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Module 5:

• Binary Stars. 

• Basics, visual binaries, spectroscopic binaries, eclipsing binaries.

• Binary masses and radii.

• Supernovae, gravitational potentials, mass transfer, the Eddington 

limit, accretion.

• Accretion discs, cataclysmic variables.

• Accretion on to a magnetic star, types of high-energy binaries.

Introduction to Astrophysics

Michaelmas Term, 2020: Prof Craig Mackay
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Binary Systems: Basic Properties

• Most stars are in binary systems.  Approximately 70% of all stars are in binaries, 
triples etc.  Single stars are not the norm.  Binary stars help us to explain quite a 
number of astrophysical phenomena which are otherwise difficult to understand.

• Binaries provide an explanation for Type Ia supernovae.  These are thought to be 
a consequence of accretion onto a white dwarf.

• Binaries explain why the progenitor of SN1987A was a blue supergiant: its outer 
envelope was lost to a companion.

• Binaries may have members which are black holes and/or neutron stars, provided 
they stay bound after a supernova explosion.

• Binaries are involved in some Gamma Ray Bursts (GRBs).

• Binaries are associated with millisecond pulsars.

• The evolutionary stages of the two stars in a binary are often at odds with standard 
stellar evolution theory. This is a consequence of mass transfer between the two 
components.

• Binaries are extremely important in providing information on the masses and radii 
of stars.  They provide a critical test of stellar structure and evolution theories.
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Binary Star Basics

• A visual binary (such as Sirius A + B) is one in which both stars can be 

seen to be orbiting about the common centre of mass.  

• If their masses are M1 and M2, and they are orbiting at semi-major axes a1

and a2 from the common centre of mass then we know that M1.a1 = M2.a2

and so M1/M2=a2/a1. 

• This means that we can work out the mass ratio of a binary even if we do 

not know its distance (the projection of the orbits on to the sky due to the 

inclination has to be taken in to account).

• Kepler's third law tells us that:

• This means that if we know the 

distance to the binary we can 

work out the orbital radii and 

therefore deduce the masses of 

both stars. (case 1 in the table on 

slide 11).

4

Spectroscopic Binary Stars

As shown, the unseen companion is the more massive component of the 

binary.

time

vr

The radial velocity 

vr is obtained from 

the observed shift 

of spectral lines.
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Spectroscopic Binary Stars

• With spectroscopic binaries (binaries that 
we cannot resolve into the individual stars 
because they are too close together or too 
distant) we deduce that they are binary 
because of a variable Doppler shift in the 
wavelength of the light emitted by the 
stars.

• The Doppler shift gives the velocity of the 
stars along the line of sight.

• We generally do not know the inclination 
of the orbit which could be anything from 
i = 0 (indicating face on) up to i=90 
degrees (indicating edge on).

• What we actually measure is not the 
velocity, v, but the radial component of 
the velocity   vr = v.sin(i).

• If we measure the ratio of radial velocities 
of the two components we can deduce the 
ratio of the masses just as we could for 
visual binaries when we do not know the 
distance.

• Once we know the distance we can apply 
Kepler's third law as before and deduce 
the masses of the components. (see case 5 
in the table).

Two spectral lines.

Time axis is vertical
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Spectroscopic Binary Stars

In many systems one of the components is too faint to contribute to the spectrum (e.g. it is 
a neutron star, a black hole or a brown dwarfs, etc.) so we see only one component of the 
binary.  This means that v2r is unknown.  However v2r = (M1/M2).v1r.  Using Kepler’s third 
law and

We get

This equation can be rearranged to give

The left-hand side is called the mass function and the right-hand side is what is actually 

observed.  Since sin i < 1 and M1 > 0 we get:

The mass function therefore gives us a lower limit to the mass of the companion
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Spectroscopic Binary Stars

• We can get yet more information if we see an eclipse or a transit.  This tells us 

immediately that i ~ 90 (except for very close binaries where the stellar radii are a 

significant fraction of the separation of the binary):

• And so for an eclipsing binary when one velocity and the distance to the system are 

known, both masses can be determined.

• In addition, when we have the light curves of the binary we have information on the 

radii of the stars. (see case 7 in table on slide 11).
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Eclipsing Binaries

This figure shows the light curve of an eclipsing binary for which i ~ 90 

degrees.  The times indicated on the light curve correspond to the positions 

of the smallest star relative to its larger companion.  It is assumed in this 

example that the smaller star is hotter than the larger one.
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Eclipsing Binaries

This figure shows the light curve of a partially eclipsing binary.  Again it 

is assumed here that the smaller star is hotter than its companion. 
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Eclipsing Binaries

This figure shows the phase diagram of the partially eclipsing binary RT 

Andromedae (Pribulla et al, A&A,362, 169-188, 2000).
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Masses and Radii from Binary star observations

Table assumes distance to binary is known
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Supernovae in Binary Systems

• We must expect that supernovae will be quite common 

in binary systems as 70% of the stars in our galaxy are 

in multiple systems.

• What is going to be the fate of a binary system after a 

supernova explosion?

• We have to calculate the velocity of the system after 

the supernova event:

• In the frame with the centre of mass at rest before the 

supernova event we have:

• M1v1 + M2v2 = 0 (total momentum of system is zero)

• M1r1 + M2r2 = 0

• M1 then explodes.  Let’s suppose that M1 > M2 (for 

normal stars with no interchange of mass this is always 

true but this becomes a lot more complicated in the 

presence of substantial quantities of mass exchange).

• The new mass M1' = M1 - ΔM.

M1 > M2 as drawn
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Supernovae in Binary Systems.

• The binary system is no longer at rest and has a velocity vc = the velocity of the 
centre of mass of the binary relative to its old one.

• The sum of the momenta of the two stars equals the total system momentum [1]

• So we get the new system velocity in terms of M1, M2,  ΔM and v2.

• For Type Ia supernovae, M1' = 0 since M = M1 and vc = v2.

• If we take a representative set of parameters for a Type II supernova, for 
example, M1 = 15M


, M2 = 5 M


, ΔM = 12 M


and the remnant neutron star 

has a mass     M1' = 3 M


then we find that vc = 0.5 v2.

• Binary star orbits can have v2 large - many hundreds of kilometres per second.

- [from previous page]
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Binaries and SN explosions

• Does the binary remain bound after the explosion?

• When one of the stars in a binary system goes supernova the mass lost 

in to the ISM goes past the non-exploding star in a very short time so we 

can assume the mass lost from the binary is instantaneous. (Gravity from a 

shell of matter is zero inside).

• Let M1 be the initial mass of the exploding star and MC its mass after 

the explosion.

• Let M2 be the mass of the other star.

• Let us assume that the stars are initially in a circular orbit.

• When mass is lost in the explosion the stars will assume a different 

non-circular orbit around one another. If this is parabolic or hyperbolic 

then the binary is no longer bound.

• Let ai and af be the semi-major axes of the orbit before and after the 

explosion respectively.
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Binaries and SN explosions

The reduced mass of the binary after the explosion is given by

The ratio of the binary system’s before and after masses is 

The relative velocity of star 1 with respect to star 2 before the explosion is

*
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Binaries and SN explosions

The total energy of the binary just after the explosion is simply the KE + the 

PE, i.e.

Where Vf is the relative velocity of the system. By setting the total energy = 0 

and eliminating ai by using * we find

In the instant just after the explosion we have Vf = Vi so when the total energy 

is zero (i.e. the system is just unbound) we have =2. When the total energy 

is > 0 the system is unbound and so the binary is disrupted if M > M/2.

In the example we had earlier M = 12M


so more than half the total mass 

was ejected and therefore the binary was disrupted.
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Supernovae in Binary Systems.

• It is also likely that the neutron star or black hole that is created by the 

supernova explosion is given a kick by the explosion (not taken in to account 

in the previous pages). The kick will be due to the explosion not having 

perfect spherical symmetry.

• The disruption of the binary gives us a natural explanation for high velocity 

neutron stars.  We have evidence of relatively high pulsar space velocities 

and we also find that pulsars have an extended distribution with galactic 

latitude.

• It is also a natural explanation for higher velocity normal stars at substantial 

distances from the galactic plane.  We find Type A stars (perfectly normal 

main sequence type stars) moving at velocities even exceeding 400 

kilometres per second.  If they were gravitationally bound this observation 

would be seriously discrepant with estimates of the mass of the Milky Way 

Galaxy.

• Many binary systems remain bound after a supernova.  Therefore we expect a 

population of binary systems with neutron stars or black holes being one of 

the components.
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Gravitational Potentials in Binary Star Systems

• We start by setting up a co-rotating 

coordinate system within which we will 

work out the total potential associated with 

the binary star system.

• The binary system consists of two masses, 

M1 and M2 separated by a distance a, 

rotating in a circular orbit in the xy plane.

• The potential at any point (x,y,z) is φ(x,y,z).

• φ is the sum of the gravitational potential 

due to both stars plus the centrifugal 

potential.  We compute the centrifugal 

potential from the rotation of the system and 

therefore we get that: 

• φ is the effective gravitational potential.

Note that the point m is generally not in the xy 

plane so S1, S2 and r are functions of x, y and z.
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Gravitational Potentials in Binary Star Systems

• We can simply plot out the effective gravitational 
potential along the line connecting the two stars of 
the binary system.

• This is shown in the figure, with the origin as the 
location of the centre of mass.  We see that there are 
points where there is no net force on the test particle 
(dφ/dx = 0).

• These are called the Lagrangian points and are 
marked L1, L2 ,L3.

• These Lagrangian points occur in any binary system 
including, for example, the system comprising the 
Earth and the Moon.

• The L2 point in the Earth-Sun system is a good  
location for space missions which need to avoid the 
light from the Earth.

• This L2 position is about one million miles away 
from Earth. JWST, Planck, Herschel, GAIA, 
Darwin and TPF will orbit the L2 position. 

• SOHO and other solar observatories use the L1 
point.
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Gravitational Potentials in Binary Star Systems

• We can plot out lines of equal effective gravitational 

potential on the XY plane.  We can also have 

equipotential surfaces in 3D space. These are known 

as Roche equipotentials. 

• Close to the individual stars the gravitational 

potential of the star dominates and the equipotentials 

are essentially spheres, just as for single stars.  With 

two stars we have two spheres.

• At the largest radii the individual stars are 

essentially seen as being at a common centre of mass 

and again the equipotential is a single sphere.

• At intermediate distances the equipotentials are 

significantly more complicated.

• These equipotentials are essentially level surfaces 

for binary stars.  If the atmosphere of the star 

extends to a specific equipotential then the envelope 

of the star will assume the shape of that 

equipotential.

• The appearance of the binary star system will 

depend on which equipotential surfaces are filled by 

the star’s atmosphere.

There are 5 Lagrangian points. L1, L2 and 

L3 are saddle points. L4 and L5 are hills.
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Gravitational Potentials in Binary Star Systems
• Binary stars with radii much less than their 

separation are nearly spherical.  These are 
called detached binaries in which the stars 
evolve nearly independently. Most binaries 
are like this even when the stars have 
evolved to be red giants.

• In a close binary system if one star has 
expanded enough to fill the "figure-of-eight" 
contour then some of the gas from its 
atmosphere can escape through the inner 
Lagrangian point L1 and be drawn on to the 
second star.  These teardrop shaped regions 
bounded by this particular equipotential are 
called Roche lobes.

• These are called semi-detached binaries, 
and a star that fills its Roche lobe and loses 
mass is usually called the secondary star and 
its companion the primary star.  The primary 
star may be either more or less massive than 
the secondary star.

• If both stars’ atmospheres fill (or indeed 
overfill) their Roche lobes then the two stars 
will share a common atmosphere bounded 
by a dumbbell shaped equipotential surface.  
These systems are called contact binaries.
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Binary Stars: Mass Transfer

• When a star evolves away from the main sequence the radius increases substantially.  For 
example, the sun will evolve into a red giant eventually.

• If the star is in a binary system it can expand to fill its Roche lobe.  This allows mass transfer 
towards the companion to take place through the inner Lagrangian point L1.

• This lets us understand the "Algol Paradox".  Algol is a naked eye, double lined eclipsing binary.  
The masses and orbits of the components stars are well-known.  

• They are:

B8 main sequence star with M = 3.3 M


, Teff = 12000K

K2 sub-giant star with M= 0.8 M


, Teff = 4900K

• The rotation period is approximately 29 days.

• We know that the lifetime on the main sequence of the star goes as ~ 1/M2.5

(luminosity ~ M3.5, E ~ M).

• How can a more massive star still be on the main sequence while the low mass star has begun to 
evolve off the main sequence?

• It is because Algol is part of a binary system in which mass transfer is occurring.  The stars are 
very close and the K-giant star is dumping mass onto the B-star changing its properties. Before 
this mass exchange started the K-giant star was the more massive star which is why it became a 
giant first.

• In fact Algol is part of a triple system with the outer binary period being approximately 680 
days.  The third star is type A5V, M = 1.7 M


and Teff = 8500K.  It is far enough away that it is 

outside the complex gravitational potential of the compact pair.
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The Algol System
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Mass Transfer: Angular Momentum Conservation

• We need to look carefully at the consequences 

of mass transfer on the behaviour of the binary 

system.  

• We work out the total angular momentum, J, 

neglecting the rotational angular momentum of 

the individual stars.  This gives us:

(Assume that angular momentum is conserved

and that there is no mass loss from the system)

• We can work out the change in total angular 

momentum by differentiating [1].

• P  -1

• Kepler's third law gives us P  r3/2

• substitute this into the expression for the change 

in angular momentum (=0) and we get:

• This allows us to relate the individual stellar 

masses and the rate of change of the secondary 

star mass to the period and change in period.

 

 
 

 

 
 

MP
P

P

MM

MMM

r

r

P

P

MMG

r
P

MM

rMMrrMMrMMrMM
J

M

J

r
MM

MM
J

MMM

rrr

rMrM

rMrMJ

tot

tot
























































,
3

.
2

3
,

4

2

0

0

1-      .

21

211

21

32
2

21

2

2121

2

21

2

21

2

21

21

21

21

2211

2

22

2

11





13

25

Mass Transfer: Angular Momentum Conservation

• If the star M1 is losing mass and M1 <  M2 then the orbital period and the orbital 

radius will increase. (i.e. when the less massive star loses mass the period and 

radius increase).

• Alternatively if M1 > M2, then the orbital period and the orbital radius will 

decrease. (i.e. when the more massive star loses mass the period and radius 

decrease).

• In the first case where the orbital period is increasing, the mass transfer is stable. 

However if the orbital period and radius are decreasing then the mass transfer 

becomes unstable.

• There is a form of positive feedback: as the orbit shrinks, the mass transfer 

increases making the orbital shrinkage more acute and so the situation is 

unstable.

• These effects will produce quite significant changes to the period of the orbit and 

to the masses of the stars involved.

• For pairs of normal stars with M1 > M2, and remembering that the more massive 

star will evolve fastest, we get rapid transfer of mass until M1 ~ M2, ,where a 

more stable situation will be reached.
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Mass Transfer: Accretion

• What happens when the material from star 1 flows, through this mechanism of 
accretion, onto the surface of star 2 (with radius = R2) and the energy of the 
incoming material is thermalised?

• The energy supply ~ PE ~ GM2/R2 per unit mass, and                                                  

• the luminosity ~ GM2(dM/dt)/R2 ~ 4πσR2
2 T4

• which is essentially black body radiation from the surface of the second star.

• If the situation leads to accretion onto a relatively normal star with R ~ R


, or 
even onto a white dwarf, the energy liberated is not particularly high.

• However for small radii, such as a neutron star where R ~ 104 m, and M ~ 1.4 
M


then we find that > 20% of the rest mass energy is liberated as the material 
falls onto the surface of the neutron star.  

• This is extremely efficient.  With nuclear fusion processes we only get about 1% 
of the rest mass converted into energy.

• In addition, the luminosity ~ GM (dM/dt)/R ~ 4πσR2 T4 will be very large for a 
significant (dM/dt).  As the radius is tiny we get very high effective temperatures 
and therefore a great deal of this energy is emitted in the x-ray region of the 
spectrum.
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Accretion: The Eddington Limit

• Material is accreted onto the surface of the star and, on impact, will 
generate a luminosity L.

• The energy flux at a radius r is given by S = L/4πr2 (the units are      
J s-1m-2).

• The protons and the electrons in the infalling material present a 
cross-section to the photons.  The classical radius of the electron is 
the Thompson cross-section = 6.7x10-29 m2.

• The cross-section provided by the electrons completely dominates as 
the cross-section is inversely proportional to the square of the 
particle mass.

• However the Coulomb attraction between the electrons and the 
protons means the protons get dragged along by the electrons.

• There is essentially an outward radial force on the electrons which is 
equal to the rate at which the electrons absorb momentum from the 
photons.

28

Accretion: The Eddington Limit

• Force on an electron = (photon energy per sec)/c = σT.S/c = LσT/(4πr2c)

• so the net inward force on
an electron is given by:

• The Eddington luminosity is the luminosity where the inflow and the 
outflow are in balance i.e. where this expression (force) is zero.

• This gives us the Eddington luminosity, Ledd,: the maximum luminosity 
for accretion.

• For a given observed luminosity then the assumption that L = Ledd gives a 
lower limit to the mass of the accreting object.

• If we imagine a neutron star with M = 3M


, and R = 1.4x104m then we 
find that GM/R ~ 2.9x1016 Jkg-1, Ledd = 3.9x1031 W. The maximum 
accretion rate is then ~ 2.2x10-8 M


/year. (= Ledd/[GM/R])

• In this case the luminosity corresponding to the Eddington limit is  Ledd ~ 
105 L


.
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Accretion: With Low Angular Momentum

• If we have a situation where the accretion occurs with little angular 
momentum then the material which might start as a stellar wind from 
the companion star free-falls onto the surface of the accreting object.  

• The velocity at impact will be v2 ~ 2GM/r where r is the distance 
from which the material falls.

• If the material falls on to a compact object the rapid deceleration at 
the surface of the star produces a shock and a very high temperature.

• At the surface of the star there will be a layer of material.  It is this 
material which will be emitting the radiation and by cooling 
eventually will settle onto the surface.

• In the case of a black hole, however, the material can cross the event 
horizon without producing significant radiation.

30

Accretion: With Significant Angular Momentum

• In most cases the angular momentum of the 

material that is being accreted is very 

important.

• For binary stars the mass transfer is via the 

Lagrangian point ,L1.  The angular 

momentum is given by m(rL1 - rcom)2 Ω.

• If the components masses are equal then 

the centre of mass and the Lagrangian 

point L1 coincide and therefore there is 

zero angular momentum transferred.

• However, in most cases the two masses are 

not identical and the angular momentum 

can be large and the angular momentum 

transfer very significant.

• When angular momentum is involved, the 

accreted material spins into the preferred 

orbital plane and forms an accretion disk.
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Accretion: With Significant Angular Momentum

An artists impression of a semi-detached binary star. Matter is transferred towards 

the compact star where viscosity allows matter to spiral slowly into the central 

compact object.  The release of orbital energy in this way heats up the disk and 

causes it to radiate.  

In some stars (cataclysmic variables) the shock impact heating at the hot spot is 

observable.

32

Accretion: With Significant Angular Momentum

The figure shows a semi-detached binary with an accretion disk around the primary 

star and a hot spot with mass streaming through the inner Lagrangian point to 

impact the disk.  Inside the disk, viscosity allows matter to spiral slowly into the 

central compact object.  The release of orbital energy in this way heats up the disk 

and causes it to radiate, often into hard X-ray bands.

rL1

rCOM
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Accretion Discs: Simple Model

• We will use a very simple model for the accretion 
disk: we will assume it is a steady state disk with 
constant mass transfer rates, with mass entering at the 
outer boundary in time t.  The material leaving the 
inner boundary at the stellar surface is then (dM/dt)t.

• The disk is made up of annuli, of radius r and 
thickness dr.  The mass of the central star is M. The 
orbital energy of the mass m that enters the annulus at 
a distance r is then E= -GMm/2r.

• Matter spirals inwards so that as the radius decreases 
the gravitational energy also decreases and the energy 
will be liberated as radiation.

• Conserve energy within one annulus.

• If the disk radiates as a black body then (and 
remembering it is a disc and not a sphere) 

dL = 4π rdr σ T4 and we find that:

• Where T(r) is normalised to the radius R of the 
accreting object.
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Accretion Discs: Simple Model

• For an individual ring we work things out as follows:

• We integrate to give the total luminosity of the ring between r = R and 

infinity and we find that:

• This is half the energy that you get from dropping material directly onto the 

central object (material is orbiting – not freefalling).  The remainder of the 

energy goes into the boundary layer between the disk and the star and is 

deposited onto the star.

• We now have estimates of the radial temperature dependence and the 

luminosity of the disk using a very simple model.
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Accretion Discs: Simple Model

36

Z Chamaeleontis: Accreting White Dwarf

• Z Cha is one of approximately 400 dwarf novae that are known.  

• It is a very close binary star consisting of a 0.85 M


white dwarf, radius           
R = 9.5x10-3 R


and an M6 main sequence companion of 0.17 M


. The less 

massive star is losing mass and the period and radius increase. 

• The period is 6451 seconds and therefore the separation of the stars is                
a ~ 5.2x108m or ~0.75 R


.

• The luminosity of the disk = GM(dM/dt)/2R ~ 7x1026 W and the calculated 
mass loss rate is therefore (dM/dt) = 1.3x10-9 M


yr-1.

• It is a "cataclysmic binary".

• It experiences a sudden increase in the rate of mass loss through the disk.  This 
causes an increasing luminosity by a factor of 10-200 for between five and 20 
days.  The periodic outbursts are separated by an interval of 30-300 days.

(Graphic by Dale 

Bryner)
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Accretion onto Magnetic Stars

• Most stars have weak magnetic fields.  When these stars collapse to form a 
white dwarf or a neutron star then the magnetic fields become very large.

• The material that is accreted onto a star is very hot and therefore fully 
ionised.  As such it is a conducting plasma and the magnetic field has a 
considerable influence on the way that the material is accreted onto the 
surface of the compact star.

• Because of its internal magnetic field, white dwarfs and neutron stars are 
effectively giant magnetic dipoles with B  R-3 (i.e. the field strength varies 
inversely with the cube of the distance from the centre of the star).

• This dipole field dependence means that the magnetic field is very strong at 
small radii.

• As with all charged material it has a strong preference to travel along 
magnetic field lines rather than to cross them.  This means that the magnetic 
field channels accreting material along the field lines and that material is 
drawn down onto the magnetic poles of the star.

• We can get some estimate as to when the magnetic field becomes important.
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Accretion onto Magnetic Stars

• The first term here is the energy density 
(the magnetic pressure). The second term 
is the kinetic energy density or ram 
pressure which we can write (third term) 
in terms of the accretion rate, the mass 
and the radius.

• The magnetic dipole moment MD is given 
by:  (just as for pulsars).

• And we can use this to rewrite the 
magnetic energy density as

• Equate the two expressions and solve for 
R to derive the radius, Rm, at which the 
magnetic pressure equals the ram 
pressure.

• We ignore constants and note that (for 
accretion) L is proportional to (dM/dt):

• Rm is the radius within which the 
magnetic field dominates the motion of 
the accreting material.
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Accretion onto Magnetic Stars

• White dwarfs where the B field 

is very strong and the accretion 

is channelled via the stellar 

poles are known as Polars.

40

Schematic of a 

POLAR
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Accretion onto Magnetic Stars

• If the accreting material forms a disc around the star then angular momentum can be 

transferred from the disc to the accreting object.

• If the disc has a significant amount of angular momentum then it is possible to “spin-up” the 

accreting object (i.e. the central star).

• LHS of [1] is the gain in angular momentum of 

the star. RHS of [1] is the gain in angular 

momentum of the disc due to material being 

injected into it at a particular radius RA with a 

Keplerian velocity. (We assume the angular 

momentum of the disc is constant as is the total 

angular momentum).

• We can assume that the star’s moment of inertia, 

I, is approximately constant because the mass 

accreted is small compared to the mass of the star.

• Getting d/dt in terms of the period P and 

substitute into [1] we get [2].

• [2] tells us that if the accretion rate is positive 

then the star spins faster.

• Letting RA equal to the accretion radius for a 

magnetic star RM and LdM/dt we get [3].
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Accretion onto Magnetic Stars

• This plot shows good 

agreement between equation 

[3] and observations of spin-

up rates for neutron stars 

(pulsars). 

• With white dwarfs the fields 

are too weak, and the 

moments of inertia, I,  too 

large for useful observations 

to be possible
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The Binary Star Zoo

• There are many binary star types.

• The precursor of a semi-detached binary is a detached binary with two 
main sequence stars.

• The components are not compact and therefore the temperature of the 
accreted material is low so the luminosity that can be created by 
accretion is not particularly high.  However very large masses can be 
transferred.  This explains the "Algol paradox".

• This configuration is the precursor of later evolution where we have:

1. Cataclysmic variable binaries where one of the stars is a white 

dwarf.

2. Low mass x-ray binaries: a neutron star or a black hole with a 

low mass companion

3. High mass x-ray binaries: a neutron star or black hole with a 

high mass companion.

44

Cataclysmic variables: Classical Novae

• Here a white dwarf accretes material with high mass accretion rates, typically in the range from 

10-9 to 10-8 M


yr-1.

• These objects exhibit massive outbursts in the range of 5-20 magnitudes (102 to 108 change in 

luminosity) though 10-12 magnitudes (factors of 104-105) are more typical.  This gives 

luminosities up to 105L


.

• There is a rapid rise in luminosity over a few days and a much lower decline, typically over a few 

months. (Fast or slow subclasses depending on decline rate)

• We also see in the spectrum of these objects the ejection of 10-4 to 10-5 M


of material at 

velocities in the range of 200-2000 kilometres per second.
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Cataclysmic Variables: Classical Novae

• Most of the material accreted onto the surface of the white dwarf is hydrogen.  
Eventually it accumulates on the surface of the white dwarf and mixes with C, N, 
O from the white dwarf.

• In the white dwarf interior, degeneracy pressure dominates and the temperature is 
very high, perhaps 2x106 K.

• As the material builds up on the surface eventually the bottom of the layer is hot 
enough for fusion from H >> He to occur.

• The fusion occurs in degenerate material (P=Pdeg) so the balancing mechanism 
which occurs when P=Pgas (T increases, density decreases, energy generation 
decreases) does not apply and the reaction runs away causing the temperature to 
increase to  T ~ 108K.

• This luminosity then exceeds the Eddington luminosity limit and a large part of the 
shell of accreted material is blown off.

• In between outbursts the white dwarf radiates at a luminosity just below the 
Eddington limit so that the mass of the degenerate material grows.

• The recurrence time is long, ~ 104 - 105 years with an accretion over that period in 
the range of 10-4 to 10-5 M


.

• Eventually perhaps, the mass of the white dwarf will reach the Chandrasekhar 
mass of ~ 1.4 M


and a supernova of Type 1a occurs.
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Cataclysmic Variables: Dwarf Novae

• In the later stages of evolution of low mass 
systems one component evolves to the 
white dwarf stage with a mass between 0.6 
and 0.8 solar masses.

• Material accreted onto the more compact 
object heats up greatly and therefore 
greatly increases its luminosity.

• Within the accretion disk, changes in the 
mass transfer rates produce flares and 
outbursts.  This is what give dwarf novae
their peculiar characteristics.

• Although mass transfer rates can get up to  
10-9 M


yr-1, levels of 10-100 times lower 

are much more usual.

• If the accreting object also has very large 
magnetic fields then the accretion column 
is directed onto the magnetic poles.  These 
are the "Polars".

• The energy for Dwarf Novae comes from 
gravitational energy. Time variation is due 
to instabilities in the accretion disk.

V803 Cen: A Dwarf Nova
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The Binary Stars Zoo: Neutron Star Binaries

• In the case of neutron stars we have a star with a small radius and a 

large mass.

• The gravitational potential energy that is released by accretion is large.  

• This gives us a high temperature and therefore a very large luminosity 

and the strong emission of x-rays and gamma rays.

• The very strong magnetic fields tend to funnel the material onto the 

magnetic poles of the neutron star giving us an x-ray pulsar.

• The accretion disk and the transfer of angular momentum to the 

neutron star spins it up explaining the millisecond pulsars that we 

observe.

• Neutron star binaries are grouped into two classes, low mass x-ray 

binaries (LMXB), and high mass x-ray binaries: HMXB
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The Binary Stars Zoo: Low Mass X-ray Binaries

• The "low mass" refers to the mass of the companion star, which is less than about 
two solar masses.

• K-type main sequence stars are not uncommon.  These have low luminosity and 
may be difficult to detect for distant binaries.

• Periods are generally < 1 day and so they must be close together for mass transfer 
to occur.

• Many of these objects are known via their x-ray emission but remain optically 
unidentified.

• In practice the accretion disk radiation often dominates over the companion star 
but it is the optical companion that is essential to give us the radial velocity 
information we need to be able to understand these objects.

• They are generally distributed in the bulge of our galaxy and in globular clusters.  
This implies that they are all old systems and are associated with population II 
stars.

• Their origins are uncertain: they could be formed by capture or by the collapse of 
a white dwarf.



25

49

The Binary Stars Zoo: Neutron Star Binaries (LMXBs)

• This x-ray image was taken by the 

Chandra satellite in October, 1999.  

• It is an image of the core of M 31, the 

Andromeda galaxy.  This is a big nearby 

spiral galaxy, the nearest proper spiral 

galaxy to our own.

• The many unresolved x-ray sources are a 

population of (mainly) LMXBs.

• This image is taken in multiple energies.  

The blue source indicates a much cooler 

(1,000,000°K) source coincident with the 

centre of the galaxy.  The other colours 

are only intended to show intensity

• This central cooler source is thought to be 

caused by x-rays from matter swirling 

towards the super massive black hole in 

the nucleus of the galaxy.  This black 

hole is thought to be about 30 million 

solar masses in size.
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The Binary Star Zoo: High Mass X-ray Binaries
• These objects are neutron stars that have 

companion stars more massive than ~10 solar 
masses.  These companions are therefore 
supergiants or Be stars.

• Their periods range from 0.2-200 days.

• As objects they are short lived with the lifetime 
in the range of ~ 104 - 105 years, due to the 
lifetime of the companion star.

• Most of them have optically identified 
companion stars because they are very 
luminous.  Spectroscopically they are usually 
single line spectroscopic binaries which gives 
us valuable constraints on the mass of the 
unseen object.

• These objects also pulsate with periods in the 
range of 0.7-900 seconds.  Usually the change 
in period  implies that they are spinning up, 
and the rate of spin up appears to be related to 
their x-ray luminosities.

• These objects show x-ray variability on many timescales.

• This is a ROSAT x-ray image of LMC X-1, the brightest x-ray source in the Large Magellanic 
Cloud.

• The x-ray photons emitted (with a luminosity of about 105 L


due to accretion onto a neutron 
star or black hole) excite the gas clouds in the surrounding interstellar medium.
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The Binary Zoo: X-ray Bursters

• In this case an accreting neutron star builds 

up a surface layer of hydrogen and helium 

which is several metres thick.

• The temperature is high, ~ 3x107 K, and the 

helium layer ignites explosively under the 

degenerate conditions.

• At these temperatures bursts of x-rays of 

typically ~ 20 KeV energy are emitted for 

~20 seconds.

• Each flash involves ~ 1018 kg, and the 

densities are as high as ~ 109 kgm-2.

• The energy in a single flash is ~1032 J, and 

the recurrence time is from 105 to 106

seconds.

• The time averaged luminosity, L ~ 50 L


, 

and the flux in the bursts only accounts for 

about 1% of the total luminosity, although 

when it goes off it is incredibly bright.

• Compare to classical nova: WD and H 

fusion.

•This plot shows observations of an LMXB in the 

galactic centre coincident with an x-ray transient 

source originally seen in 1976.

•There is no optical counterpart but there are 50 

magnitudes of absorption towards the galactic 

centre at optical wavelengths (10-20 transmission!)
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The Binary Pulsar

• We have already seen that there are many binary systems where one component is a 
pulsar.  We can observe the radial velocities of these objects with great accuracy.

• A small fraction show eclipses and therefore we know the angle of inclination and 
therefore get a good mass for the pulsar.  

• In 1974 the binary pulsar PSR B1913+16 was discovered by Hulse & Taylor and this 
led to a Nobel prize in 1993 for both the supervisor and a graduate student (c.f. Bell & 
Hewish).

• The orbital velocity is 300 kms-1 (~ 10-3 c), and the period is about eight hours.  The 
separation of the stars is ~ 7x105 kilometres.

• The orbit is a very eccentric with e ~ 0.62.  The masses of the two stars are very 
similar at 1.44 M


and 1.39 M


.

• The pulsar provides a superb clock and the companion is most likely a neutron star.

• This configuration (two point masses moving at 0.001 c, one with an on-board 
precision clock) gives us a great opportunity to test General Relativity.

• The precession of the orbit is ~ 4.2 degrees per year (compare this with 0.0074 
degrees per year for the planet Mercury).

• We find that the period is decreasing and the separation decreasing.

• The energy loss is ~ 1025 W, and (dP/dt) = -2.4x10-12.
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Stellar Mass Black Holes?

• The more massive core-collapse supernova are thought to produce black holes.

• Are there any binaries where there might be clear evidence of a black hole?

• We expect x-ray binaries to involve accretion onto a compact object.

• We can observe the stellar companion, as a single line spectroscopic binary 
which gives us the orbital period P and vr = v sin(i).

• One possible candidate is Cygnus X-1.  It has P = 5.6 days, v.sin(i) = 70 kms-1.

• The supergiant companion is between 8.5 and 15 M


, and the orbit implies the 
unseen star has a mass > 3.3 M

.  (see mass function earlier).

• The companion is distorted and we can use the photometric variations around 
the orbit to deduce its inclination.

• This suggests that the mass of the unseen star is  ~ 7 M


. Too high to be a 
neutron star.

• However the companion does not fill its Roche lobe implying that there is 
uncertainty in this value.

• Another object, V404 Cygni, is now one of our best recent candidates.

• Its companion is believed to fill the Roche lobe therefore we know the shape of 
the star which give us the system parameters etc. which are well matched by the 
model.

• This implies here that the mass of the unseen object = 12  2 M


. Definitely too 
high to be a neutron star!
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