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Potentials from density distribution
Poisson’s Equation
Poisson’s equation relates p(r) to ®(r).

'/Already covered in the Astrophysical Fluid Dynam—‘\‘

ics course - here we explore it a little further

To determine the force due to a given density distribution p(r’) we split it into many

point masses of size
dm’ = p(r')d® atr

Newtonian gravity is linear, so just add up the forces

or since we want the total potential add up the individual contributions

e =

EAS an exercise, show that Vrr% = '/%r'“ and hence f(r) = 7V¢J

v ¢
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Consider

Potentials from density distribution

Poisson’s Equation

= | onrs ()

= need V2 (#>

[r—r|

To keep the algebra simple move the origin to v’ (and move back later)

So we need V2(1). For r # 0,

l

Binney & Tremaine

Efor those who want everything in full generality, se

J

>] =0 trivially
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Potentials from density distribution

But at r =0 V2(2) is undefined.

So now ask: what is the volume
the origin?

AN OL

Poisson’s Equation

You've seen that sort of thing before. Recall that
the Dirac d-function §(x) satisfies [©_d(x)dx =1

integral of Vz(%) over a small volume V containing

///VV' [V (m d*V by definition
[ o7 (3)] s (2.1)

[Divergence theorem (f - outward normal) [, d®*xVF = [ ﬁF]
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Potentials from density distribution

Poisson’s Equation

Take V to be a sphere, so fi = #, d®S = r?sindfd¢, and have V(1/r) = —%#. Then

L)

Since the integral is —4, and is non-zero only at r = 0, we must therefore have

1
r

2 T
—/ d(b/ sin 0d6
0 0

= —47

\%& () = —4mi(r)

or, going back to the general origin,

7

1
r—r'|

) = —4x(r —r')

(2.2)
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V2d(r)

Potentials from density distribution

Poisson’s Equation

o fro ()
= 47rG/// S(r—r') d°

= 4nGp(r) (2.3)

V2d(r) = 4nGp(r)

Poisson’s Equation
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Gauss's Theorem

Application of the Divergence Theorem to the Poisson’s Equation

“The integral of the normal component of V& over any closed surface equals 47 G
times the mass enclosed within that surface”

To prove this simply take Poisson’s equation and integrate over a volume V containing
a mass M.

47rG/pd3r:47rGM = /V2¢ d’r

/V-VCD dr

_ /w-a &S (2.4)

where the last step follows from the divergence theorem.
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EXTRA-GALACTIC NEBULAE®
By EDWIN HUBBLE

ABSTRACT

This contribution gives the results of a statistical investigation of 400 extra-
galactic nebulae for which Holetschek has determined total visual magnitudes. Thelist
is complete for the brighter nebulae in the northern sky and is representative to 12.5
mag. or fainter.

The classification employed is based on the forms of the photographic images.
About 3 per cent are irregular, but the remaining nebulae fall into a sequence of type
forms characterized by rotational symmetry about dominating nuclei. The sequence
is cll:mtpi)sed of two sections, the elliptical nebulae and the spirals, which merge into
each other.

Luminosity relations—The distribution of magnitudes appears to be uniform
throughout the sequence. For each type or stage in the sequence, the total magnitudes
are related to the logarithms of the maximum diameters by the formula,

myp=C—slogd,

Astrophysical Journal, 64, 321-369 (1926)
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Potentials from density
distribution
i II. Extra-galactic nebulae:
Eduin Hubbles A, Regular:
Darning potentil of N.G.C. 3379 Eo
spherical systems E
Profiles and potentials I. El.l.iptical ........................... En 221 B2
o S 4621 Eg5
(n=1, 2, ...., 7 indicates the ellipticity 2117 E
of the image without the decimal point) 757
2. Spirals: Symbol Example
a) Normalspirals. . .................. S
(1) Early........................ Sa N.G.C. 4504
(2) Intermediate.................. Sb 2841
(3) Late.............ccovieen.. Sc - 5457
b) Barredspirals..................... SB
(1) Barly........o e SBa N.G.C. 2850
(2) Intermediate.................. SBb 3351
(3) Late. .. ...................... SBc 7479
B. Irregular............... ... ... Irr N.G.C. 4449
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Edwin Hubble's classification of galaxies

Early Types

¥ . g R -

EQ NGC 3379 E2 NGC 22| (M32)
-
.

E5 NGC 462! (M59) E7 NGC 3115

Fundamental plane exists that ties surface brightness, size and LOS velocity dispersion

11/41
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Profiles and potentials

5 Bb NGC 5850
Tully-Fisher law exists that ties together circular speed and luminosity
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Sa . : Sb. .
S0 ‘ .
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Albert Einstein, Edwin Hubble, and Walter Adams in 1931 at the Mount Wilson
Observatory 100" telescope, in the San Gabriel Mountains of southern California.
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Galaxy Luminosity Function
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Edwin Hubble's F
classification of galaxies o
Deriving potentials of r
spherical systems

10 E

d(M) = 3

100 | =

e =
1

In any environment, dwarfs dominate!
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Deriving potentials of

spherical systems In spherical polars
1d d 1 d?
2 2
ve(r) r2 dr <r dr ) rdr? (r®)
{Exercise: show the last equality is trueJ
So
V20 = 47Gp

becomes 2

1

and, given p we can solve for ®(r).
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Deriving potentials of spherical systems

Homogeneous Sphere

(a) Homogeneous sphere: p(r) = po for 0 < r < ry, and p(r) =0 for r > rp.

So for r < rg, have

47TGp0

47 Gpor

2rGpor® + A

2 3

§7TGp0r + Ar+ B

2 B
“aGpor? + A+ —
3 r

18 /41



Galaxies Part Il

Poisson’s Equation
Gauss’s Theorem

Edwin Hubble's
classification of galaxies
Deriving potentials of
spherical systems

Deriving potentials of spherical systems

Homogeneous Sphere

Require that @ is finite at r = 0, else there is a point mass there, and so B = 0.
= ®(r) = 3nGpor* + Afor 0 < r < ro.

For r > ry have

1d?

a0 =0

=ro=Cr+D
D

WLOG ! let & — 0 as r — oo (this is just choosing the zero point of the potential).

D
:><D(r):7 for g < r

IWLOG=Without Loss Of Generality

19 /41
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Deriving potentials of spherical systems

Homogeneous Sphere

‘NCD(r) — %TG/)()I”Z +Afor0<r< ro\‘ ‘:@(r) = TD for rg < rJ

Also require ® to be continuous at r = rp, since V®=force is finite there, and % also
continuous (else V2® = 47 Gp is infinite there).

2 D
= ~71Gporg + A= —
3 h

and 4 D
§7TGPOr0 = *rfg
=
D= —inporg
3
and
A= 21Gporg

20 /41
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Deriving potentials of spherical systems

Homogeneous Sphere

Hence

Potential of a homogeneous sphere

2
o(r) = §7ero(r2 -38) 0<r<rn
4 3
= —§7TGp0r0/r n<r (2.6)
Note: Outside the sphere ® = —@ as expected, where M = %ﬂporg.

Newton's 2nd theorem: “Outside a closed spherical shell of matter, the gravitational
potential is as if all the mass were at a point at the centre”

21 /41
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Spherical Shell

Poisson's Equation
Gauss's Theorem

Bduin Hubles (b) Spherical shell p(r) = po for 1 < r < r, and p(r) = 0 otherwise.
Deriing potentisks of Newtonian gravity is linear, so this is the same as
(1) a uniform sphere density pg, radius r,
PLUS

(2) a uniform sphere density —po, radius ry.
So we can write the answer down. It is
2 2 2y 2 2 2
o(r) = ngpo(r —3r) — §77Gpo(r —-3rf) 0<r<n
2 4
= §7ero(r2 —3r) + g?prorf/r n<r<n
4 4
= —§7eror23/r—|— gﬂGporf’/r rn<r (2.7)

22 /41
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Deriving potentials of spherical systems
Spherical Shell

Notes:
(1) Inside the cavity 0 < r < r: ®(r) = 2nGpo(r* —3r3) — 37 Gpo(r? — 3r})
® =constant since the r? terms cancel. Therefore there is no force due to an external

spherically symmetric mass distribution

[ Newton's first theorem}

N}

3/41
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Deriving potentials of spherical systems
Spherical Shell

Notes:
(1) Inside the cavity 0 < r < r: ®(r) = 27 Gpo(r® — 3rZ) — 37 Gpo(r® — 3r2

® =constant since the r? terms cancel. Therefore there is no force due to an external
spherically symmetric mass distribution

[ Newton's first theorem}

(2) Outside the shell r > ry: ®(r) = —37Gpor3 /r+ 57Gpor/r

. G/V,shell
r

b =

where Mqpenn = 57po(r3 — r) is the mass in the shell

N}

3 /41
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Deriving potentials of spherical systems
Shells Galore

Since Newtonian gravitational potentials add linearly, we can calculate the potential at
r due to an arbitrary spherically symmetric p(r) by adding contributions from shells
inside and outside r.

Mass in shell of thickness dr’ and radius r’ is

47rr’2p( r')dr’

The potential inside a shell is constant, so we can evaluate it anywhere - easiest is just

inside the shell, where
47rGr’2p(r’)dr’

/

(b:
r

(from —GM/r).

24 /41
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Deriving potentials of

i Thus, at any r, we have:
spherical systems

Profiles and potentials

47TG

O(r) = ( "dr' —47TG/ (r')dr’

where the first term is from shells inside r, and the second from shells outside r (to get
®(00) =0).

O(r) = —47G [% /0 "2 )dr + / h r'p(r’)dr’] (2.8)

25 /41
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iz Gt el If a galaxy has a spherical luminosity density

Power law density profile

Projected density —

spherical density 3
2

. . 2%
J(r) = o (1 +(%) ) (2.9)
then the surface brightness distribution is the projection of this on the plane of the sky
(oo}
I(R) = 2/ Jj(2)dz (2.10)
0

Now r2 = RZ 4+ 72, so

1+ (5)2 + (;)2] b dz (2.11)

26 /41
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Modified Hubble profile

Let y = z/va? + R?, and then
R\? (z\2 1 a® + R?
1+<a> +(f) 2?(32+R2+22):%(1+y2)

a

3
, a2\ \/a2+R2d
= I(R) = 2jo <22> / ver®
a?+ R (1+y?)

3 / dy
PFR Sy (1)

(2.12)

(2.13)

(2.14)

Can be evaluated by setting y = tan x, so dy = sec?x dx, and the integral becomes

™

2 sec?x dx z .o
— = cosx dx =sin- —sin0=1
o (sec?x)> 0 2

(2.15)
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Modified Hubble profile
and hence

Nlw

2j0/000 1+<§>2+(§)2] dz

a’ ©  dy 2joa

\
—~~
X
N—r
Il
N
S—
3
—
—~~
N
e
N
Il

This profile is quite a good fit to elliptical galaxies - it is similar to the Hubble profile.
Now ask: assuming a fixed mass-to-light ratio T, what is the potential?
Assume

plr) = —0— (2.17)

where pg = Tjp.

28 /41
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Let's use Poisson's equation V2® = 47Gp = j—;rd) =4nGrp

Projected density —

1 d2 pPor
= 9 ) = P
470G dr? (r®) (1+,2)%
a2
1 d rdr
= ) = _rar
47err(r ) po/(lJr’z)g
32
_ poaz/ 2r dr/a® (2.18)
2 ) (14 r2/22)F '

Let u=1+r?/a?, then du = %dr

29 /41
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And so
1 d poa® [ du
= ey = £ [
Gar " 2 ) i
1
2 2\ 2
pod r
= 20— (14 — A
2 <+a2> +
Then

ré A 33/ dr
4G po Va2 +r?

Then we have the fairly standard integral

/\/m In(2/ a% 4+ x% 4 2x) or sinh™ ()

(2.19)

(2.20)

(2.21)
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So o
J—G = Ar+ B — popa°In(2v/ a2 + r2 + 2r) (2.22)
T

B =0 as otherwise 1/r — co as r — 0 [i.e. no point mass at origin].

3In(2va? + r?2 + 2r)

b =47GA — 4nGpoa .

(2.23)

Note that we can choose A =0, and then ® — 0 as r — oo (but more slowly than %
due to infinite total mass).

The total mass within r is .
M(r) = [ STC (2.24)
" (1+g)

This is o< In r for large r, so diverges as r — oo.
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o) =po(2)" (2.25)

r

d2
Za(re) = 4rGpoa™rt— (2.26)
SO d )
r —Q
—(rd) =4 o
dr(r ) mGpoa 2—«a

+A (2.27)
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3—a

r
d=14 e+ Ar+B 2.2
r 7Gpoa 2= a)G-a) + Ar + (2.28)
or
47 Gpoa“r>—® B
b= _ + A+ — 2.2
B-a)(a—-2) At r (2.29)

A = 0 by setting zero, and B = 0 because no point mass at centre as usual.
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Notes:
(1) a < 3 to get M(r) finite at the origin (determine [ 4w Gpr?dr near origin).
(2) ® > 0at oo if a> 2,

=2<a<3
o = 2 gives spiral rotation curves (flat), from v2/r = ‘fj—‘f (= —f) = v?xr e
. . 2
[Circular motion = F & F =0, so F — r¢? = —% becomes, with v, = r¢, Vf = —%.

Then substituting ® from equation (2.29) gives v2 o< r2=% ]

a = 3 gives elliptical galaxy profiles (mod. Hubble profile)
but all these models have infinite mass, since M(r) diverges at large r
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Projected density — spherical density
What we have done so far is to guess a luminosity density j(r) (which we assume is

proportional to the matter density p(r)) and formed the projected surface brightness
I(R) using the relation

I(R) =2 : % (2.30)

and then check that /(R) is a reasonable approximation to what is seen for our guessed
density distribution.

r? = x*+ R?

rdr
2 _ R2

=

dx =

35/41
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OK, so
J(r)rdr
R Vri—R?
In fact, if /(R) is known, then the equation above may be inverted to yield j(r)
directly, to yield

I(R) =2

. 1 d [ I(R)RdR
=——— —_— 231
i) 2rrdr J, R2 — 2 (2:31)

This is not quite pulled out of the air - it is a form of Abel’s integral equation.

36

41
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Projected density — spherical density

We can simplify the form a bit if we set t = R? and x = r?, and then we have

0= [ 2%

and then the inverse relation quoted becomes

ooy Ld [ I(t)dt
T A

If we look just at the RHS, and call it h(y) for the moment, this is

_ ld [* dt °j(x)dx
(Rl i) Ay

‘_wdy/ty/xf(t—dt(%x( t)

or

r\)h_n
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Modified Hubble profile

Power law density profile

Sl doareiiy — We now switch the order of the integration, remembering when doing so to change the
spherical densit, . . . . . . .
’ ! limits of the integration so that we are integrating over the same area in the

(x, t)-plane.

1d [~ X dt
e A e

The integral

[t
P HPENE

and so what we called h(y) is then seen to be equal to j(y). So the result follows.
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Projected density — spherical density
[The statement that
x dt
N E/ i, T
y (t=y)(x—1t)?

needs a bit more justification, or you can take it on trust.... For those who don't, we
first change variables so the lower limit is zero, so z =t — y, and then

Y dz
5:/ T 1
0 (x—y—2z)22z2

This invites yet another change of variables so that the upper limit is 1, i.e.
(=5=z=(x-y)=x-y-z=(x-y)1-0=

S = ! (X_y)dC
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So

1 d¢
S = > @
/o (1-¢)z¢

_ /ldC
o (¢—¢2)z

[«
- (--9)

(2.32)
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Then since we know

. 1
—arcsing = ——
d§ ¢ /1-¢2
we have
/1 v arcsinv|" L
1V 1-— V2 -1 2 2

4141



	Potentials from density distribution
	Poisson's Equation
	Gauss's Theorem
	Edwin Hubble's classification of galaxies
	Deriving potentials of spherical systems

	Profiles and potentials
	Modified Hubble profile
	Power law density profile
	Projected density  spherical density


