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Poisson’s Equation

Poisson’s equation relates ρ(r) to Φ(r). �



�
	Already covered in the Astrophysical Fluid Dynam-

ics course - here we explore it a little further

To determine the force due to a given density distribution ρ(r ′) we split it into many
point masses of size

dm′ = ρ(r ′)d3r′ at r′

Newtonian gravity is linear, so just add up the forces

f(r) = −
∫

Gdm′

|r − r′|3
(r − r′)

or since we want the total potential add up the individual contributions

Φ(r) =

∫ ∫ ∫
Gρ(r′)d3r′

|r − r′|�� ��As an exercise, show that ∇r
1
|r′−r| = r′−r

|r′−r|3 , and hence f(r) = −∇Φ
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Consider

∇2Φ(r) = −
∫ ∫ ∫

Gρ(r′)∇2
r

(
1

|r − r′|

)
d3r′

⇒ need ∇2
r

(
1
|r−r′|

)
.

To keep the algebra simple move the origin to r′ (and move back later)�



�
	for those who want everything in full generality, see

Binney & Tremaine

So we need ∇2( 1
r ). For r 6= 0,

∇2

(
1

r

)
=

1

r2

d

dr

[
r2 d

dr

(
1

r

)]
= 0 trivially
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But at r = 0 ∇2( 1
r ) is undefined. �



�
	You’ve seen that sort of thing before. Recall that

the Dirac δ-function δ(x) satisfies
∫ ε
−ε δ(x)dx = 1

So now ask: what is the volume integral of ∇2( 1
r ) over a small volume V containing

the origin?

∫ ∫ ∫
V

∇2

(
1

r

)
d3V =

∫ ∫ ∫
V

∇ .
[
∇
(

1

r

)]
d3V by definition

=

∫ ∫
S

n̂ .
[
∇
(

1

r

)]
d2S (2.1)

�� ��Divergence theorem (n̂ - outward normal)
∫
V d3x∇F =

∫
S n̂F
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Take V to be a sphere, so n̂ = r̂, d2S = r2 sin θdθdφ, and have ∇(1/r) = − 1
r2 r̂. Then

∫ ∫ ∫
V

∇2

(
1

r

)
d3V = −

∫ 2π

0

dφ

∫ π

0

sin θdθ

= −4π (2.2)

Since the integral is −4π, and is non-zero only at r = 0, we must therefore have

∇2

(
1

r

)
= −4πδ(r)

or, going back to the general origin,

∇2

(
1

|r − r′|

)
= −4πδ(r − r′)
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Hence

∇2Φ(r) = −G
∫ ∫ ∫

ρ(r′)∇2

(
1

|r − r′|

)
d3r′

= 4πG

∫ ∫ ∫
ρ(r′)δ(r − r′) d3r′

= 4πGρ(r) (2.3)

∇2Φ(r) = 4πGρ(r)

Poisson’s Equation
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Application of the Divergence Theorem to the Poisson’s Equation

“The integral of the normal component of ∇Φ over any closed surface equals 4πG
times the mass enclosed within that surface”

To prove this simply take Poisson’s equation and integrate over a volume V containing
a mass M.

4πG

∫
ρd3r = 4πGM =

∫
∇2Φ d3r

=

∫
∇ .∇Φ d3r

=

∫
∇Φ . n̂ d2S (2.4)

where the last step follows from the divergence theorem.
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Astrophysical Journal, 64, 321-369 (1926)
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Early Types

Fundamental plane exists that ties surface brightness, size and LOS velocity dispersion
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Spirals

Tully-Fisher law exists that ties together circular speed and luminosity
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The Tuning Fork
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Edwin Hubble’s classification of galaxies
The Three Pioneers

Albert Einstein, Edwin Hubble, and Walter Adams in 1931 at the Mount Wilson
Observatory 100” telescope, in the San Gabriel Mountains of southern California.
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Galaxy Luminosity Function

In any environment, dwarfs dominate!
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Deriving potentials of spherical systems

�� ��we can take ρ(r) = ρ(r)

In spherical polars

∇2Φ(r) =
1

r2

d

dr

(
r2 d

dr
Φ

)
=

1

r

d2

dr2
(rΦ)�� ��Exercise: show the last equality is true

So
∇2Φ = 4πGρ

becomes
1

r

d2

dr2
(rΦ) = 4πGρ,

and, given ρ we can solve for Φ(r).
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Deriving potentials of spherical systems
Homogeneous Sphere

(a) Homogeneous sphere: ρ(r) = ρ0 for 0 < r < r0, and ρ(r) = 0 for r > r0.
So for r < r0, have

1

r

d2

dr2
(rφ) = 4πGρ0

d2

dr2
(rφ) = 4πGρ0r

d

dr
(rφ) = 2πGρ0r

2 + A

rΦ =
2

3
πGρ0r

3 + Ar + B

Φ(r) =
2

3
πGρ0r

2 + A +
B

r
(2.5)
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Deriving potentials of spherical systems
Homogeneous Sphere�� ��Φ(r) = 2

3
πGρ0r2 + A + B

r

Require that Φ is finite at r = 0, else there is a point mass there, and so B = 0.
⇒ Φ(r) = 2

3πGρ0r
2 + A for 0 < r < r0.

For r > r0 have
1

r

d2

dr2
(rΦ) = 0

⇒ rΦ = Cr + D

Φ(r) = C +
D

r

WLOG 1 let Φ→ 0 as r →∞ (this is just choosing the zero point of the potential).

⇒ Φ(r) =
D

r
for r0 < r

1WLOG=Without Loss Of Generality
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Deriving potentials of spherical systems
Homogeneous Sphere�� ��Φ(r) = 2

3
πGρ0r2 + A for 0 < r < r0

�� ��Φ(r) = D
r

for r0 < r

Also require Φ to be continuous at r = r0, since ∇Φ=force is finite there, and dΦ
dr also

continuous (else ∇2Φ = 4πGρ is infinite there).

⇒ 2

3
πGρ0r

2
0 + A =

D

r0

and
4

3
πGρ0r0 = −D

r2
0

⇒
D = −4

3
πGρ0r

3
0

and
A = −2πGρ0r

2
0
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Deriving potentials of spherical systems
Homogeneous Sphere

Hence

Potential of a homogeneous sphere

Φ(r) =
2

3
πGρ0(r2 − 3r2

0 ) 0 < r < r0

= −4

3
πGρ0r

3
0 /r r0 < r (2.6)

Note: Outside the sphere Φ = −GM
r as expected, where M = 4

3πρ0r
3
0 .

Newton’s 2nd theorem: “Outside a closed spherical shell of matter, the gravitational
potential is as if all the mass were at a point at the centre”
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Deriving potentials of spherical systems
Spherical Shell

(b) Spherical shell ρ(r) = ρ0 for r1 < r < r2 and ρ(r) = 0 otherwise.
Newtonian gravity is linear, so this is the same as
(1) a uniform sphere density ρ0, radius r2

PLUS
(2) a uniform sphere density −ρ0, radius r1.
So we can write the answer down. It is

Φ(r) =
2

3
πGρ0(r2 − 3r2

2 )− 2

3
πGρ0(r2 − 3r2

1 ) 0 < r < r1

=
2

3
πGρ0(r2 − 3r2

2 ) +
4

3
πGρ0r

3
1 /r r1 < r < r2

= −4

3
πGρ0r

3
2 /r +

4

3
πGρ0r

3
1 /r r2 < r (2.7)
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Deriving potentials of spherical systems
Spherical Shell

Notes:
(1) Inside the cavity 0 < r < r1: Φ(r) = 2

3πGρ0(r2 − 3r2
2 )− 2

3πGρ0(r2 − 3r2
1 )

Φ =constant since the r2 terms cancel. Therefore there is no force due to an external
spherically symmetric mass distribution �� ��Newton’s first theorem

(2) Outside the shell r > r2: Φ(r) = − 4
3πGρ0r

3
2 /r + 4

3πGρ0r
3
1 /r

Φ = −GMshell

r

where Mshell = 4
3πρ0(r3

2 − r3
1 ) is the mass in the shell
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Spherical Shell

Notes:
(1) Inside the cavity 0 < r < r1: Φ(r) = 2

3πGρ0(r2 − 3r2
2 )− 2

3πGρ0(r2 − 3r2
1 )

Φ =constant since the r2 terms cancel. Therefore there is no force due to an external
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where Mshell = 4
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Deriving potentials of spherical systems
Shells Galore

Since Newtonian gravitational potentials add linearly, we can calculate the potential at
r due to an arbitrary spherically symmetric ρ(r) by adding contributions from shells
inside and outside r .
Mass in shell of thickness dr ′ and radius r ′ is

4πr ′
2
ρ(r ′)dr ′

The potential inside a shell is constant, so we can evaluate it anywhere - easiest is just
inside the shell, where

Φ = −4πGr ′
2
ρ(r ′)dr ′

r ′

(from −GM/r).
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Deriving potentials of spherical systems
Shells Galore

Thus, at any r, we have:

Φ(r) = −4πG

r

∫ r

0

r ′
2
ρ(r ′)dr ′ − 4πG

∫ ∞
r

r ′ρ(r ′)dr ′

where the first term is from shells inside r , and the second from shells outside r (to get
Φ(∞) = 0).

Potential of an arbitrary spherical distribution

Φ(r) = −4πG

[
1

r

∫ r

0

r ′
2
ρ(r ′)dr ′ +

∫ ∞
r

r ′ρ(r ′)dr ′
]

(2.8)
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If a galaxy has a spherical luminosity density

j(r) = j0

(
1 +

( r
a

)2
)− 3

2

(2.9)

then the surface brightness distribution is the projection of this on the plane of the sky

I (R) = 2

∫ ∞
0

j(z)dz (2.10)

Now r2 = R2 + z2, so

I (R) = 2j0

∫ ∞
0

[
1 +

(
R

a

)2

+
(z
a

)2
]− 3

2

dz (2.11)
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Let y = z/
√
a2 + R2, and then

1 +

(
R

a

)2

+
(z
a

)2

=
1

a2

(
a2 + R2 + z2

)
=

(
a2 + R2

)
a2

(
1 + y2

)
(2.12)

⇒ I (R) = 2j0

(
a2

a2 + R2

) 3
2
∫ ∞

0

√
a2 + R2 dy

(1 + y2)
3
2

(2.13)

= 2j0
a3

a2 + R2

∫ ∞
0

dy

(1 + y2)
3
2

(2.14)

Can be evaluated by setting y = tan x , so dy = sec2x dx , and the integral becomes∫ π
2

0

sec2x dx

(sec2x)
3
2

=

∫ π
2

0

cos x dx = sin
π

2
− sin 0 = 1 (2.15)
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and hence

I (R) = 2

∫ ∞
0

j(z)dz = 2j0

∫ ∞
0

[
1 +

(
R

a

)2

+
(z
a

)2
]− 3

2

dz

= 2j0
a3

a2 + R2

∫ ∞
0

dy

(1 + y2)
3
2

=
2j0a

1 +
(

R2

a2

) (2.16)

This profile is quite a good fit to elliptical galaxies - it is similar to the Hubble profile.
Now ask: assuming a fixed mass-to-light ratio Υ, what is the potential?
Assume

ρ(r) =
ρ0[

1 +
(
r
a

)2
] 3

2

(2.17)

where ρ0 = Υj0.
28 / 41



Galaxies Part II

Potentials from density
distribution

Profiles and potentials

Modified Hubble profile

Power law density profile

Projected density→
spherical density

Profiles and potentials
Modified Hubble profile

Let’s use Poisson’s equation ∇2Φ = 4πGρ⇒ d2

dr2 rΦ = 4πGrρ

1

4πG

d2

dr2
(rΦ) =

ρ0r(
1 + r2

a2

) 3
2

1

4πG

d

dr
(rΦ) = ρ0

∫
r dr(

1 + r2

a2

) 3
2

=
ρ0a

2

2

∫
2r dr/a2

(1 + r2/a2)
3
2

(2.18)

Let u = 1 + r2/a2, then du = 2r
a2 dr
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�



�
	ρ(r) = ρ0[

1+( r
a )2

] 3
2

�� ��d2

dr2 rΦ = 4πGrρ

And so

1

4πG

d

dr
(rΦ) =

ρ0a
2

2

∫
du

u
3
2

= −2
ρ0a

2

2

(
1 +

r2

a2

)− 1
2

+ A (2.19)

Then
rΦ

4πG
= Ar − ρ0a

3

∫
dr√

a2 + r2
(2.20)

Then we have the fairly standard integral∫
dx√

a2 + x2
= ln(2

√
a2 + x2 + 2x) or sinh−1

(x
a

)
(2.21)
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So
rΦ

4πG
= Ar + B − ρ0a

3 ln(2
√
a2 + r2 + 2r) (2.22)

B = 0 as otherwise 1/r →∞ as r → 0 [i.e. no point mass at origin].

Φ = 4πGA− 4πGρ0a
3 ln(2

√
a2 + r2 + 2r)

r
(2.23)

Note that we can choose A = 0, and then Φ→ 0 as r →∞ (but more slowly than 1
r

due to infinite total mass).
The total mass within r is

M(r) =

∫ r

0

4πρ0r
2dr(

1 + r2

a2

) 3
2

(2.24)

This is ∝ ln r for large r , so diverges as r →∞.
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ρ(r) = ρ0

(a
r

)α
(2.25)

d2

dr2
(rΦ) = 4πGρ0a

αr1−α (2.26)

so
d

dr
(rΦ) = 4πGρ0a

α r2−α

2− α
+ A (2.27)
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rΦ = 4πGρ0a
α r3−α

(2− α)(3− α)
+ Ar + B (2.28)

or

Φ = − 4πGρ0a
αr2−α

(3− α)(α− 2)
+ A +

B

r
(2.29)

A = 0 by setting zero, and B = 0 because no point mass at centre as usual.
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�
�

�
�Φ = − 4πGρ0a

αr2−α

(3−α)(α−2)

�� ��ρ(r) = ρ0

(
a
r

)α
Notes:
(1) α < 3 to get M(r) finite at the origin (determine

∫
4πGρr2dr near origin).

(2) Φ→ 0 at ∞ if α > 2,
⇒ 2 < α < 3

α = 2 gives spiral rotation curves (flat), from v2
c /r = dΦ

dr (= −fr )⇒ v2
c ∝ r2−α.

[Circular motion ⇒ r̈ & ṙ = 0, so r̈ − r φ̇2 = − dΦ
dr becomes, with vc = r φ̇,

v2
c

r = − dΦ
dr .

Then substituting Φ from equation (2.29) gives v2
c ∝ r2−α.]

α = 3 gives elliptical galaxy profiles (mod. Hubble profile)
but all these models have infinite mass, since M(r) diverges at large r
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What we have done so far is to guess a luminosity density j(r) (which we assume is
proportional to the matter density ρ(r)) and formed the projected surface brightness
I (R) using the relation

I (R) = 2

∫ ∞
R

j(r)rdr√
r2 − R2

(2.30)

and then check that I (R) is a reasonable approximation to what is seen for our guessed
density distribution.

r2 = x2 + R2

dx =
rdr√

r2 − R2
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OK, so

I (R) = 2

∫ ∞
R

j(r)rdr√
r2 − R2

In fact, if I (R) is known, then the equation above may be inverted to yield j(r)
directly, to yield

j(r) = − 1

2πr

d

dr

∫ ∞
r

I (R)RdR√
R2 − r2

. (2.31)

This is not quite pulled out of the air - it is a form of Abel’s integral equation.
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We can simplify the form a bit if we set t = R2 and x = r2, and then we have

I (t) =

∫ ∞
t

j(x)dx

(x − t)
1
2

and then the inverse relation quoted becomes

j(y) = − 1

π

d

dy

∫ ∞
y

I (t)dt

(t − y)
1
2

If we look just at the RHS, and call it h(y) for the moment, this is

h(y) = − 1

π

d

dy

∫ ∞
y

dt

(t − y)
1
2

∫ ∞
t

j(x)dx

(x − t)
1
2

.

or

h(y) = − 1

π

d

dy

∫ ∞
t=y

∫ ∞
x=t

dtj(x)dx

(t − y)
1
2 (x − t)

1
2
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We now switch the order of the integration, remembering when doing so to change the
limits of the integration so that we are integrating over the same area in the
(x , t)-plane.

h(y) = − 1

π

d

dy

∫ ∞
y

j(x)dx

∫ x

y

dt

(t − y)
1
2 (x − t)

1
2

The integral ∫ x

y

dt

(t − y)
1
2 (x − t)

1
2

= π

and so what we called h(y) is then seen to be equal to j(y). So the result follows.

38 / 41



Galaxies Part II

Potentials from density
distribution

Profiles and potentials

Modified Hubble profile

Power law density profile

Projected density→
spherical density

Projected density → spherical density

[The statement that

S ≡
∫ x

y

dt

(t − y)
1
2 (x − t)

1
2

= π

needs a bit more justification, or you can take it on trust.... For those who don’t, we
first change variables so the lower limit is zero, so z = t − y , and then

S =

∫ x−y

0

dz

(x − y − z)
1
2 z

1
2

This invites yet another change of variables so that the upper limit is 1, i.e.
ζ = z

x−y ⇒ z = (x − y)ζ ⇒ x − y − z = (x − y)(1− ζ)⇒

S =

∫ 1

0

(x − y)dζ

(x − y)
1
2 (1− ζ)

1
2 (x − y)

1
2 ζ

1
2
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So

S =

∫ 1

0

dζ

(1− ζ)
1
2 ζ

1
2

(2.32)

=

∫ 1

0

dζ

(ζ − ζ2)
1
2

=

∫ 1

0

dζ(
1
4 − (ζ − 1

2 )2
) 1

2

=

∫ 1
2

1
2

du√
1
4 − u2

=

∫ 1

−1

1
2dv√
1
4 −

v2

4

=

∫ 1

−1

dv√
1− v2
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Then since we know
d

dξ
arcsinξ =

1√
1− ξ2

we have ∫ 1

−1

dv√
1− v2

= arcsinv |1−1 =
π

2
+
π

2
= π

]
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