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Stellar Dynamics and Structure of Galaxies

Examples Sheet 1

1.1 In Cartesian coordinates (x, y) a particle obeys the equation of motion

ẍ = fx ; ÿ = fy ,

where f = (fx, fy) is the force per unit mass. Cylindrical polar coordinates (r, φ) are
defined by

x = r cosφ ; y = r sinφ .

Write down the inverse relations r = r(x, y); φ = φ(r, y). Show that

fr = fx cosφ+ fy sinφ ;

and find the corresponding expression for fφ. Hence show directly that

r̈ − rφ̇2 = fr ;
1

r

d

dt

(

r2φ̇
)

= fφ .

1.2 In cylindrical polar coordinates a conic section is given by

l

r
= 1 + e cosφ .

By suitable choice of a Cartesian coordinate system show directly that for 0 ≤ e < 1
the equation represents the ellipse

x2

a2
+

y2

b2
= 1

where b2 = a2(1− e2) and l = a(1− e2).

* Similarly show that e = 1 represents a parabola, and e > 1 represents (one branch
of) a hyperbola.

1.3 In a coordinate system which rotates with constant angular velocity Ω, the equation
of motion of a particle is

r̈+ 2Ω ∧ ṙ+Ω ∧ (Ω ∧ r) = −∇Φ .

What is the physical interpretation of the ‘extra’ terms on the lhs?



In considering the motion of a light particle moving under the influence of the two
equal mass stars in a binary system with a circular orbit, we use a Cartesian coordi-
nate system with origin at the centre of mass. Show that with suitable choice of Ω
the particle obeys an equation of the form

r̈+ 2Ω ∧ ṙ = −∇Φtot ,

where Φtot = Φ+ ΦΩ is independent of time, and

ΦΩ = 1

2
Ω2
(

x2 + y2
)

.

Show that along the orbit the quantity

J(r, ṙ) = 1

2
ṙ2 + Φtot(r)

is a constant.

* In the (x, y)-plane sketch the curves Φtot = const. Deduce that a particle released
at rest on the line joining the stars but close to the centre of mass does not escape
from the system.

1.4 [00305(ii)] A particle of unit mass is moving in a plane (r, φ) subject to the central
force

fr = −GM

r2
f(φ).

Write down the equations of motion.

At time t = 0, the particle is at r = a, φ = 0 and has velocity V , with ṙ = 0. Show
that the orbit of the particle is given by

a

r
= cosφ+

GM

aV 2

∫ φ

0

sin(φ− s) f(s) ds.

If f(φ) = cosφ, derive the equation for the orbit r(φ).

if

V 2 =
3πGM

8a
,

show that r → ∞ as φ → ±3π/4.

[You may assume that

2 sinA cosB = sin(A+ B) + sin(A−B).]

1.5 Two particles, masses M1 and M2, approach at relative velocity V0 and impact pa-
rameter b. Show that their paths are each deflected through an angle θ0, where

tan

(

θ0
2

)

=
G (M1 +M2)

bV 2
0

.

What is the distance d of closest approach?



1.6 The simplest, and most energy efficient, way of moving a spacecraft from one circular
orbit, radius r1 to another circular orbit r2(> r1, say) about a point mass is by use
of a Hohman transfer orbit. This orbit is an ellipse with pericentre distance r1 and
apocentre distance r2. Use of the Hohman transfer orbit requires just two firings of
the spacecraft’s motors.

(a) You are orbiting the Earth in the Space Shuttle 500 km above the surface. 300
km ahead of you on the same orbit is a malfunctioning satellite. Describe how
would you bring your spacecraft alongside the satellite.

(b) To launch Pioneer 10 out of the solar system, it was launched in a Hohman
transfer orbit to rendezvous with Jupiter. How long did it take to get there?
Suppose that at aphelion it collides elastically with Jupiter in such a way that
its velocity reverses direction. Show that it has enough speed now to escape
from the solar system.

*(c) Make a more realistic assumption about the interaction with Jupiter and show
that escape velocity can still be reached.

1.7 [95305]

(a) A particle of mass m is moving in the gravitational field of a particle of mass
M (≫ m). Given that the relative velocity of the two particles has magnitude
v and the relative distance is r, write down the condition that the two particles
are gravitationally bound.

Calculate the orbital velocity of the Earth about the Sun, and the orbital velocity
of the Moon about the Earth.

(b) A malevolent deity stops the motion of the Earth, relative to the Sun. Discuss
briefly what might happen to the Moon.

If the presence of the Moon can be ignored, show that the Earth falls into the
Sun after 1/(4

√
2) years.

If the Moon collides with the Earth, give an expression for the ratio of the angular
momentum of the Earth’s new orbit, compared to the angular momentum of the
Earth’s original circular orbit. In this case, does the Earth still fall into the Sun?

1.8 [96305(ii)] Derive the circular velocity due to the Plummer potential

Φ(r) = − GM√
b2 + r2

,

where b is a constant and sketch the result. Obtain the density profile ρ(r) that gives
rise to this potential. Show that M is the mass of the system.

[For a spherically symmetrical function F , ∇2F = 1

r2
∂
∂r

(

r2 ∂F
∂r

)

.]

1.9 [97405(i)] Consider the gravitational potential

Φ(R, z) = − GM
√

R2 + (z − a)2
− GM
√

R2 + (z + a)2
,



in cylindrical polar coordinates (R, φ, z). Show that circular orbits are possible in the
z = 0 plane, and calculate the corresponding angular velocity Ω0(R). Sketch Ω0 as a
function of R.

By considering physically the source of the gravitational potential, comment briefly
on the likely stability of the orbits in the regions (a) R ≫ a and (b) R ≪ a?

1.10 Show that the gravitational potential Φ(r) for a thin spherical shell of mass ∆m at
radius r′ is

Φ =







−G∆m/r r > r′

−G∆m/r′ r ≤ r′.

Deduce that the gravitational potential due to a spherically symmetric density dis-
tribution ρ(r′) is given by

Φ(r) = −
∫ r

0

Gρ(r′)4π

r
r′

2

dr′ −
∫

∞

r
Gρ(r′)4πr′dr′ .

Hence find the potential for the density distribution

ρ(r) =

{

ρ0
(

1− r2

r2
0

)

r < r0
0 r > r0,

where ρ0 is a constant.


