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Collisions

Model requirements

Collisions

Do we have to worry about collisions?
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Collisions in globular clusters
The case of NGC 2808

Collisions
Model requirements

po ~ 8 x 10* Mg, pc—3

M, ~ 0.8 Mg,

= ng ~ 10% pc=3 is the star number density.

We have o, ~ 13 km s™! as the typical 1D speed of a star, so the 3D speed is
~V3xo, (=4/02+02+02) ~20 km s L.

Since M, & R, (see Fluids, or Stars, course notes), have R, ~ 0.8R.
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Collisions in globular clusters
The case of NGC 2808

Collisions
Model requirements

For a collision, need the volume 7(2R.)?ct.on to contain one star, i.e.
no =1/ (7(2R.)*oteon) (1.1)

or
teont = 1/ (47R20ng) (1.2)

Putting in the numbers gives tqo ~ 10% yr.
So direct collisions between stars are rare, but if you have ~ 10° stars then there is a
collision every ~ 108 years, so they do happen.

[Note that NGC 2808 is 10 times denser than typica@

So, for now, ignore collisions, and we are left with stars orbiting in the potential from
all the other stars in the system.
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Model requirements
Model (e.g., a globular cluster) just as a self-gravitating collection of objects.
Mol secirements Have a gravitational potential well ®(r), approximately smooth if the number of
particles >> 1. Conventionally take ®(c0) = 0.
Stars orbit in the potential well, with time per orbit (for a globular cluster)
~ 2Rp/o ~ 100 years << age.

[Remember how to measure age for globular clusters?}

Stars give rise to ®(r) by their mass, so for this potential in a steady state could

average each star over its orbit to get p(r).
The key problem is therefore self-consistently building a model which fills in the terms:

®(r) — stellar orbits — p(r) — &(r) (1.3)

Note that in most observed cases we only have vije of sight(R), so it is even harder to
model real systems.
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The law of attraction

Newton’s law {Newton's laws of motion and Newtonian gravity }

Orbits

Orbi hi | .

p(;t:i\:‘\fp o GR not needed, since

E i f

e © 10<v<10% ks ccc=3x105 km

Path of the orbit S s

Energy per unit mass e GM 272

Kepler's Laws rc2 Y

Unbound orbits . . . . .« . .

Escape velocity The gravitational force per unit mass acting on a body due to a mass M at the origin is
GM GM
r r

We can write this in terms of a potential ®, using

\Y (1) = —%? (1.5)
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Newton's law
Orbits
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potentials
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two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

The corresponding potential

So

where ® is a scalar,

_ &M

S =9(r) = .

(1.7)
Hence the potential due to a point mass M atr =ry is

GM

o(r) = _7|r iy
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Density vs Potential
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Newton's law
Orbits
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Escape velocity

Orbits
Particle of constant mass m at position r subject to a force F. Newton's law:
d
p (mf)=F (1.9)
mr=F (1.10)
If F is due to a gravitational potential ®(r), then

F=mf=-mvo (1.11)
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Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits

Escape velocity

Orbits

Particle of constant mass m at position r subject to a force F. Newton's law:

d
p (mr)=F (1.9)
ie.
mi = F (1.10)
If F is due to a gravitational potential ®(r), then
F=mf=-mV® (1.11)

The angular momentum about the origin is H = r x (mf).Then

I () i
E = r mr mr r
= rxF
= G

(1.12)

where G is the torque about the origin.
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Energy

The kinetic energy

T= %mi’-i (1.13)
Z_Isz.'r'zp.f (1.14)

If F= —-—mV®, then :
d—: = —mr-Vo(r) (1.15)

But if ® is independent of t, the rate of change of ® along an orbit is

d .
O =Vo-i (1.16)
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The kinetic energy

If F=—-—mV®, then

1
dT
T
Cil—t:—mi'-Vd)(r)

Energy

But if @ is independent of t, the rate of change of  along an orbit is

da
dt

O(r) = Vb -t

(1.13)

(1.14)

(1.15)

(1.16)



Energy

Hence a7 J
d (1. .
1. .
= E=-fr-t+®(r) (1.19)

2

The total energy is constant for a given orbit
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Orbits

Hence

Energy

s —man(r) (1.17)
= m% (;i'-i'—k CD(r)) =0 (1.18)
:sE:%i-iJrcb(r) (1.19)

The total energy is constant for a given orbit
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Orbits in spherical potentials

O(r) =d(|r]) = d(r), sof = -V = —?%.

The orbital angular momentum H = mr x r, and

Newton's law

Orbits

Orbits in spherical
potentials

Equation of motion in
two : dH

Path of the orbit

ﬁzrxmf:_mgrxfzo. (120)

So the angular momentum per unit mass h = H/m = r x t is a constant vector, and is
perpendicular to r and r
B4 the particle stays in a plane through the origin which is perpendicular to h

[Check: r L h r+6r=r+rdét L hsince bothr and)

v L h, so particle remains in the plane

Thus the problem becomes a two-dimensional one to calculate the orbit use 2-D
cylindrical coordinates (R, ¢, z) at z = 0, or spherical polars (r,0,¢) with § = 7.
So, in 2D, use (R, ¢) and (r, ¢) interchangeably..
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Newton’s law
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Escape velocity

Equation of motion in two dimensions

The equation of motion in two dimensions can be written in radial angular terms, using
r=rt=ré& + 08&, sor=(r0).
We know that

d.
&= ey (1.21)
and d
& = — 0% (1.22)
eV
;
X =rcosd §y=rsm(|)
4 i
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Newton’s law
Orbits
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potentials
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Energy per unit mass
Kepler's Laws
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Escape velocity

Equation of motion in two dimensions

The equation of motion in two dimensions can be written in radial angular terms, using

r=rt=ré& + 08&, sor=(r0).
We know that

and

é = cos(p)é, + sin(p)e,

&y = —sin(¢)éx + cos(¢)é,
%ér = — sin(¢)¢ex + cos(¢)¢
%é¢ = - cos(¢)¢ex — sm(gb)gbéy

(1.21)

(1.22)
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Equation of motion in two dimensions

Hence _
Newton'’s law r=ré + rd)éqﬁ (123)
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass

and so

Kepler's Laws

Unbound orbits r = ré + r¢é¢ + r¢é¢ + r&é¢ - rd)2ér

Escape velocity
.. ; 1d S\
(¥ — r¢2)e, + PUT <r2¢) &,

= a—[r—rqb,}—(r ¢>>]

(1.24)

In general f =(f,,f;), and then f, =7 — r¢?, where the second term is the centrifugal
force, since we are in a rotating frame, and the torque rfy = < ( 2¢) (=rxf).

In a spherical potential fy =0, so r2¢ is constant.
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Newton’s law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Path of the orbit

To determine the shape of the orbit we need to remove t from the equations and find
r(¢). It is simplest to set u = 1/r, and then from r?¢ = h obtain

¢ = hu? (1.25)
Then 1 1 du . du
i:—ﬁu:—?d—qsqﬁ:—hd—as (1.26)
and d?u - d?u
P= —hd752¢: —h2u2d752. (1.27)
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two dimensions

Path of the orbit

Path of the orbit

So the radial equation of motion

F—rg® =f
becomes 2
—h2u2d7;’—1h2 ‘=t (1.28)
2
AT (1.29)

The orbit equation in spherical potential
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Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Path of the orbit

Since f, is just a function of r (or u) this is an equation for u(¢), i.e. r(¢) - the path
of the orbit. Note that it does not give r(t), or ¢(t) - you need one of the other
equations for those.

If we take f, = — S} = —GMu?, then

u

d¢? +u= GM/h?

(1.30)

(which is something you will have seen in the Relativity course).
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Newton’s law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Kepler orbits

Solution to the equation of motion

The solution to this equation is

é =/lu=1+4 ecos(¢ — ¢p) (1.31)

which you can verify simply by putting it in the differential equation. Then

_ecos(¢ — ¢o) n 1+ecos(¢p —¢o) _ GM
14 1 e

so £ = h?/GM and e and ¢ are constants of integration.
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Newton’s law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Kepler orbits

Bound orbits

1 1+ ecos(¢— ¢o)

ro l
Note that if e < 1 then 1/r is never zero, so r is bounded in the range ﬁ <r< lfe.
Also, in all cases the orbit is symmetric about ¢ = ¢, so we take ¢g = 0 as defining
the reference line for the angle ¢. £ is the distance from the origin for ¢ = £7 (with ¢

measured relative to ¢p).
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Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits

Escape velocity

Kepler orbits

Bound orbits

We can use different parameters. Knowing that the point of closest approach

(perihelion for a planet in orbit around the Sun, periastron for something about a star)
is at /(1 + e) when ¢ = 0 and the aphelion (or whatever) is at /(1 — e) when ¢ = T,
we can set the distance between these two points (= major axis of the orbit)=2a. Then

Y4 L
1+4e 1-—e€

=2a=/((1—e)+l(1+e)=2a(1—e?) (1.32)

= =a(l-é€? (1.33)

= rp = a(1 — e) is the perihelion distance from the gravitating mass at the origin, and
ry = a(1 + e) is the aphelion distance. The distance of the Sun from the midpoint is
ae, and the angular momentum h?> = GM{ = GMa(1 — €?).

22

59



Galaxies Part Il

Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Energy per unit mass
The energy per unit mass

GM

1 1 1.,
E:7+-++¢(r):42+§r2¢2——

- - (1.34)

rp=a(l—e)

This is constant along the orbit, so we can evaluate it anywhere convenient - e.g. at
perihelion where r = 0. Then ¢ = r% and so
P

1 GMa(1 — e?) __GM
2 a*(1—¢)? a(l—e)

OGM[1(1+e\ 1
- a {2(1—e)_1—e}
GM

- 2a

E =

(1.35)

This is < 0 for a bound orbit, and depends only on the semi-major axis a (and not e).



Kepler's Laws

... deduced from observations, and explained by Newtonian theory of gravity.
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Kepler's Laws

1 Orbits are ellipses with the Sun at a focus.

2 Planets sweep out equal areas in equal time
. 1, 1,
0A = 5" o [= Er(mg*))] (1.36)

dA 1., h
= Zr%¢ = — = constant (1.37)

dt 2
= Kepler's second law is a consequence of a central force, since this is why h is a

constant.
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Newton’s law
Orbits
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Kepler's Laws

1 Orbits are ellipses with the Sun at a focus.
2 Planets sweep out equal areas in equal time

6A:13M[:14%@] (1.36)
2 2

dA

=5 r’¢ = — = constant (1.37)

= Kepler's second law is a consequence of a central force, since this is why h is a
constant.
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Newton’s law
Orbits

Orbits in spherical
potentials

Equation of motion in
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Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Kepler's Laws

3rd Law
3 (Period)?  (size of orbit)3

In one period T, the area swept out is A = %hT = <fOT %dt)
But A = area of ellipse = mab = wa’y/1 — €2

[
A:/Ozﬂdgb/orrdr

27
12
= —r°d¢
/0 2

_€2 27 d¢
N 5/0 (1 + ecos¢)?

/” dx o a
o (a+bcosx)?2 a2 —b2./32 _ p2

Have
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Kepler's Laws
3rd Law

SO 62 1
™
Y e
21—-e2\/1_¢2

Since ¢ = a(1 — €?) this implies

A=1a%y/1-—e?

and since b = av/1 — €2,
A =mab
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Newton’s law
Orbits

Orbits in spherical
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Equation of motion in
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Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
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Kepler's Laws

3rd Law
Therefore

2A
T = 2
h

B 27wa?y/1 — e2

= =

_ matV1-e?
GMa(1 — e?)
since h> = GMa(1 — €?)
3

=72 x a°

where in this case M is the mass of the Sun.

Note: Since E = —g—’;/’, the period T = %

(1.38)



Unbound orbits

What happens to % =1+ ecos¢ when e > 17

e If e > 1 then 1+ ecos¢ = 0 has solutions ¢, where r = 0o — cos o, = —1/e
Then —¢ < ¢ < doo, and, since cos ¢, is negative, 5 < doo < 7. The orbit is
a hyperbola.

o If e =1 then the particle just gets to infinity at ¢ = 47 - it is a parabola.
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Newton’s law
Orbits

Orbits in spherical
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Equation of motion in
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Energy per unit mass
Kepler's Laws
Unbound orbits
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Unbound orbits

What happens to % =1+ ecos¢ when e > 17

e If e > 1 then 1+ ecos¢ = 0 has solutions ¢, where r = 0o — cos oo, = —1/€

Then —¢o < ¢ < ¢oo, and, since cos P, is negative, 7 < Poo < 7.
a hyperbola.

The orbit is
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Newton’s law
Orbits

Orbits in spherical
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Equation of motion in
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Energy per unit mass
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Unbound orbits
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Unbound orbits

What happens to % =1+ ecos¢ when e > 17

If e > 1 then 1+ ecos¢ = 0 has solutions ¢, Where r = 00 — cos oo = —1/e€
Then —¢o < ¢ < doo, and, since cos P is negative, 5 < doo < 7. The orbit is
a hyperbola.

If e =1 then the particle just gets to infinity at ¢ = &7 - it is a parabola.
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Kepler orbits
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Energies for these unbound orbits:

So, as r — 00 E — 172
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Newton’s law
Orbits
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Unbound orbits

Recall P

o= 1+ ecoso
< of this =

Y/ .

——r=—esing ¢

r

and since h = rzé
e

r= ghsingb

Asr — oo cosp — —1/e

1, 1eK 1\ GM™m,,
E=of 262(1_e2)2£(e -1

(recalling that h* = GM{) Thus E > 0 if e > 1 and for parabolic orbits (e = 1) E = 0.

o
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Newton's law
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Escape velocity

We have seen that in a fixed potential ®(r) a particle has constant energy
E = 1¥* + &(r) along an orbit. If we adopt the usual convention and take ®(r) — 0 as
|r| = oo, then if at some point rg the particle has velocity vq such that

1
EVS + d(rg) >0
then it is able to reach infinity. So at each point ryg we can define an escape velocity
Vese Such that

Vese = 72¢(r0)
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Newton’s law
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Escape velocity

From the Solar neighborhood

The escape velocity from the Sun

1
26M, \ ? -1
Vese = (G@> =422 (i) * km s

I a.u.
Note: The circular velocity Vi is such that frg'bz = f%
- GM, rn o\~ _
r$ = Veire = © =29.8 (70> ’ km s !
o a.u.

(=27 a.u./yr).
Vese = V2Veire for a point mass source of the gravitational potential.
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Newton’s law
Orbits
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Escape velocity

From the Galaxy

Triple-star System Passes Near Milky Way's Central Black Hole
|

4

Triple-star system moves ﬁeaf.blgck One star falls toward black hdle;

hole at center of Milky Way galaxy:.

Black hole

Binary merges to form
blue straggler.

binary pair recoils‘and is ejected. : -

| 3 Binary system leaves galaxy.

/'
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Kepler orbits

Escape velocity
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Binary star orbits

Binary star orbits

e What we have done so far is assume a potential due to a fixed point mass which
we take as being at the origin of our polar coordinates. We now wish to consider a
situation in which we have two point masses, M; and M, both moving under the
gravitational attraction of the other.

@
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Binary star orbits

Binary star orbits

e What we have done so far is assume a potential due to a fixed point mass which
we take as being at the origin of our polar coordinates. We now wish to consider a
situation in which we have two point masses, M; and M, both moving under the
gravitational attraction of the other.

e This is a cluster of N stars where N = 2 and we can solve it exactly! Hooray!

37/59
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Binary star orbits

Binary star orbits

e What we have done so far is assume a potential due to a fixed point mass which
we take as being at the origin of our polar coordinates. We now wish to consider a
situation in which we have two point masses, M; and M, both moving under the
gravitational attraction of the other.

e This is a cluster of N stars where N = 2 and we can solve it exactly! Hooray!
e The potential is no longer fixed at origin

GM; GM,
[r—r1| |r—ry]

o(r) = —

37/59
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Binary star orbits

Or the force acting on star 1, due to star 2 is

GMi M,
Fi= 2
Ir1 — o
in the direction of ro — 1y
GM; M
= F] = ! 23 (I’z
r1 — e
And by symmetry (or Newton's 3rd law)
GMi M,

Fp— 172
Ir—r2f3

Binary star orbits

— r2)
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Binary star orbits

Binary star orbits

Then we know

.. GM{M; ~
erl = — d12 2d
and CM M.
" 1Vl2 ~
Mty = =2 (=d)
where
d=r—n

is the vector from M, to M;. )
Using these two we can write for d =¥, — p

G(/\/IH-M2)a

d=— e

(1.39)

(1.40)

(1.41)

(1.42)
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Binary star orbits

Binary star orbits

G(My + Mz)a

42
which is identical to the equation of motion of a particle subject to a fixed mass
M; 4+ M, at the origin.

d=—
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Binary star orbits

Binary star orbits

G(My + Mz)a
42
which is identical to the equation of motion of a particle subject to a fixed mass
M; 4+ M, at the origin.
So we know that the period

PR

33
P Y R — 1.43
"\ G(M; + M) (143)

where the size (maximum separation) of the relative orbit is 2a.

40
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Binary star orbits
If we take the coordinates for the centre of mass

Binary star orbits r — Ml r _|_ M2 r
MT MM M M,

2 (1.44)

From equations (1.39) and (1.40) we know that

Mi¥y + Mok, =0 (145)
and so d
p (Myy + Mairy) =0 (1.46)
or
(Myf1 + Maiy) = constant (1.47)

i.e.rcn =constant.
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Binary star orbits

Note that choosing rcm = 0= Mir; = —Mbry, andsor =d+r, =d — —rl

Binary star orbits Th iS :> r]_ — M

d and similarly r, = — Vs

M+M
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Binary star orbits

Note that choosing rcm = 0= Mir; = —Mbry, andsor =d+r, =d — —rl
SHiET) e QRS This = r = 7% +M d and similarly r, = Ml’\_/led.

The angular momentum J (or H if you want) is

J = Mll’l X I."1 + M2r2 X I."2
My M2 . My M2 .
= ——=—-dxd+ —"—-d xd
(M1 + M2)2 (Ml + Mg)z
My M, :
= ————dxd
My + M,
(1.48)
So
J=h (1.49)

where i is the reduced mass, and h is the specific angular momentum.
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Binary star orbits

Momentum loss due to mass loss
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Momentum loss due to Gravitational Radiation
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Binary star orbits

Momentum loss due to Gravitational Radiation

Binary star orbits

Russell A. Hulse Joseph H. Taylor Jr.

The Nobel Prize in Physics 1993 was awarded jointly to Russell A. Hulse and
Joseph H. Taylor Jr. "for the discovery of a new type of pulsar, a discovery that
has opened up new possibilities for the study of gravitation”

Photos: Copyright € The Nobel Foundation

Question: predict the evolution of the pulsar’s orbit.
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Binary star orbits

Momentum loss due to Gravitational Radiation

Line of zero orbital decay

_ao |- General Relativity prediction —

Cumulative shift of periastron time (s)

L [ I | I
1975 1980 1985 1980 1995 2000 2005

Year
Figure 2. Orbital decay caused by the loss of energy by gravitational radiation.
The parabola depicts the expected shift of periastron time relative to an
unchanging orbit, according to general relativity. Data points represent our
measurements, with error bars mostly too small to see.

Weisberg and Taylor 2010.
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Binary star orbits

Binary Super-massive Black holes




Galaxies Part Il

General orbit under radial
force law

Orbital periods

Example

General orbit under radial force law

Remember the orbit equation?

2 f(L
@y f()

d@ 2.2

where u = % and f, = f for a spherical potential.
For f from a gravitational potential, we have

1 do do

fFlo)=—"2 =022

(u) dr " du
since gravity is conservative.
There are two types of orbit:

e Unbound: r - 00, u>0as ¢ = ¢
e Bound: r (and u) oscillate between finite limits.

(1.50)

(1.51)
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General orbit under radial
force law

Orbital periods

Example

If we take (1.50) xg—;:

General orbit under radial force law

and integrating over ¢ we have

Energy
dudu | du, v dodu_, (1.52)
do d¢? dp  h2u? du dp ’
d [1/du\> 1, o
— |z == il — | = 1.
:d¢l2(d¢) taut s 0 (1.53)
¢1 du 2+12+$— tant = — (1.54)
5 dd) 2U h2—COIlS an _h2 .
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General orbit under radial
force law

Orbital periods

Example

General orbit under radial force law
Energy

and using h = r2¢

2
(5=1(%)+12+3)

_ f4¢ 1 252

o e

(d)2 570+ 0(0)
() b
L

122
2r 2r¢ + &(r)

i.e. we can show that the constant E we introduced is the energy per unit mass.

(1.55)
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art modelling

Before we sf

stellar systems
Basics
Binary star orbits

General orbit under radial
force law

Orbital periods

Example

General orbit under radial force law
Peri and Apo

2
(E=t(g) + 1o g)

For bound orbits, the limiting values of u (or r) occur where i‘i’) =0, i.e. where

2 _ 2E — 2¢(u)

= (1.56)

from (1.54).

This has two roots, u; = % i

and up = -

[this is not obvious, since ® is not defined, but it can be proved - it is an Example!}

For 1 < rp, where ry is the pericentre, r, the apocentre

51
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Orbital periods
Radial motion
The radial period T, is defined as the time to go from rn — L — 1.
Now take (1.55) and re-write:

Orbital periods
Example

r 2 2
<Zt> —2(E - ()~ 1 (157)

where we used h = r2q5 to eliminate (;5



Galaxies Part I

Orbital periods

Example

Orbital periods
Radial motion
The radial period T, is defined as the time to go from rn — L — 1.
Now take (1.55) and re-write:

dr\? 2
where we used h = r2<;5 to eliminate (;5
So
dr h?

(two signs -  can be either >0 or <0,and F=0atr & r.

Then n oy " J
T,:gﬁdtzz/ d—tdr:2/ ’ (1.59)
o O o \J2AE - o) - &
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Orbital periods

Azimuthal motion

Orotal periods If travelling from r, — r; — r» ¢ is increased by an amount
2 d¢ 2 d¢ dt
A¢p=¢dp =2 ——dr=2 ——d 1.60
¢ = ¢do /,ldrr /ndtdrr (1.60)
SO

(1.61)

B & dr
o=2 | 22 - o(r) - &
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Orbital periods

Example

Precession of the orbit

For a given orbit, the time taken to go around once (i.e. 0 — 27) depends in general
on where you start, so the azimuthal period is not well defined. Instead use the mean
angular velocity @ = A¢/ T, to obtain a mean azimuthal period T, so

2m
T¢ :271'/@:> T(zg = 77—,
A
is the mean time to go around once.
Note that unless A¢/27 is a rational number the orbit is not closed.
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Precession of the orbit

For Keplerian orbit A¢p =27 = T, = Ty.
In one period T, the apocentre (or pericentre) advances by an angle A¢ — 27. i.e.the
orbit shifts in azimuth at an average rate given by the mean precession rate

Orbital periods A 2
Example _
Q, = B¢ —2m rad s ! (1.62)
T,
Thus the precession period is
2w T,
T, = 9~ (1.63)
P 27

{This precession is in the sense opposite to the rotation of the star}
In the special case of a Keplerian orbit A¢p =27 = T, = T, and , =0, i.e. orbits

are closed and do not precess. Otherwise general orbit is a rosette between r; & r,.
This allows us to visualize how we can build a galaxy out of stars on different orbits.
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Binary star orbits

| orbit under radial
orce law

Orbital periods

Example

Precession of the orbit

Figure 3.1 A typical orbit in a
spherical potential (the isochrone,
eq. 2.47) forms a rosette.
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Orbital periods
Example

T, for the Keplerian case ®(r) = _GT’V’

We have equation (1.59)

r
T—2/

Example
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T, for the Keplerian case ®(r) = _GT’V’
We have equation (1.59)

r
T, =2 / ar
rbital periods n 2(E — _h
gxample \/ ( (r)) r

Now r; & rp are determined from i = 0, i.e.

h2
2(E ~®(r) — = =0
2
e 2M
r r
r2+%r_h72:
E 2E
S (r—n)(r—n)=0
=>r1r2:—h2' r1+r2:——M
2F' E

(remember E < 0 for a bound orbit).

Example
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Example

Rewrite (1.59) as

o):::\:mods 169
s / \/2E(r—r1 )r—nr) \/2|E/ rg—r(r—rl ( )
if n<r<hn.
This is another of those integrals. If R = a+ bx + cx®> = —r?> 4+ (r, + r)r — nr, and
A = 4ac — b? which becomes, using the variables here, A = —(r; — r2)2 then

xd&x VR b 1 il <2cx+b)
VR ¢ 2c+/—c V=A

for c <0 and A < 0 (See G&R 2.261 and 2.264).
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Example

The first term is 0 at r; and ro (R = 0 there), so

el T = : ntr sin! —2ntntn —sin! —2ntn+r
- T 2|E| 2 n—n n—n

= 2 ntn sin~1(1) — sinY(—

- 2|E|[ 2 ][ (1) (-1
2 GM v s

~ J2]E|2(-E) [5 B (_5)}

_ 27tGM

©(—2E)3

(1.70)
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