centrifugal potential

Effective potential

Gravitational potential

Effective potential
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distance, r
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distance, r
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(a)

(b)

(e)
Figure 6.12 Arrangement of closed orbits in a galaxy with Q — %k independent of radius,
to create bars and spiral patterns (after Kalnajs 1973b).
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a - bar (aligned azimuthal/radial = 1/2 resonance)
b - 2 arm spiral (offset 1/2 resonance)
¢ - 3 arm spiral (offset 2/3 resonance)
d - 4 arm spiral (offset 1/4 resonance)
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from D’Onghia et al 2013

Molecular clouds as perturbers

2

t=100Myr

0
x/R,

t=400Myr

t=200Myr
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from D’Onghia et al 2013

t= 100 Myr
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x/R,

Molecular clouds as perturbers

t= 450 Myr
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Swing amplification

Figure 15.1: Evolution of an overdense perturbation in a shearing disk. The disk rotates counter-
clockwise, as indicated by the heavy arc; a typical star moves around an elliptical epicycle in a
clockwise direction. The perturbation (grey patch) initially has the form of a leading spiral (right),
but is sheared into a trailing spiral (left) by the differential rotation of the disk. The epicycle and

the perturbation rotate in the same direction, so stars stay in the perturbation longer than they would
under other conditions.
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