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CHAPTER A

BASIC PRINCIPLES

A.1 Introduction

Fluid Dynamics concerns itself with the dynamics of liquid, gases and (to some
degree) plasmas. Phenomena considered in fluid dynamics are macroscopic.
We describe a fluid as a continuous medium with well-defined macroscopic
quantities (e.g. density p, pressure p...), even though, at a microscopic level,
the fluid is composed of particles.

Most of the baryonic matter in the Universe can be treated as a fluid.
Fluid dynamics is thus an extremely important topic within astrophysics.
Astrophysical systems can display extremes of density (both low and high) and
temperature beyond those accessible in terrestrial laboratories. In addition,
gravity is often a crucial component of the dynamics in astrophysical systems.
Thus the subject of Astrophysical Fluid Dynamics encompasses but significantly
extends the study of fluids relevant to terrestrial systems and/or engineers.

In the astrophysical context, the liquid state is not very common (examples
are high pressure environments of planetary surfaces and interiors), so our focus
will be on the gas phase. Key difference is that gases are more compressible
than liquids.

Examples (Fluids in the Universe).

— Interiors of stars, white dwarfs, neutron stars;

Interstellar medium (ISM), intergalactic medium (IGM), intracluster
medium (ICM);

— Stellar winds, jets, accretion disks;

Giant planets.

In our discussion, we shall use the concept of a fluid element. This is a
region of fluid that is



A. BASIC PRINCIPLES

(i) Small enough that there are no significant variations of any property ¢
that interests us

q
lregion < lscale ~ W
(ii) Large enough to contain sufficient particles to be considered in the
continuum limit
nl3 > 1

region

where n is the number density of particles.

A.2 Collisional and Collisionless Fluids

In a collisional fluid, any relevant fluid element is large enough such that the
constituent particles know about local conditions through interactions with
each other, i.e.

lregion > A

where A is the mean free path. Particles will then attain a distribution of
velocities that maximises the entropy of the system at a given temperature.
Thus, a collisional fluid at a given density p and temperature 1" will have a
well-defined distribution of particle speeds and hence a well-defined pressure,
p. We can relate p, T and p as equation of state:

p=np(p,T)

In a collisionless fluid, particles do not interact frequently enough to satisfy
lregion = A. So, distribution of particle speeds locally does not correspond
to maximum entropy solution, instead depending on initial conditions and
non-local conditions.

Examples. Collisionless Fluids
— Stars in a galaxy;

— Grains in Saturn’s rings;

Dark matter;
— ICM (transitional from collisional to collisionless)

Example (Expand example of ICM). Treat as fully ionised plasma of H(e™, p).
The mean free path is set by Coulomb collisions and an analysis gives

_ 332(kpT,)%e

N\ = 2 \BBle) €0
© 4r/2ngetIn A



A.2. Collisional and Collisionless Fluids

where

ne = e~ number density

A = ratio of largest to smallest impact parameter

and for T' > 4 x 10° K we have In A ~ 40. So, if T; = T., we have

T, 2 Ne -1
Ae =\ =223k .
e pc<108 K) (10—3 cm_3>

So we have
collisionless

—_——~
Rgalaxy ~ Ae < Reuster ~ 1 Mpc.
—_——

collisional






CHAPTER B

FORMULATION OF THE FLUID
EQUATIONS

B.1 Eulerian vs Lagrangian

Two main frameworks for understanding fluid flow:

(i) Eulerian description — one considers the properties of the fluid measured
in a frame of reference that is fixed in space. So we consider quantities
like

(ii) Lagrangian description — one considers a particular fluid element and
examines the change in the properties of that element. So, the spatial
reference frame is co-moving with the fluid flow.

The Eulerian approach is more useful if the motion of particular fluid
elements is not of interest.

The Lagranian approach is useful if we do care about the passage of given
fluid elements (e.g. gas parcels that are enriched by metals).

These two different pictures lead to very different computational approaches
to fluid dynamics which we will discuss later.

Mathematically, it is straightforward to relate these two pictures. Consider
a quantity @ in a fluid element at position r and time ¢t. At time ¢t + ¢t the
element will be at position r 4+ dr. The change in quantity ) of the fluid

element is

DQ . [Q(r+5r,t+5t)—@(r,t)]

— = lim

Dt 5t—0 ot
but

Q(r +or,t +t) = Q(r,t) + a;f& + 61 - VQ + O(5t%, |0r|?, 5t|or])

SO DQ 90

D = 51»:%0 [82& +—-VQ+ O(dt, |(5r|)]
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which gives us

DQ oQ
——— = — + u-VQ
Dt ot ——
V- NV “convective”
Lagrangian Eulerian derivative
time derivative time derivative

B.2 Kinematics

Kinematics is the study of particle (and fluid element) trajectories.
Streamlines, streaklines and particle paths are field lines resulting from the
velocity vector fields. If the flow is steady with time, they all coincide.

(i) Streamline: families of curves that are instantaneously tangent to the
velocity vector of the flow u(r,t). They show the direction of the fluid

element.

Figure B.1:

Parameterise streamline by label s such that

i
ds
and demand dr/ds || u, we get
dr
— Xu=0
as

r(s)
Streamline
b dy o)
ds’ ds’ ds
de _dy _dz
Uy Uy o,

(ii) Particle paths: trajectories of individual fluid elements given by

dr
dt

u(r,t)

For small time intervals, particle paths follow streamlines since u can be

treated as approximately steady.



B.3. Conservation of Mass

(iii) Streaklines: locus of points of all fluid that have passed through a given
spatial point in the past.
r(t) =ro
for some given ¢ in the past.
We now proceed to discuss the equations that describe the dynamics of a

fluid. These are essentially expressions of the conservation of mass, momentum
and energy.

B.3 Conservation of Mass

Consider a fixed volume V bounded by a surface S. If there are no sources or
sinks of mass within the volume, we can say

rate of change of mass in V = — rate that mass is flowing out across S

Figure B.2: Mass flow of a fluid element

this gives

8/pdV:/pu-dS
\%4 S

ot
-~ /apdvz—/v-(pu)dv
v Ot 1%

= /‘/<g§+v-(pu)>dV:O.

This is true for all volumes V. So we must have

d
8—5 +V.(pu)=0 EULERIAN CONTINUITY EQUATION
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The Lagrangian expression of mass conservation is easily found:

D
fo:%+U-Vp:—v-pu+u-Vp:—pV-u.

Thus we have

D
D—f +pV-u=0 LAGRANGIAN CONTINUITY EQUATION

In an incompressible flow, fluid elements maintain a constant density, i.e.

Dy _

=0.
Dt

We can now see that incompressible flows must be divergence free, V - u = 0.

B.4 Conservation of Momentum

Pressure

Consider only collisional fluids where there are forces within the fluid due
to particle-particle interactions. Thus there can be momentum flux across
surfaces within the fluid even in the absence of bulk flows.

In a fluid with uniform properties, the momentum flux through a surface is
balanced by an equal and opposite momentum flux through the other side of
the surface. Therefore, there is no net acceleration even for non-zero pressure
since pressure is defined as the momentum flux on one side of the surface.

If the particle motions within the fluid are isotropic, the momentum flux
is locally independent of the orientation of the surface and the components
parallel to the surface cancel out. Then, the force acting on one side of surface
element is

dF = pdS

In the more general case, forces across surfaces are not perpendicular to
the surface and we have

dF; =) 04;dS;.
J

where o;; is the stress tensor — the force in direction 7 acting on a surface
with normal along j.

Isotropic pressure in a static fluid corresponds to

Oi5 = p(sij.



B.4. Conservation of Momentum

Momentum Equation for a Fluid

Consider a fluid element that is subject to a gravitational field g and internal
pressure forces. Let the fluid element have volume V and surface S.

ds

g

Figure B.3: A fluid element subject to gravity

Pressure acting on the surface element gives force —p dS. Pressure force on
element projected in direction fi is —pn - dS. So, net pressure force in direction
n is

F.ﬁ:_/pﬁ.dsz—/ V-(pﬁ)dV:—/ﬁ-VpdV.
S 4 \%4

Rate of change of momentum of fluid element in direction f is the total
force in that direction:

D
(/pudV)-ﬁ:—/ﬁ-VpdV+/pg-ﬁdV.
Dt Jyv Vv \%

In limit that [ dV — 0V we have

(pudV)-n=—-0Via-Vp+§Vpg-i

Dt
D D

= Aeu o (pOV) +pV - D%‘ = 6Vh-Vp+dVpg-n
—_———
=0 by mass

conservation

. Du
= ovi - (pm—I—Vp—pg) =0.

This must be true for all n and all §V. So,

pD—lt1 =—-Vp+pg LAGRANGIAN MOMENTUM EQUATION
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or

ou
"ot
Now consider the Eulerian rate of change of momentum density pu and
introduce more compact notation

o (o) = 4l

+p(u-Viu=-Vp+pg EULERIAN MOMENTUM EQUATION

= pOsu; + w;O0p
= —pu;0ju; — 0;pdi; + pgi — u;0;j(pu;)

where we have used notation

and employed summation convention (summation over the repeated indices).
This gives

Or(pui) = =0;( puju;  + Doij ) + pgi = —0joi; + pgi
—~

stress tensor stress tensor
due to bulk flow due to random
‘Ram Pressure’ thermal motions

where we have generalised the stress tensor to include the momentum flux
from the bulk flow,
Oij = p(sij + puu;j.

In component free language we write

d(pu) = =V - (pu®@u+pl) +pg
—_———

flux of
momentum
density

Example (Flow in a pipe in the y-direction).

Figure B.4: Flow in a pipe

10



B.4. Conservation of Momentum

Any surface will experience a momentum flux p due to pressure. Only

surfaces with a normal that has a component parallel to flow will experience
ram pressure.

P 0 0
o =10 p+pu* 0
0 0 P

The remaining equation of fluid dynamics is based on the conservation of
energy. We will defer a discussion of that until later.

11






CHAPTER C

GRAVITATION

C.1 Basics
Define the gravitational potential ¥ s.t. the gravitational acceleration g is
g=-VV¥

If [ is some closed loop, we have

Z{g-dlz/s(VXg)-dS:—/S[Vx(V\I/)]-dS:O

as curl of any gradient is zero. So gravity is a conservative force — the work
done around a closed loop is zero.
As a consequence, the work needed to take a mass from point r to oo is

_/roog.dlz/:oV\I/-dlz\II(OO)—‘I’(P)

which is independent of path.
A particular important case is the gravity of a point mass, which has

GM
U= — if mass at origin
T
GM . . /
— _ﬁ if mass at location r
r—r

For system of point masses we have

GM,
Yy
GM;(r —r})

= g:—V\I/:—Z

r Lt 1

Replacing M; — p;0V; and going to the continuum limit we have
B L r—r ,
g(r) = —G/P(r )m v

13



C. GRAVITATION

Take divergence of both sides

/
. /
-G [ o)V [|r_r,|3]dv
—_————
47 (r—r’)

:—47rG/p (r—r')dv’
= —4nGp(r)

So,

V.g=-V2U = —41Gp PoI1ssoN’s EQUATION

We can also express Poisson’s equation in integral form: for some volume
V bounded by surface S we have

/vaW:—MG/pﬂf
1% 1%

N /gwﬁz—%GM
S

This is useful for calculating g when the mass distribution obeys some
Ssymimetry.

Example (Spherical distribution of mass).

Figure C.1: Spherical distribution of mass

14



C.1. Basics

By symmetry g is radial and |g| is constant over a r = const. shell. So

/g-dS:—47rG M (r)

mass

enclosed
= — 4nr?|g| = —4nGM (r)
GM (r)
= lgl=
T
GM(r) .
g = GO,

Example (Infinite cylindrically symmetric mass).

Figure C.2: Cylindrical distribution of mass

By symmetry, g is uniform and radial on the curved sides of the cylindrical
surface, and is zero on the flat side, then

/g-dS:—47rG/ pdV
\%4

= —27nRIl|g| = —4nGl-  M(r)
——

enclosed mass
per unit length

_26M(R) 4

= g= 7

Example (Infinite planar distribution of mass). Assume infinite and homo-
geneous in z and y, p = p(z).

15



C. GRAVITATION

Figure C.3: Planar distribution of mass

By symmetry, g is in —2 direction and is constant on a z = const. surface.
So, if we also have reflection symmetry about z = 0,

/g-dS:—47rG/ pdV
S \%

= —2|gl|A=—-47rGA | p(z)dz

= g = —47TG2/0 p(z)dz

(For planar distribution of finite height zyax, g is constant for z > zyax.)

Example (Finite axisymmetric disk).

Figure C.4: Finite axisymmetric disk

16



C.2. Potential of a Spherical Mass Distribution

]fg-dsz?
S

No surfaces where g vanishes by symmetry, and no easily determined
surfaces where |g| is a constant. We would need to solve Poisson’s equation
directly, e.g. using separation of variables.

C.2 Potential of a Spherical Mass Distribution

We found that, for a spherical distribution,

G ([T dv
g=-lglt,  lgl= [ dmolrnRar =
r=Jo

dr
\I’:/OG{/ dmp(r )r/zdr}dr

Taking W(oco) = 0 by convention, integrate this by parts:

T To
U =— {G/ 4 p(r)r'? dr'}

—I—/ 0§47T,0(T)7"2 dr
M(
M+/ ArGp(r)rdr

S0,

= U =
where we have made an assumption that M (r)/r — 0 as r — oo.
We find that ¥ is affected by matter outside of r through our choice of

setting ¥ = 0 at infinity. So ¥ # —GM (r)/r unless there is no mass outside
of r.

C.3 Gravitational Potential Energy

For a given system of point masses,

o>

and the energy required to take a unit mass to co is —W. Energy required to
take a system of point masses to oo is

GMM; 1
ZZ — =5 MY,
J

ng i |r]_r2‘

h—m]

where the half is present to avoid double counting pairs.
For a continuum matter distribution,

:;/p(r)\ll r)dV

17



C. GRAVITATION

Specialising to the spherically symmetric case gives
1 o
0= 5/ 4 p(r)r? W (r) dr
0

Integrate by parts, choosing parts u = W¥,dv = 4mpr? so that v =
Jo Ampr'*dr’ = M (r), then

o 0 dw
— M(r)—dr|.
0 /() (T) dT’ T:|

Assuming that we have a finite distribution of mass with a non-singular
behaviour at r = 0, the first term on the RHS (i.e. the boundary term) is zero.
Noting further that

dv  GM(r)

P
we conclude

00 2
Q:—l/ GM@)” 4,
2 Jo r2

Integrate again by parts, choosing u = GM (r)?,dv = 1/r2,

1 1 1 [°1 dM
O =-GM(r)= —7/ —-2GM ——d

2G (r)ro 2 Jo TG drr
—_—

=0

oo M

N Q:—G/ ) ans
0 r

This is equivalent to the assembly of spherical shells of mass, each brought
from oo with potential energy

GM (r)

. dM(r).

C.4 The Virial Theorem

We now come to a powerful result that greatly helps in the understanding of
isolated gravitating systems.

Consider the motion of a cloud of particles (atoms, stars, galaxies...).
Particle with mass m; at r; is acted upon by a force

dZI‘Z'
F=mi e

18



C.4. The Virial Theorem

Consider the 2nd derivative of the scalar moment of inertia, I, = mir?

ldiz(mqa?)fm.i (r. dr,)
2dez Y T e Y e

AT e
dI‘,‘ 2
—r; - F, Y i
e Fieom (dt>

———
2x Kinetic Energy T;

If I =3, m;r? then we can sum the previous equation over all particles to give

1d%1
~C s =N (- Fy) + 2T
7 =2 (ri-F
2 dt ;
—_————
V/, the virial
(R. Clausius)

In the absence of external forces (i.e. an isolated system), we have that
F; = 3> ;Fi; where F;; is the force exerted on the ith particle by the jth
particle. Consider any two particles with m; and m; at r; and r;, Newton’s
3rd Law says
Fij = -Fy

and so their contribution to the virial is Fy; « (r; — r;). We then have
V=2 > Fij-(ri—xj)
1>t

If there are no non-gravitational interactions except for possibly when
r; = r;, all forces other than gravitational can be neglected and

Gm;m;
Fij = _#rij where rij =TI, — I‘j
Ty
Thus we have G
mimj
V=- _—
Z Z ’I”Z'j
1 >0
where each term is the work done to separate each pair of particles to infinity
against gravity.
And so, V = Q and we can use above to write
1d%1
———=2T+Q
2 dt?

If the system is in a steady state (“relaxed”), then I = const. and we can

say
2T +Q =0 THE VIRIAL THEOREM

19



C. GRAVITATION

Here, the kinetic energy T has contributions from local flows and
random/thermal motions.

o gravitational potential sets the “temperature”
Virial theorem = . . .
or velocity dispersion of the system

20



CHAPTER D

EQUATIONS OF STATE AND THE
ENERGY EQUATION

D.1 The Equation of State

In 3-dimensions, the (scalar) equation of mass conservation and the (vector)
equation of momentum conservation can be written as 4 independent scalar
equations. Given appropriate boundary conditions, these must be solved in
order to find the density (scalar field), pressure (scalar field), gravitational
potential (scalar field), and velocity components (3-d vector field); a total of
six degrees of freedom.

To close the system of equations, we need additional information.
Specifically, we need to find relations between ¥, p and the other fluid variables
such as p and u.

U(r) and p are related via Poisson’s equation (and/or we sometimes consider
an externally imposed gravitational potential).

p and the other thermodynamic properties of the system are related by the
equation of state (EoS). This is only valid for collisional fluids.

Most astrophysical fluids are quite dilute (particle separation much larger
than effective particle size) and can be well approximated as ideal gases. The

corresponding EoS is
kp

where p is the mean particle mass in units of the proton mass m,,. (Exceptions,
where significant deviation from ideal gas behaviour occurs, can be found in
high density environments of planets, neutron stars and white dwarfs.)

The ideal gas EoS introduces another scalar field into the description of the
fluid, the temperature T'(r,¢). In general, we need to solve another PDE that
describes heating and cooling processes in order to close the set of equations.
We shall move on to this soon — see “Section D.2 : The Energy Equation”.

However, for special cases, we can relate 1" and p without the need to solve
a separate energy equation. Fluids for which p is only a function of p are

21



D. EQUATIONS OF STATE AND THE ENERGY EQUATION

known as barotropic fluids.

Example (Isothermal case). T is constant so that p o< p. Valid when the fluid
is locally in thermal equilibrium with strong heating and cooling processes
that are in balance.

Example (Adiabatic case). Ideal gas undergoes reversible thermodynamic
changes such that
p=Kp’

where K, ~ are constants.

Derivation. First law of thermodynamics is

dQ - ae +  pdv
R S~~~
heat absorbed by change in 1nterhna1 work done by
unit mass of fluid energy of unit unit mass of fluid
from surronding mass of fluid

Here d is a Pfaffian operator — change in quantity depends on the path
taken through the thermodynamic phase space. For an ideal gas, we can write

p= Il E=E)

where R, is a modified gas constant.
So, first law reads

d
aQ —ngerdv

AT
R.T

=CydT dv
1% +MV

where we define specific heat capacity at constant volume as Cy = d€/dT
and have noted that for unit mass we have p = 1/V.
For a reversible change we have dQ) = 0, so

1
Cy dT + R dV =0
uV
R
= Cyd(InT) + m dInV) =0

= V oc T~ Cvi/Re

= p o T1+CV,U/R*
Cy depends on the number of degrees of freedom with which the gas can
store kinetic energy, f such that

R«
24

Cv=f

22



D.2. The Energy Equation

Monatomic gas has f = 3 = Cy = 3R, /2u; diatomic gas at a fewx100 K
(two rotational modes excited) has f =5 = Cy = 5R./2u.
Returning to the ideal gas law,

p=—pT with p = 1/V for a unit mass of fluid
L
R.T
= pV = *
1

R
= pdV+Vdp:7dT

but

a0 = X ar 4 pav

~dr
d€  R.
= (Z=+=) dar-vd
(dT - % ) b
—_———
specific heat capacity
at constant pressure, Cp

S0,

Cp—Cy = K=
I

Let us define

1=t
v
so that, for the reversible/adiabatic processes discussed above, we have
p oc THHOVH/Re = poc T/ 0=
V oc T-Cvi/Res = Vo T-V0-1)
which we can combine to give
pocp?
O

We say that a fluid element behaves adiabatically if p = Kp? with K =
constant. A fluid is isentropic if all fluid elements behave adiabatically with
the same value of K. K is related to the entropy per unit mass.

D.2 The Energy Equation

In general, the equation of state will not be barotropic and we will need to
solve a separate differential equation which follows the heating and cooling
processes in the gas, the energy equation.

23



D. EQUATIONS OF STATE AND THE ENERGY EQUATION

From the first law of thermodynamics we have

dQ =d&+ pdV in absence of dissipative processes
——
AW=—pdV

SO,
DE _DW , dQ
Dt Dt dt

with
bDw D <1> _pDp
Dt~ Dt p) p?Dt
and
dQ : . .
T = —Qcool rate of cooling per unit mass
therefore,
be_»Dp
Dt p2 Dt cool
The total energy per unit volume is
1
Eplpl+ X+ E)
~~~ potential  internal
kinetic
S0,
DE DpkE Du D¥ pDp . )
Dt Dt p +p<u Dt T Dt 2 Yol
where
DE OF
_— = .VE
ot o Y
Dp
Do PV
Du
Por = —Vp+pg=-Vp—pVV¥
Dv 0w
- Y7 VA,
oo Y
Putting all together
DE E ov
- _Z)zWV-u—-u-Vp—ou-VU el
Dt p Py umurvpTeu TP
+pu- VU — %,OV L chool
oF oV .
= E‘FU'VE:_(E+p)v'u_u'Vp+pE_chool

24



D.3. Heating and Cooling Processes

which gives

oF owv .
B + V. [(FE+pu]= Par PQcool ENERGY EQUATION

In many settings, 0¥ /9t = 0, i.e. ¥ depends on position only. If, further, we
have no cooling (Qcool = 0), then this equation expresses the conservation of
energy in which the Eulerian change in total energy density E is driven by the
divergence of the enthalpy flux (E + p)u.

D.3 Heating and Cooling Processes

The Qoo term in the energy equation describes processes that locally cool
(Qeool > 0) or locally heat (Qeoo1 < 0) the fluid. There are many such processes
and a full discussion of them would be lengthy. Here, we discuss just a small
number of important cases.

(1) Cooling by radiation : energy carried away from fluid by photons.
(i) Energy loss by recombination of an ionized gas (line emission as
electrons cascade down energy levels);

(ii) Energy loss by free-free emission (free electrons accelerated in electric
fields of ions)
Lg x neinl/ 2

(iii) Collisionally-excited atomic line radiation (electron collides with
atom in ground state — produces excited atomic state which returns
to ground state by emitting a photon with energy x)

L. nenione_X/ka/\/f

In cold gas clouds with 7'~ 10* K, H cannot be excited so cooling
occurs through trace species (01, 0T NT).

These are all two-body interactions =- cooling rate per unit volume
proportional to p?. Recalling that Qeool is defined per unit mass, such

processes give Qcool = pf (7).

(2) Heating by cosmic rays : heating and energy transport via high-energy
(often relativistic) particles that are diffusing/streaming through the
fluid.

— High energy particles ionise atoms in fluid, excess energy put into
freed e~ which ends up as heat in fluid.

ionisation rate per unit volume o« CR flux x p

= Qeool ¢ CR flux. (independent of )
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D. EQUATIONS OF STATE AND THE ENERGY EQUATION

Combining these cases, we can parametrise Qcool as:

' = ApT* — H

Qcool 1Y .
radiative ~ CR heating
cooling

where a depends upon the physics of the dominant radiative cooling process.

D.4 Energy Transport Processes

Transport processes move energy through the fluid. Important examples are:

(1) Thermal conduction — transport of thermal energy by diffusion of the
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hot e into cooler regions. Relevant in, for example

— Interiors of white dwarfs;

— Supernova shock fronts;

— ICM plasma.
There is also thermal conduction associated with ions, but it is smaller
than the electron thermal conduction by a factor of \/mien/me ~ 43.

The energy flux per unit area is
Feona = —kVT

where & is thermal conductivity (computed from kinetic theory).

The rate of change of E per unit volume is

—V - Feong = kV2T

Convection — transport of energy due to fluctuating or circulating fluid
flows in presence of entropy gradient. Important in cores of massive stars,
or interiors of some planets, or envelopes of low-mass stars.

Radiation transport — relevant in optically-thick systems (mean free
path of photon much shorter than size of system).

If scattering opacity dominates, then we have radiative diffusion. If €.,q
is the energy density of the radiation field, the radiative flux through the
fluid is

Fraq o —=Verag

The general topic of radiation transport through a fluid flow is very
complex and beyond the scope of this course.



CHAPTER E

HYDROSTATIC EQUILIBRIUM,
ATMOSPHERES AND STARS

We now have the full set of equations describing the dynamics of an ideal
(inviscid, dilute, unmagnetized) non-relativistic fluid:

0
a—f +V.-(pu)=0 CONTINUITY EQUATION
ou
Par +p(u-Viu=—-Vp+pg MOMENTUM EQUATION
V20 = 47Gp PoISSON’S EQUATION
OE ov .
5t V- [(E+p)u] = P~ pQcool  ENERGY EQUATION
1
E=p <2u2 + 0+ 8) DEFN OF TOTAL ENERGY
kp
p= ol EOS FOR IDEAL GAS
wmyp
3p
E= % INTERNAL ENERGY (MONOATOMIC)
p

We proceed to use those equations to explore astrophysically relevant

situations.
This chapter starts with the simplest, but important, case — fluid systems
that are a static equilibrium with pressure forces balancing gravity.

E.1 Hydrostatic Equilibrium

A fluid system is in a state of hydrostatic equilibrium if

0

T

u=_0,
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E. HYDROSTATIC EQUILIBRIUM, ATMOSPHERES AND STARS

Then, continuity equation is trivially satisfied

dp B

Momentum equation gives

ou

p§+p(u-V)u:—Vp—pV\I/:0

resulting in

1
-Vp=-VVU EQUATION OF HYDROSTATIC EQM.
P

Assuming a barotropic equation of state p = p(p), this system of equations can
be solved.

Example (Isothermal atmosphere with constant (externally imposed) g).
Suppose g = —gz. Then equation of hydrostatic equilibrium with isothermal
equation of state reads

1
A Vp= -Vl =i

= Inp = —%+const.

g
= p = po exp <_R Tz)

i.e. exponential atmosphere.

Examples of this is the Earth’s atmosphere: T' ~ 300 K and p ~ 28 =
e-folding ~ 9 km. The highest astronomical observatories are at z ~ 4 km, so
have p and p ~ 60% of sea level.

If system is self-gravitating (rather than having an externally imposed
gravitational field), we also have

V2¥ = 47Gp
This must be solved together with the equation of hydrostatic equilibrium.

Example (Isothermal self-gravitating slab). Consider static, isothermal slab
in z and y which is symmetric about z = 0 (e.g. two clouds collide and generate
a shocked slab of gas between them).

R
Isothermal = p=—pT = p=Ap, A const.
1

also, V = % due to symmetry, p = p(z), ¥ = ¥U(z2).
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E.1. Hydrostatic Equilibrium

Then the equation of hydrostatic equilibrium becomes

1
d aw
= U=-Aln(p/po) + Yo  (po=p(z=0))

= p — poe_(\y_\ll())/A'

Since A « T', we note that this last equation has the form of a Boltzmann
distribution.
Poisson’s equation is
2
d7w (w—wg)/A

@ — 47TGPO€7 .

Let’s change variables to x = —(V—Wg)/A, Z = z1/27Gpy/A so that Poisson’s
equation becomes

((;PZ);:—%X Xz%antZ:()
dy d? d
= (gé)zzcl—llex.
But we have boundary condition dy/dZ =0 when x =0 = C; = 4.

dx dx
A _9./1 = ex = .
XV 2 e = / T 2/dZ
Change variables eX = sin® 0

~ 2cosf

= eXdyx = 2sinf cosfdb or dy = — deé.
sin 0

So, we can evaluate x integral

/ dy 7/ 2 cos 6 do
V1 —eX sin #v/1 — sin”
_/2d0
~J sin@

2
:/2-11” df
2
t
:2lnt+02
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E. HYDROSTATIC EQUILIBRIUM, ATMOSPHERES AND STARS

by setting

t = tan

N D

1
= dt = (1 +t%)de
and by noting
2t

e =

0
inf = 2sin — — =
sin sin 5 cos 5
So, Poisson’s equation becomes
2Int =27 + Cy
Now,x=0at Z=0=0=7/2t=1=Cy=0,s0t=¢”

2% 1
St € 1+e22 coshZ

This gives

2
U — Uy =2AlIncosh ( ijo z)

0o

cosh? <\/ Lipo z)

p:

E.2 Stars as Self-Gravitating Polytropes

Consider a spherically-symmetric self-gravitating system in hydrostatic
equilibrium; from now on we will refer to this as a “star”. We have

Vp=—pVV¥
dp dw .
= el e (spherical polar)

Now, p > 0 within star = p is monotonic function of ¥. Also,

dp _dpd¥ 4T __d
ar  avdr _ Par P= 7w

So p is monotonic function of W.

i.e. non-rotating stars are barotropes!
A barotropic EoS can be written as

p= Kpl-‘rl/n
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E.2. Stars as Self-Gravitating Polytropes

where in general n = n(p). When n = constant, we say that we have a
polytropic FoS and the structure is called a polytrope. Real stars are in fact
well approximated as polytropes.

It is important to note that in general we will have

1
1+ —#7.
n

We only have 1+ 1/n = v (i.e. p o p7) if the star is isentropic (constant
entropy throughout) due to, for example, mixing by convective motions.
Assuming a polytropic EoS, the equation of hydrostatic equilibrium gives

— VU= ;V(Kplﬂ/") = (n+ 1)V (Kp'")

— —(qu_q/)n U = U wh — 0, the surf
p= 1K 7 = ¥ where p = 0, the surface.

If the central density if p. and central potential is ¥., we have
- ()
Pe = n+1]K

- (\I!T—\I/)”
P pe \IJT_\IIC

Feeding this into Poisson’s equation gives

\Ij _\Il n
2 1

VU = 4r _—
GPC (\I/l _\Ilc)

so we can write,

Define 0 = (V7 — W) /(Y7 — ¥.), we then get

AnGp
2 c gn
0=———"—"-20
v Uy — U,
In spherical polars, this becomes
1d (Tzd@> __ AmGre g
r2dr dr U — U,

Defining a scaled radial coordinate & = r\/(47Gp.)/ (¥ — ¥.), we finally get

1
52;5 (5232> S—L LANE-EMDEN EQN. OF INDEX n

The appropriate boundary conditions for the Lane-Emden equation are
0=1,d0/d¢ =0 at £ = 0. (Zero force at £ = 0, enclosed mass — 0 as & — 0.)

The Lane-Emden equation can be solved analytically for n = 0,1 and 5;
otherwise solve numerically.
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E. HYDROSTATIC EQUILIBRIUM, ATMOSPHERES AND STARS

Solutionforn =0

This is a somewhat singular case, physically corresponding to a fluid that is
constant density and incompressible.

612;€<§2d§) =
- &(’52 5) €

de
27:_73_
52

0=—> D

= 6+€+

Weneed =1lat&=0=C=0,D=1.

2
o=1-°
6

For solutions for n =1 or n =5 cases, see the book [PAFD] (section 5.5.2
& 5.5.3).

E.3 Isothermal Spheres (Case n — o)

The isothermal case p = Kp corresponds to n — oco. Let’s combine

dp d\Il
ar - P e PEAL
dw Kdp
= _— ———
dr p dr

= U —V,.=—-Kln(p/pc)

From Poisson’s equation

V20 = 47Gp
1 d [ ,dv
-9 )y
= r2dr (T dr) mGp
Kd [ ,1dp
22 (218 _ura
= r2dr (r pdr) TP

Let p = p.e” ¥ (defining ¥, = 0), and set

then
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E.4. Scaling Relations

with U = d¥/d¢ = 0 at £ = 0.

This replaces the Lane-Emden equation in the case where the system is
isothermal.

At large radii, this has solutions of the form p o 772, so the enclosed mass

o . Thus, the mass of an isothermal sphere of self-gravitating gas tends to oo
as the radius tends to oo. This is why we cannot adopt our usual convention
of defining ¥ = 0 at oo.

So, to be physical, isothermal spheres need to be truncated at some finite
radius. There needs to be some continuing pressure by an external medium.
These are called Bonnor-Ebert spheres, whose density profile depends on &cyt.

E.g. dense gas core in a molecular cloud is well-described by a Bonnor-Ebert
sphere.

E.4 Scaling Relations

In many circumstances, stars behave as polytropes, e.g. fully convective stars
with p — p close to the adiabatic relation. In such a star, assuming monatomic
gas with v = 5/3, we have p = Kp®/3 = n = 3/2.

Consider a set of stars which share a given polytropic index n and a given
adiabat K. They will then form a one-parameter family characterised by their
central density p.

Thus one can find how mass and radius vary as a function of p. and,
eliminating p., obtain scaling relations relating the mass and radius.

All stars with given n have the same (&) since the Lane-Emden equation
does not depend on p.. Recall

Upr — v 1"
n—l—} = U Ve=K(n+1)p"

p:[( 1)K

| 4nGp. B 47eré_1/n
SVwrow T ST\ TERatn

Uy — ¥ "
= _ = 671
p pC ‘I/T—\I/C:| pC

The surface of the polytrope is at £ = &nax defined as location where we
have 0(¢) = 0. Let mmax be the corresponding physical radius. Then the total
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E. HYDROSTATIC EQUILIBRIUM, ATMOSPHERES AND STARS

mass of the polytrope is

Tmax
M = / drr?pdr
0

_ -3/2
47eri 1/n7 3/

= dmpe [ K(1+n)

€max
/ 0me% d¢
0
N——

same for all
polytrope of index n

1(3_

Eliminating p. gives

3—n
M x Ri=n MAss-RADIUS RELATION FOR POLYTROPIC STARS

For v = 5/3,n = 3/2 this gives M oc R™% or R M~1/3_ This suggests
more massive stars have smaller radii.

This relation actually works well for white dwarfs (where the polytropic
EoS is due to e~ degeneracy pressure rather than gas pressure). But for most
main-sequence stars we observe M « R.

Reason is that stars do not share the same polytropic constant K. Let’s
write the temperature at the core in terms of the central density and K

p= Klerl/n X
p=—0pT R
1

Nuclear reactions in the core tend to keep T, similar in the cores of stars
of different masses. So we can say that

K x pgl/n
Substitute this into above expression for mass when n = 3/2 gives
Mocpc_l/2, Rocpc_l/2 = Mx R

When can the K = const. relation be applied? Answer: when new mass is
added to a star adiabatically and the nuclear processes have not had time to
adjust. For Sun we have

— Time to adjust to new hydrostatic equilibrium is
th ~ R/CS ~1 day
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E.4. Scaling Relations

— Time to lose significant energy

GM?
tih ~ Eiot/L ~

~ 30 Myr

So, mass loss/gain is followed by rapid re-adjustment of hydrostatic
equilibrium but true thermal equilibrium is reached after a much longer time.

Example (Spherical rotating star). Spherical rotating star with angular
velocity € gains non-rotating mass. How does €2 evolve?

Conservation of angular momentum gives M R?Q = const. So, if Q —
Q + AQ then

MR?AQ + QA(MR?) =0

AQ  A(MR?)
= = __ v/

Q M R?
But we can use
R oc M(—=m/(B=n)
to say
AQ
=0 (5=3n)/(3-n)
a x —A (M )
LA ()
Q -n
S0,

AV -0 = AQ<0 if 332>0  (eg n=3) SPIN DOowN
AQ>0 if 322 <0 (eg. n=2) SPIN UP

Example (Star in a binary system). Star in a binary system loses mass to its
companion.

Donor star loses mass, AM < 0. So since R o« M1=2)/G=1) the radius
will increase if 1 <n < 3.

So there is the potential for unstable (runaway) mass transfer (need to
look at evolution of the size of the Roche lobe to conclusively decide whether
process is unstable).
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Saddle point

Critical equipotential
of the effective potential
(gravity + centrifugal)

Figure E.1: Roche lobe overflow



CHAPTER F

SOUND WAVES, SUPERSONIC
FLOwS AND SHOCK WAVES

F.1 Sound Waves

We now start discussion of how disturbances can propagate in a fluid. We
begin by talking about sound waves in a uniform medium (no gravity). We
proceed by conducting a first-order perturbation analysis of the fluid equations:

d
l+V-(pu):0

ot

Ju 1

— -Viju=--V

5 T (- Vju VP

The equilibrium around which we will perturb is

p=po (uniform & constant)
D = Po (uniform & constant)
u=0

We consider small perturbations and write in Lagrangian terms (Lagrangian
meaning the change of quantities are for a given fluid element)

p=po+ Ap
p=po+Ap
u=Au

The relation between Lagrangian and Eulerian perturbations is:

op = Ap - £ Vo

~— ~— —_———
Eulerian Lagrangian  Element displacement dot
pert. pert. Gradient of unpert. state

In present example, Vpg = 0 and so dp = Ap. But the distinction between
Lagrangian and Eulerian perturbations will be important for other situations
that we’ll address later.
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F. SoOuNnD WAVES, SUPERSONIC FLOwWS AND SHOCK WAVES

Substitute the perturbations into fluid equations and ignore terms that are
2nd order (or higher) in the perturbed quantities:
Start with continuity equation:

0 (po +Ap) +V - [(po + Ap)Au] =0

ot
0
ap 8Ap 0 2nd order 2nd order
= %+at+w—i—w—i—pov-(Au)+M:0
0
= 8t(Ap)—|—p0V-(Au):0 ® | eq.f.l.1

And similarly, the momentum equation:

0 1
—(Au) = —-—V(A
i (Bw) =~ V(&
A
= Q(Au) _ G V(&) assuming barotropic EoS @ eq.f.1.2
ot dplp=p, PO

Now, take 9/0t of ®:

0? 0
Z (AD) = —pn—[V - (A
52 (A0) = —po7. [V - (Au)]
0
=—poV - {&(Au)}
dp 2
= = VA(Ap).
dplp=po
We get
0*(Ap) _ dp 2
5 = dTo . V< (Ap). WaVE EQUATION

This admits solutions of the form Ap = Apge!(kx—«t)

the wave equation we get

. Substituting into

dp :7.\2
(—iw)?Ap0 = 2 (i)
dplp=p
d
= w? = e k>
dplo=po

The (phase) speed of the wave is v, = w/k, so the sound wave travels at
speed

SOUND SPEED AS THE DERIVATIVE OF p(p)
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F.1. Sound Waves

Consider a 1-D wave and substitute

Ap _ Apoei(kx—wt)

Au = Ayge!Fr=?)
into ®. We get

—iwAp + poikAu =0
_war_ . 4

Cs

= Ay = ——
k po Po

So we learn that
— Fluid velocity and density perturbations are in phase (since Au/Ap € R);

— Disturbance propagates at a much higher speed than that of the individual
fluid elements, provided density perturbations are small, since

A
Aug = csﬂ < ¢y

PO

Sound waves propagate because density perturbations give rise to a pressure
gradient which then causes acceleration of the fluid elements, this induces
further density perturbations, making disturbances propagate.

Sound speed depends on how the pressure forces react to density changes. If
the EoS is “stiff” (i.e. high dp/dp), then restoring force is large and propagation
is rapid.

Examples of dp/dp:

Example (Isothermal case).

=B
* o dplp

In this case, compressions and rarefactions are effective at passing heat to
each other to maintain constant 7'. Then

R

p=—pT
1
R.T
= CsI =
,u
Example (Adiabatic case).
dp
2 —_
“ 7 dolg
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No heat exchange between fluid elements; compressions heat up and
rarefactions cool down from pdV work. So

p=Kp"
d
= £ — rpr’Y_l — E
dpls P
R T
= Cs,A = ¥

Notes about these two examples:
— We see that c1 and ¢ o differ by only /7;

— Thermal behaviour of the perturbations does not have to be the same as
that of the unperturbed structure!

Background is approximately isothermal
E.g. Earth’s atmosphere & bp ) ) v
Sound waves are adiabatic

— Waves for which ¢ is not a function of w are called non-dispersive. The
shape of a wave packet is preserved.

F.2 Sound Waves in a Stratified Atmosphere

We now move to the more subtle problem of sound waves propagating in a
fluid with background structure. For concreteness, let’s consider an isothermal
atmosphere with constant g = —gz.

Horizontally travelling sound waves are unaffected by the (vertical)
structure. So let’s just focus on z-dependent terms, taking u = uz. Continuity
and momentum equations are:

dp

0
— + —(pu) =0 ® | eq.f.2.1

ot 0z

ou ou _ 19p

TR 0 g, ® \ eq.f.2.2
and the equilibrium is
ug =0
polz) = pe=*/, =L
gu
po(z) = L po(2) = e/,

1
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F.2. Sound Waves in a Stratified Atmosphere

Consider a Lagrangian perturbation:

u — Au
po — po + Ap
po — po + Ap.

Remember that 6p = Ap — £ - Vp. So we have
0
op=Ap— €z Po
8 . . . .
5p = Ap — §Z po Eulerian to Lagrangian perturbation relation
ou = Au,

and

o d€ 6£ 2nd order . %
Au = i +/u/V’§" = 5

Substituting perturbed quantltles into the Eulerian continuity equation,

0 0
¢ (Po 1 0p) + 5-[(po + dp)duz] =0

0z
= i?at (po +Ap—¢&, 3/)0) + aa(poAuz) =0 (ignoring 2nd order terms)
2
0

dps  OAp  9E; Ipo /gﬁﬁ/ Jdpo 0Au,
T bt ot ot o [0z T 9r st =0

OAp dpo  Ipo 0Au,
T e Sy T ety =0

€. Ot

= 0Ap+ aAUZ—O ® £.2.3

ot £0 2 = U. eq.T.2.

A similar calculation for the momentum equation gives

0Au, 1 0Ap

ot _% Oz
N 0Au, c 0Ap _0 ® —
ot pyg 0z’ ~ Ip [ eaf2.

To perform this calculation (which we leave as an exercise!), you need a
relation that is obtained from the Lagrangian continuity equation:

D
—p—ka u=>0

Dt
23
A
= p+ <ng ot

=  Ap+pV-£=0.

> At =0 (integrating over a short time At)
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F. SoOuNnD WAVES, SUPERSONIC FLOwWS AND SHOCK WAVES

Let’s now derive the wave equation and dispersion relation. Take 9/0t of
®:

O Ap 0 <8Auz> 0

a2 P9 o
0?Ap o (2 oAp
o Mo (po 5. ) =%

where the last step involved substitution from @. If the medium is isothermal,
then ¢, is independent of z. So,

0?Ap _Pdi 9*Ap +mﬁ%3Ap _0

2 2 -

ot pg Oz p’g 0z 0z

9?Ap 2 0?Ap é% 0Ap

ot? “ 022 po 0z 0z

|\ ——

normal sound wave equation  gxtra piece associated
with stratification

Now,

0 0 /. _,
5 = 5 (")
~e—z/H

So,
0*Ap B 5 02 Ap B ﬁ@Ap —0
o2~ o2 T H 0z
i(kz—wt)

Look for solutions of the form Ap o e

= —wr =+ 2=

ik
= wi=¢2 (k:2 - > DISPERSION RELATION

and solve the quadratic for k(w):

i w? 1

k= |
2H 2  4H?

Let’s take w € R. We have two cases to examine if we wish to understand the
implications of this dispersion relation.
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F.2. Sound Waves in a Stratified Atmosphere

Casel:w > ¢,/2H

Examine the real and imaginary parts of k:

1
Imk = —
M=o

rer=2/(2)'- (5

So the density perturbation is

i w/cy 2 20w
Ap x e—z/2H6 (i (w/eu)”—(1/2H) t)

) ®

corresponding to
(t) Exponentially decaying amplitude with increasing height;

(1) Wave with phase velocity

2 2

w w 1

=2 K=+/(Z2) - (=
Uph = e \/(cu> <2H>

where vy, is function of w, meaning that the wave is dispersive. Wave
packet consisting of different w’s will change shape as it propagates.

As before, we can relate Au to Ap:

Au, = %E
po k
with
Ap o e=#/2H
po oc e/ H
giving
Au, o e+*/2H Ap  4zm
Po

Thus the perturbed velocity and the fractional density variation both
increase with height. In the absence of dissipation (e.g. viscosity), the kinetic
energy flux (o< ApAu) is conserved and the amplitude of the wave increases
until
Ap N
Po
where the linear treatment breaks down and the sound wave “steepens” into a
shock. So, in the absence of dissipation, an upward propagating sound wave
from a hand clapping would generate shocks in the upper atmosphere!

Au ~ cg,
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F. SoOuNnD WAVES, SUPERSONIC FLOwWS AND SHOCK WAVES

Casell: w < ¢, /2H

In this case, we find that k is purely imaginary. So,
Ap o e|k|zeiwt

This is a non-propagating, evanescent wave. In essence the wave cannot
propagate since the properties of the atmosphere change significantly over one
wavelength, giving rise to reflections.

F.3 Transmission of Sound Waves at Interfaces

Consider two non-dispersive media with a boundary at x = 0. Suppose we
have a sound wave travelling from < 0 to z > 0. Let the incident wave have
unity amplitude (in, say, the density perturbation), and denote by r and t the
amplitude of the reflected and transmitted waves, respectively:

ei(klwfwl t)

SVAVAVAS -
tei(kgx—oJQt)

B VAVEAVES <

,rei(kgivfw;gt)

S YA VAVEAY,

rz=0

Figure F.1: Waves at boundary x =0

At the boundary x = 0, variables must be single valued and the accelerations
are finite, thus oscillates in the second medium must have the same frequency

W] =Wy = w3 = w.
The reflected wave is in the same medium as the incident
ks = —kq. (phase speed reversed)
Amplitude of sound wave continuous at z = 0

14+r=t,
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F.4. Supersonic Fluids and Shocks

and the derivative of the amplitude is continuous at x = 0
ki(1 —1r) = kat.
We can combine these relations to get
2k k1 — ko
Ttk Rtk

From these relations we can see that the reflection/transmission of sound
waves strongly depends on the relative sound speeds in the two media:

(i) If cs2 > 51 = k2 < ki = r > 0, i.e reflected wave in phase with
incident;

(ii) If c52 < ¢5,1 = 7 < 0 = reflected wave is 7 out of phase with incident
wave;

(iii) If c50 K €51 = k2 > k1 = t < 1, i.e. wave almost completely reflected.

F.4 Supersonic Fluids and Shocks

Shocks occur when there are disturbances in the fluid caused by compression
by a large factor, or acceleration to velocities comparable to or exceeding cg
The linear theory applied to sound waves breaks down.

When thinking about the sound speed, recall that the chemical composition

of the fluid matters, ¢ o< p=1/2
¢s inatomic Hydrogen > ¢, indiatomic Nitrogen for given T
n=1 n=28
e.g. ISM e.g. Earth

atmosphere
Disturbances in a fluid always propagate at the sound speed relative to

the fluid itself. Consider an observer at the centre of a spherical disturbance,
watching the fluid flow past is at speed v.

subsonic case supersonic case

Figure F.2: Subsonic flow vs supersonic flow
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F. SoOuNnD WAVES, SUPERSONIC FLOwWS AND SHOCK WAVES

The velocity of the disturbance relative to the observer, v/, is the vector
sum of the fluid velocity and the disturbance velocity relative to the fluid.

— Subsonic case: v’ sweeps 4w steradians;

— Supersonic case: disturbance always to the right. If we continuously
produce a disturbance, the envelope of the disturbances will define a
cone with opening angle a given by

. c
sina = — MacH CONE
v

The ratio of the flow speed to the sound speed is called the Mach number
v

Cs
. 1
sina = —

M

Imagine an obstacle in a supersonic flow — disturbances cannot propagate
upstream from the obstacle so the flow cannot adjust to the presence
of obstacle. The flow properties must change discontinuously once the
obstacle is reached, giving shock!

F.5 The Rankine-Hugoniot Relations

We analyse a shock by applying conservation of mass, momentum and energy
across the shock front.
In the frame of the shock, lets assume following geometry

Y

i L.

P, Pl ——0M — - D2,02

—» W2

-
[
!
|
[
!
|
[
!
|
[
!
U ——— |
[
!
|
[
!

pre-shocked gas post-shocked gas

-—

dx

Figure F.3: Geometry of shock front
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F.5. The Rankine-Hugoniot Relations

Continuity gives

8;) 0 B
or T gp(Pta) =0

0 dz/2
= — dx | + puy
ot de/Q P r

where we have integrated over a small region dz around the shock.

Let’s take dz — 0 and assume that mass does not continually accumulate
at x = 0. Then

0
dz) =0
at (/ P x)
= 1sT RANKINE-HUGONIOT RELATION

Apply similar analysis to the momentum equation:

=0
r=—dx/2

— Pug
r=dx /2

9 o) = — 2 (pugug +p) — 0¥

= — (/ Py dx) = — (puguz +p) + (pugug + p)
ot dz/2 —dz/2

= plu% +p = png + po 2ND R-H RELATION

We note that u, and u. do not change across the shock front (can be
immediately seen by looking at the y- and z-components of the momentum
equation).

Now for the energy equation. Start with the adiabatic case so that the gas
cannot cool and hence we have Qcool = 0. Also take gravitational potential to
have no time-dependence. Then

0

OF
OF v (B +pul — =t o2

oF

N 826(/de>+ (E + pua

= (E1 + p1)ur = (Ea + p2)us

- (E + p)ua:
dz/2

=0
—dz/2

Since F = p (%uQ +E+ \I'>, this becomes

1
5:01“?1’ + p1&1ur + p1Wiug + prug

1
= 5@“3 + p2&auz + paWaus + pous
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But ¥} = ¥y and pju; = pausg, so terms involving W cancel out. We are
left with

—U
P2

1 1
2%+&+@:§@+&+@ 3RD R-H RELATION
P1

For an ideal gas, we have

£=0CyT

C
R. - £— VHP
p=—pT Ri p
C
Y sz
et = G- =
Cp—Cy=—
1
which combine to give
L p . :
&= "1, (internal energy per unit mass)
R4

If we assume that v does not change across the shock (e.g. there are no
disassociation of molecules), the 3rd R-H relation becomes

Ly vy op1 1, Y D2
Ui T o = Uyt
2 y—1pt 2 v—1p2
15 Cgl 1, 022

= Z 5 _Se
DI R e R |

since, for adiabatic case, the sound speed is

o _ Op| _p

2=t
* Oplg P

Using all three R-H relations and after some algebra we get

p2 w1 (vt Dp2+(y—Dm

p1 uz  (Y+Lpi+(y—1)pe

In the limit of strong shocks, p2 > p1, we get

1
p2_ o+l
pr y—1
For v = 5/3, this gives pa = 4p;. So there is a maximum possible density

contrast across an adiabatic shock — with stronger and stronger shocks, the
thermal pressure of the shocked gas increases and prevents further compression.
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F.5. The Rankine-Hugoniot Relations

Note that, since pa > p1, and ps < 4p1, we have

p% 75 p% ie. K 75 Ko
P1 - P2

The gas has jumped adiabats during its passage through the shock. Shocking
the gas produces a non-reversible change, due to viscous processes operating
within shock.

While the R-H conditions are symmetric in the up- and down-stream
quantities, the thermodynamic requirement that entropy increases dictates the
direction of the jump (i.e. a fast/cold upstream flow shocking to produce a
slow/fast downstream flow).

It is interesting that we can derive R-H conditions using the inviscid
equations that do not explicitly include dissipation/entropy-generating terms.

Not all shocks are adiabatic! To consider the other extreme, let’s discuss
isothermal shocks. Here we have QCOO1 # 0 such that the shocked gas cools
to produce To, = T}. Whether a shock is isothermal or adiabatic depends
on whether the “cooling length” is smaller or larger than the system size,
respectively.

TA

=Y

thickness of

shock set by ~— cooling length

viscosity

Figure F.4: Temperature profile through a shock

For isothermal shocks, the first two R-H equations are unchanged:
p1ul = p2u2
p1uf + p1 = pau3 + p2
but the 3rd R-H equation is replaced by
=15
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Now,

R.T
CsI = =  Cs1 = Cs2

n
p 2

So, 2nd R-H equation becomes

p1(uf +c2) = pa(u3 + c3)

2 2
CS CS :
= up + —= =uy + —= (since pju; = paug)
uy u2
L1 1
= Cs | —— — | =u2—u1
Uy U2
Uz — Uy
= 2 = U2 — U1
Uju2
2 _
= Csg = ULU2

Thus we see that

m:w:(mf:Mg
P1 U2 Cs

where M is the Mach number of the upstream flow. So the density compression
can be very large.

Note that since cg = ujug and u; > ¢, (condition for a shock), we must
have ug < ¢s. So flow behind the shock is subsonic. In fact this is always true
for any shock and is necessary to preserve causality (the post shock gas must
know about the shock!).

F.6 Theory of Supernova Explosions

An important application of shock wave theory is to supernova explosions

in the interstellar medium (ISM). A supernova (SN) deposits about 10°! erg

(= 10* J) of energy into the surrounding medium, then shocked medium

expands, sweeps up more gas, and creates large bubbles in the ISM.
Consider following system:

— Uniform density medium with density po;
— Point explosion with energy F;

— Ignore temperature of the ambient ISM (7 = 0), thus no confinement of
explosion by an external pressure.
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F.6. Theory of Supernova Explosions

P1,P1

t>0 <= shock layer
thickness D

Figure F.5: Supernova explosion

Given that Ty = 0, the shock has M — oo. Assuming an adiabatic shock,
we sweep mass into a shell with density p, given by

v+1
P1 = Po
v—1

If all mass is swept up into shell then

4
gpoR?' = dnpiR?D  (assuming D < R)

1 _
= D:—(Ll)R
J\y+1

For v =5/3, we have D ~ 0.08 R which justifies the assumption D < R.
Assume that all gas in the shell moves with a common velocity. In the
frame of a local patch of the shock we have

Figure F.6: Situation seen in shock frame
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and so

PoUp = pP1uU1

-1
= U1:ZBQUQ=:7

u
P1 v+1

0- ©)

Thus, relative to the unshocked gas, the velocity of the shocked gas U is

2u0

U=up—u = ——.
uo Ul 7_%1

Then, the rate of change of momentum of the shocked shell is

d [4r 2UO
= | 2= R3
dt[SpO 7+1]

This momentum gain is provided by pressure acting on the inside surface of
the shell — call this p;,. Let’s make the ansatz that this is related to the
pressure within the shell by

Pin = Qp1,

and we now relate p; and ug using the R-H jump condition: we have

po + Poug =p1+ pﬂﬁ

2
= p1 = poud |1 — pl—u; (since pg = 0 by assumption )
POUH
2 Y .
= poug |1 — assuming a strong shock
POy { poare 1] ( g g )
2 9 ©
= U,
170t

So, equating rate of change of momentum of the shocked shell to the
pressure acting on the inside surface of the shell, we have

d [4m 5 2ug 2
. | 5 =4 in
dt{3p0R7+1] T
= 47 R%ap,
— AxR2 2
TR o PO
= G [R?’uo} = 3aR*u}
d . . .
= ax [R?’R} = 3aR’R? since ug = R
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F.6. Theory of Supernova Explosions

This admits solutions of the form R o t°:

fi(f%bﬁ_l)::3aﬁb(bﬁ_l)2

T @

= b(4b — 1))%”4 = 3ab27 (cancellation justifies assumed form of solution)
1

= 0 (not physical) or 130

=

R x tl/(4—3o¢)’ Up o t(3a—3)/(4—3a) x R3a—3

To determine «, we need to consider energy conservation. For an adiabatic
shock, the explosion energy is conserved and transformed into kinetic and
internal energy:

— Kinetic energy of the shell is
1 4m
-2 R3U2
5 3 Po
— Internal energy per unit mass is
bop
y—=1p
and so the internal energy per unit volume is
1

£=——
pE=—qp

£ =

Since the shell is very thin, it has small volume and so most of the
internal energy is in the central cavity which contains little mass
i 47
Pin ngOé b1

47
Int. E f cavity ~ — R3 =
n nergy ot cavity 3 51 3 51

So, energy conservation says that

1 4r 47 Pl
— . R3U2 7R3
9 3 R
1 4r 2ug \2 A4r 2 1
_ .0 R3 7R3 2
2 3/ <7+1> LR T L v
N—_———
o) ®
A 32F 4 N 2
= o vug | 5 p0 @po ’
37 2" (v +1)? (y+1)(y-1)

from which we conclude that
E x R3u(2) o t(6a=3)/(4=3a)

But E must be conserved. So we need o = 1/2 to remove time dependence of
E. Using a = 1/2 we find

Ro<t2/5, uooct_3/5, ploct_G/5
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Similarity Solutions

The above problem only has 2 parameters, £ and pg. Look at their dimensions

MIL? M
[E] = EvE [po] = I3

These cannot be combined to give quantities with the dimension of length
or time. So, there is no natural length scale or time scale in the problem!
Given some time t, the only way to combine E, py and t to give a length

scale is 15
Et?
Po

We can define a dimensionless distance parameter

5:T:r(m)1/5
A Et?

Then, for any variable in the problem X (r,t), we will have

X = X1 (t)X(¢)

i.e. X is a function of scaled distance £ always has the same shaped scaled
up/down by the time dependence factor Xy ().

So,
OX _ dX 2
or — “lde or |
0X dX; Xd)”(ag

R T

i

£ is neither a Lagrangian or an Eulerian coordinate. It labels a particular
feature in the flow (e.g. shock wave) that can move through the fluid. So we

can write s
FE
Rehock X <) t2/5
Po

Let’s put some numbers in for the case of supernova explosions,

E 1/5
R(t) = & (p) t2/° (we will assume &y ~ 1)
0

E )1/5_2R
Y

In a supernova we have

E~ 10" J =10 erg
po = pism ~ 107! kg m™?
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So similarity solution gives

R~ 0.3t%/° pc

where t is measured in yrs
uo ~ 10°t7%/% km sl}

The original explosion injects the stellar debris at about 10* km s~!. So
the above solution is valid for
t 2100 yr (when ug < win;j)

t <10° yr  (after which energy losses become important)

Structure of the Blast Wave

We can, in principle, write each variable p, p, u, 7 in terms of separated functions
of t and £&. We can then substitute into the Eulerian equation of fluid dynamics
(in spherical coordinates with 9/9¢ = 9/06 = 0, i.e. spherical symmetry).
The result is a set of ODE’s where ¢ is the only dependent variable — the
time dependence cancels out! (Sedov 1946)
E.g. solution for = 7/5:

(=4
—
i
~

Ry
—~
I
~

Figure F.7: Solution for v =17/5

These solutions tell us that

— Most of mass is swept up in a shell just behind the shock (from form of

p);

— Post-shock pressure is indeed a multiple of py, (from form of p justifies
Pin = ap1 assumption);

— Shell material is not really moving at a single velocity, but arguments
above are restored by taking some weighted average (from form of ).
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Breakdown of the Similarity Solution

The self similar solution breaks down when the surrounding medium pressure
po becomes significant, p1 ~ po.
From the strong shock solution, we derived

2 YPo
i, =1

p1 =

v+1 Po
So if p1 ~ py then
2 2 Pocg
U
’Y+1p0 0
= Ug ~ Cg

i.e. shell not moving supersonically anymore.
The blast wave weakens to a sound wave:

P A i

shock
max radius
of cavity

sound
wave

cavity

Po Po

shell

<V
=V

Figure F.8: Blast wave phase vs late phase

As a sound wave, disturbance passes into the undisturbed gas as a mild
compression followed by a rarefaction. After the sound wave passes, gas returns
to the original state.

For SN, the maximum bubble/cavity size is set by the radius when blast
wave becomes sonic and p; ~ pg. We've just shown that this implies

o Y+1,
uONWCS
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F.6. Theory of Supernova Explosions

We showed above that energy conservation gives

_ A |1 0<2u0 )2+ a  2poud
v+1 y—1~v+1

1
it _
W1|104—2

droy o[ 2 1
=S o e
"L+ -1)

— 7R3 2
E R CEREICESY
s (YD1 3E T+1,
= UO — ° 3 ~ Cs
3y —1 dmpo R 27y
———
when blast
wave becomes
sonic and p1~po
47 2 3vy—-1
= E ~ —poR3 5.
3 IOO max 27 ,)/2 _ 1

Internal energy initially contained within Rpyax is

4m Do dm 4 c?
Bt = " R? = TR o
init 3 maxﬁy 1 3 maxpoﬁy(v — 1)

So, when pg ~ p1, we have ¥ ~ FEj,;t. Therefore, blast wave propagates
until the explosion energy is comparable to the internal energy in the sphere!
Some numbers:

— Timescale on which the bubble reaches Ry, is roughly the sound crossing
time

Rmax

Cs

ty ~

For ISM: T' ~ 10* K, p ~ 102! kg m™3, giving

Ruax ~ few x 100 pc
tmax ~ 10 Myr

— SN rate is about 107 Myr~! pc=3. So, over a duration tpay, can find 1
SN in ~ 105 pc3. But

max

4
%R?’ > 10° pc?

so filling factor of SN driven bubbles is > 1. This would seem to suggest
that the entire ISM would be heated to SN to > 105 K. NoT OBSERVED!

We need to account for cooling and the finite height of the Galactic disk
(i.e. bubble “blow out”). After 10° yrs, when R ~ 20 pc, cooling losses
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become important and so the bubble grows more slowly than R o ¢2/5.
Simulations show that R o t%% and Ry., ~ 50 pc, giving filling factor

< 1. Thus, due to cooling, only a small fraction of E is deposited into
ISM.
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CHAPTER G

BERNOULLI’S EQUATION AND
TRANSONIC FLOWS

G.1 Bernoulli’'s Equation

Let’s start with the momentum equation:

1
?;tl—l—(u-V)u——pr—V\Il. () ’ eq.g.1.1
If the fluid is barotropic, then p = p(p) and so
9 / dp _opd [dp_10p
ox) p Ooxdp) p  pozx
1 d
=~  Svp=V ( / p) .
p P
Also, we have the vector identity
1
(u-Vju=V <2u2) —uXx (V xu). (Ex. Sheet 1)
Using these, the momentum equation () becomes
1
(Z:+V(2u2>—uXW:—V[/d§—|—\I/] (k) ’ eq.g.1.2

where we have defined the vorticity:

DEFINITION OF VORTICITY

Now, assume a steady flow (Ou/dt = 0) and take the dot product of ()
with velocity u. Since we have u - (u X w) = 0 always, the result is

1 d
u-V[u2+/p+\If}:0
2 p
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G. BERNOULLI’'S EQUATION AND TRANSONIC FLOWS

This gives us Bernoulli’s Principle: For steady barotropic flows, the
quantity

H = 1u2 + / dp + v
2 p
is constant along a streamline. The quantity H is called Bernoulli’s constant.
If p =0, H = constant is the statement that kinetic 4+ potential energy is
constant along streamlines.
If p # 0, pressure differences accelerate or decelerate the flow as it flows

along the streamline.
Everyday examples of Bernoulli’s equation at work:

Example (the apocryphal Aircraft wing).

A

U2

Figure G.1: Aircraft wing

Uy > U = p1 < py from H
= pressure difference

= lift force.

Of course, this cannot be the whole story of how aircraft wings work or else
inverted flight would be impossible!

Example (Shower curtain).

0
p1 ()(5 P2
00
0
Uy 0() Uy =0
} ¥

Figure G.2: Shower curtain
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Downward flow of air on inside of curtain induced by falling water

= p1 < p2
= curtain blows inwards.

G.2 Rotational and Irrotational Flows

An drrotational flow is one in which V X u = 0 everywhere, i.e. the vorticity
w = 0 everywhere.
For a steady irrotational flow, (xx) gives that

VH =0

so, H = constant everywhere (not just along streamlines).
For a general (not necessarily irrotational or steady state) flow, we have

%‘t‘ — VH+uxw
Take curl:
0
—(VXu)=-V X (VH)+V X (uxw)
ot —— N—————
w =0
ow
= 5 = V X (uxw) HeELMHOLTZ’S EQN.

From Helmholtz’s equation, we observe three results:

(i) If w = 0 initially, it will stay zero thereafter. We will see later that this
is no longer true once we include viscous terms.

(ii) The flux of vorticity through a surface S that moves with the fluid is a

constant, i.e.
D
— -dS=0
Dt /,5' v

Proof. We have

D ow D
— [ w-dS = — -dS —i—/w-—dS
Dt/s s Ot Dt
—_—— ——— —
intrinsic changes in w change in S
caused by flow
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s/

w e vector area of element of this envelope
is

—dtu x dl

e vector area of whole volume is

/dS =0
uot

dS’—dSzét%uxdl

D
= D—tdS:fuxdl

)
c integral around

the edge of dS

Figure G.3: Change of area element with time

So

D
W-—dS:/ w-(uxdl
/s Dt s Jads ( )

:/ w X u-dl
S JodS

= / w X u-dl since “internal loops” cancel out
C

:/SVX(WXu)-dS

D ow

=0 from the
Helmholtz’s eqn.

D
— [ w-dS=0
- Dt/sw

i.e. flux of vorticity is conserved and moves with the fluid. This is Kelvin’s
vorticity theorem.

O]

(iii) For an irrotational flow, the fact that V X u = 0 everywhere implies
that there exists a potential function ®,, such that

u=-Vo,
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G.3. The De Laval Nozzle

If such a flow is also incompressible, then V - u = 0 and so
V2, =0

i.e. can reduce problem of finding velocity field to that of solving Laplace’s
equation.

G.3 The De Laval Nozzle

Consider steady flow in a tube with a variable cross-section A(z);

Figure G.4: Tube with variable cross-section

For a steady flow, mass conservation gives

puA = constant M (mass flow per second)

= Inp+Inu+InA=InM
1
= ;Vp—i—Vlnu—{—VlnA:O
1
= -Vp=—-VIhu—-VInAa
p
and the momentum equation (with no gravity) gives

1
u-Vu=--Vp
p

Let’s further assume a barotropic equation of state. Then

1d
u-Vu= —f—pr
pdp
So, putting these pieces together gives
u-Vu=[Vinu+ VinA] (ei: dp/dp) (1) ‘
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If flow is also irrotational, we have

(u-Vju=V <3u2> = %U2V (ln u2) =u*Vinu
and so, from (}) we have
w*Vinu = [Vinu+ Vin A c?
= (v — A)VInu=c*Vin A
This implies that an extremum of A(z) must correspond to either
(a) Minimum or maximum in u, or

(b) u=cs.

Thus, we see that there is the potential for a transition from subsonic to
supersonic flow at a minimum or maximum of the cross-sectional area of the
tube.

To make progress, we applying Bernoulli’s equation
1, dp . . .
U + [ — = H, constant [no gravity, steady, irrotational]
p

and examine the two standard barotropic cases.

Case l: Isothermal EoS

R.pT
p= P , T = const.
I
/dp_/R*Tdﬂ
p Hop
R.T
= Inp
1
=c2lnp

Suppose that we have a minimum or maximum in A(z) that allows a flow
to have a sonic transition. Let A = A,, at this location.
Then Bernoulli gives
1

1
2u2+c§1np:§c§+c§1np

A=Am

142In (p‘AAmﬂ
p

o uA

— G [1 2 <CsAm>}

where this last step has used mass conservation, i.e. puA = constant. Thus,
given A(z) we can determine u(z) and p(z), i.e. structure of the flow everywhere
subject to given M and cs.

= u? =c?
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G.3. The De Laval Nozzle

Case lI: Polytropic EoS

p= Kp1+1/n

Let’s examine the case where the sonic transition occurs at A = A4,,,. But

now we do not know the sound speed c; since ¢s = ¢5(p) and p varies. We
need to solve for

Ci _ n + 1Kp1/n
n
Now,
[l [l
P dp p
- /KTL—I-lpl/nd,O
n P
— Kn—i'l/pl/n—l dp
n
n
= ncz
Mass conservation:
puA = p cs|  Ap =M
A Am
1 1/2 .
N ) (n—i— K) P B v
Am n Am
N p2H1/n <”+1K> A2 — P2
Am n
SN2 n/(2n+1)
N B M n
Pla An) Kmn+1)

Knowing p 4,,» We can now determine ¢ and Ap,. Bernoulli gives:

1 d
—u? + / & = const.
2 P

SN2
<M> +K(n+1)p"/" =

K 1 1/n
A +K(n+1)p

Am
1
Am

= (z+n) () x o
2 n

This is an implicit equation for the density structure through the flow.

2
Cs

1
2 Am,

1
2
1
2

Am

Am
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General points of physical interpretation:
(u> —A)VInu=c2VIn A
— In subsonic regime u < ¢,

A decrease = V Inu positive

= u accelerates along streamline
e.g. rivers flowing through narrows;
— In supersonic regime u > ¢,

A increases = V Inu positive

= u accelerates along streamline

Gas becomes very compressible. A increases, u increases, p is greatly
reduced. M = Apu constant.

So, a nozzle that gets progressively narrower, reaches a minimum, and then
widens again can be used to accelerate a flow from a subsonic to a supersonic
regime.

Figure G.5: De Laval nozzle

Recall momentum equation:

1_d
(u-Viju= —pr—p = —*Vinp
p dp
(u-Viu=u*Vinu
= wVinu=—c2Vinp

— If u < ¢, VInu > Vlinp, this implies accelerations are important,
pressure or density changes are small — almost incompressible;

— Ifu>>c¢s, VInu < Vlin p, u = constant, pressure changes do not lead to
much acceleration but there is change in p — compressible flow.
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G.4. Spherical Accretion and Winds

G.4 Spherical Accretion and Winds

We find flows with a mathematical structure when we consider steady-state and
spherically-symmetric accretion flows or winds in the gravitational potential of
a central body.

Consider the spherically-symmetric accretion of gas onto a star (described
as a point of mass). We will assume

— gas is at rest at oo (reservior);
— steady state flow;
— barotropic EoS.
Mass conservation gives
puA = constant M
= 42 pu = M,

where, for convenience, we define u to be inward pointing.
Momentum equation gives
du 1dp GM
U— =
dr pdr r2

dr

assuming self-gravity of the accretion gas is negligible.
Now, steady flow must have

d .

@(mM):o

d d d

—1 —1 —Inr? =
= I np+dr nu—i—dr nr 0
= iln ——ilnu—2

ar T PT Tar r

Substitute into () gives

2 M
u2£lnu202 <dlnu+ ) - G—

dr S\ dr r 72
Therefore
d 2¢2 GM
2 2 S
A lnu=25(1-
(u CS)dr n r ( 2621")

There is a critical point in the flow at

_GM

T T 9
S

SONIC POINT
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where u is either a minimum/maximum or there is a sonic transition. This
is called the sonic point, somewhat similar to De Laval nozzle, except no
boundaries/tubes!

Can gain insight into the general structure of such flows by plotting possible
solutions on the (r/rs,u) plane.

uh

,/ SPHERICAL WIND
(WITH u — —u

‘ IN ABOVE)
Co b oy T T TR

: . SPHERICAL
; ACCRETION
SETTLING
Frows
r/Ts

Figure G.6: Plot in (r/rs,u) plane

Back to accretion problem: progress requires the FoS.

Case l: Isothermal EoS

Equation of state is:

R.pT
p= P , T = const.
I
R.T
= Cs = = const.
o
and we know
GM
"s T o2
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G.4. Spherical Accretion and Winds

Need to use Bernoulli’s equation to constrain p and M.

1 d
H = 7u2+/fp+\lf:const.
2 p
——

cZlnp

1 GM 1 GM
= §u2+cglnp—T:§c§+cglnps— -

1 GM 3
= 2u2+czlnp—r_cz<lnps—2)

3 2GM
= u? = 203 [ln <Ps> — ] +
P 2 T

where ps is the density at r = rs.
Now,

as r — 0,u% — 2GM/r, i.e. free-fall;
as 7 — oo and u — 0, p = pge /2, giving

Ps = Poo 63/2

Thus, for a given paso, we know p, and hence M.

M = 47Tr§p5cs
) WG2M2€3/2POO
= M=——
c3
Note.

B . . )
M proportional to M?, more massive stars can accrete much more gas;

— M proportional to 1/¢3, accretion very sensitive to temperature; can
accrete more effectively from a colder medium.

Case lI: Polytropic EoS

Equation of state is:
d
p:Kp1+1/n; /—p:K(n—i-l)pl/":ncg
p
Bernoulli gives

— = 505 + ncg —

1
§u2 +(n+1)Kp/m —

T's
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G. BERNOULLI’'S EQUATION AND TRANSONIC FLOWS

with 7, = GM/(2¢2). Using the mass accretion rate M = 47wr2p,cs we can

then write
( M )1/2 GM
’r‘s = =

AT pscs 2¢2
GM 2/3 47Tps 1/3
- «=(%) (57)
2 M
Combine this with +1
n
¢t =— —Kp"

to get

4/3 2/3
(n—i—l)Kp;/n: <GM) <47T'ps>
n 2 M

- pl/n=2/3 _ ,(3=2m)/3n _ (W)4/3 (4?)2/3 _n
® ® 2 M (n+1)K

GM 4n/(3—2n) An 2n/(3—2n) n 3n/(3—2n)
- (%) G )

Back to Bernoulli:

}u2+(n+1)K,01/”— M =c? (n—3>

2 r s 2

. 2
1 M 3 GM
LM 1K1/”:2( —)
2(47?7”2,0) +(n+1)Kp “\" 2 + r

As r — oo, u — 0, we have

So, finally,

Therefore,
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G.4. Spherical Accretion and Winds

Same functional form as isothermal case, but now an additional coefficient
related to polytropic index.

This is known as Bondi Accretion.

The generalisation to the case of a star accreting from a medium that it is
moving through is called Bondi-Hoyle-Lyttleton Accretion. The result is

(GM)?pes
(2 +2)

where v, is the velocity of gas relative to star at oo.
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CHAPTER H

FLUID INSTABILITIES

Consider a fluid in a steady state (9/0t = 0). Thus it is in a state of
equilibrium.

— If a small perturbation of this configuration grows with time, the
configuration is unstable with respect to those perturbations;

— If a small perturbation decays with time or just oscillates around the
equilibrium configuration, the configuration is stable with respect to
those perturbations.

An awful lot of interesting astrophysics is due to the action of fluid
instabilities!

Examples.

— Convection in stars;

Multiphase nature of the ISM;

Mixing of fluids that have relative motion;
— Turbulence in accretion disks;
— Formation of stars and galaxies.

In this chapter, we discuss some of the most important instabilities.

H.1 Convective Instability

This concerns the stability of a hydrostatic equilibrium. We can gain insight
without doing a full perturbation analysis.
Consider following system:

— Ideal gas in hydrostatic equilibrium;
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H. FLUID INSTABILITIES

— Uniform gravitational field in —2z direction.

Now perturb a fluid element upwards, away from its equilibrium point.

" surrounding
medium

p,p

Figure H.1: Perturbing a fluid element upwards

We assume that any pressure imbalances are quickly removed by acoustic
waves, but that heat exchange takes longer. This implies displaced element
evolves adiabatically with a pressure p’ equal to pressure at new location of
atmosphere.

Since we assume heat transfer is slow, initially perturbations will change
adiabatically. Stability depends on new value of density.

pr <y = perturbed element buoyant
= system unstable;

p* > = perturbed element sinks back
= system stable.

For adiabatic change,

p=Kp . P\
- @)

p/ — Kp*’y p
To first order,
dp
/
= —0
P=prt 42"
dp 1/~
+ 3£0
— p* =) <p dz Z)
p
1d 1/
= (1 + p52>
pdz
~pt L9,
pydz
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H.1. Convective Instability

In surrounding medium,

dp
/

—p+ 4
Pr=rt g

and the system is unstable if p* < p’. So instability needs

d d
+ P s, < P+ P
pydz dz
L rdp_d
pydz dz
= Inp < 4 In
dz b Fydz P
= Inpp™™) <0
dz (lnpp™) <
K
= (ji—z <0 (instability)

So, the system is unstable if the entropy of the atmosphere decreases
with increasing height. This can also be related to temperature and pressure
gradients.

dK d

But
K =pp™7 = (const.)p' T (p=RupT/p)

so,

d d d

&an =(1 —’y)&lnp—i-’y&lnT <0

dT 1\ T'd

T < (1 — ’Y) Ed—i (instability)

Hence, we have the Schwarzschild stability criterion which reads

dT (1 1>po

FE G P

Since hydrostatic equilibrium requires dp/dz < 0, we see that (since v > 1)
— Always stable to convection if d7'/dz > 0;

— Otherwise, can tolerate a negative temperature gradient provided

<(1-2)7
Y/ P

So convective instability develops when T declines too steeply with
increasing height.

dT

dr dp
dz

dz
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H. FLUID INSTABILITIES

Examples (Convectively unstable systems).
— Outer regions of low mass stars;
— Cores of high mass stars.

For stable configurations, we can example the dynamics of atmosphere:
equation of motion is
d2
*752 — _ * /
e g ("= ¢)

small ]2 T 1
= (er;%j déz:g{pd<1>pdp}6z

de? T dz ~v) pdz
d? g [dT 1\ T dp
L= 9| (1222
- az’” T [dz ( 'y> pdz} ¥

So, it is simple harmonic motion with angular frequency N where

dT 1\ T'd e
N2=9 { — (1 — ) p] BRUNT-VAISALA FREQUENCY
T [dz v/) pdz

These oscillations are internal gravity waves.

H.2 Jeans Instability

This concerns the stability of a self-gravitating fluid against gravitational
collapse.
Consider following system:

— Uniform medium initially static;

— Barotropic EoS;

— Gravitational field generated by the medium itself.
So equilibrium is

p = po, const.
p = pp, const.
u=20

and governing equations are

dp B
E—FV-(pu)—O

Ju 1
E-l—(u-V)u——;Vp—V\Il

V20U = 47Gp
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H.2. Jeans Instability

Introduce a perturbation:

p=po+Ap
p=po+Ap
u=Au
U=Vy+ AV

Note. There is an inconsistency between the assumption pg = constant > 0
and the assumption ¥y = const. We proceed anyways — this is the Jeans
swindle (1902). This is closely tied to the fact that it is impossible to
construct a model of a static infinite Universe. A more complete analysis of
perturbations against a background of a (relativistic) homogenous expanding
Universe recovers the same local instability as that found by Jeans, hence
justifying the swindle.

Linearized equations are:

0Ap

—— 4+ poV - (Au) =0 ©) ‘

ot

0Au dp 1 5 V(Ap)

U _ P g(ap) - V(AD) = 22 gaw) @ |

S

ot dp po Po
V(AT) = 41GAp
Look for plane wave solutions

Ap _ plei(k'x—wt)

AT — lIllei(k-x—wt)

Au = uyel&x—wh),

Substitution into the linear equations gives

@ = —wp1 +pok-u; =0
@ = — powuy = —Czkpl — pok Wy
® = — k2\I/1 = 47TG,01.

® © ©

Eliminating u; and ¥y from these

@+ ® = p1w2 = k‘2(p10§ + po‘lfl)
= k2plc§ — 4nGpop1 from ®

= w? = 2 (k2 - 47TG'00) :

s

Introduce the Jeans wavenumber k% = 47Gpg/c? so we have the dispersion
relation

)
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H. FLUID INSTABILITIES

Notes:
— For k> kj, we have normal sound waves w? = c2k?.

— For k =2 kj, we have modified sound waves. Gravity leads to dispersion
of the wave and a slower group velocity.

— For k < kj, w is purely imaginary (for k € R), giving
w = iw, weR

and
ei(k-x—(mf) _ ed)teikx
leading to exponentially growing solution: Gravitational Instability.

The maximum stable wavelength is

2 2
Ay = oI JEANS LENGTH
ky Gpo

The associated mass is
My~ poX3  JEANS MASS
These are central concepts in the theory of
— Star formation (instability of giant molecular clouds);

— Cosmological structure formation (instability of the homogeneous
primordial gas).
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H.3. Rayleigh-Taylor and Kelvin-Helmholtz Instability

H.3 Rayleigh-Taylor and Kelvin-Helmholtz Instability

This concerns the stability of an interface with a discontinuous change in
tangential velocity and/or density.

ZhA zZA

— T
perturbation

Figure H.2: Perturbation of interface of discontinuity

For convenience, let’s assume:

— Constant gravity, ideal fluid;

— Pressure continuous across the interface;

— Incompressible flow V - u = 0;

— Irrotational flow VX u=0=u=-Vo;

— 2D problem (symmetry direction into the page of Fig. H.2).

The momentum equation (for either upper or lower fluid) is

1
@-l-u-Vu:——Vp—i-g
ot P
0P 1, P
B v Al - — £ I v/
R R S
since p=const.
within each fluid
o2 1, p —
o> 1, p
- = — 4+ U=
5 +5u —i—p—i— F(t) () |




H. FLUID INSTABILITIES

where F'(t) is a function that is constant in space but not in time.

Now consider a perturbation at the interface of these two fluids. Let us
study the evolution of the perturbed position of the interface £(z,t).

The velocity potential u = —V®, so if the unperturbed velocities in the
fluids are U and U’ we have

Do = Uz + ¢
Pyp=—-U'r+ ¢
= Vi =V2¢' =0 (since V -u = 0) @

¢ and ¢’ are sourced by displacements of the interface. Consider an element
of the lower fluid that is at the interface. Then

_ D¢
Y
giving
dp ¢ 43
"o Vs

, to first order ®
00 %,y

0z Ot Ox
Now look for plane wave solutions
¢ = Agilha—ot)
¢ = Cellko—wt)+hsz
¢ = (eilko—wt) iz
where extra terms on the exponents k.z and k. z are there to seek solutions

where perturbed potential decays at large |z|.
But we know that

V=0 = -k +k=0
= k. = |k|
so ¢ — 0 as z — —oo0.

V3 =0 = —k+k*=0
k, = —|k|

4

since ¢’ — 0 as z — oo.
For now, let’s stipulate k£ > 0. So

b= Cei(kx—wt)+kz

¢/ _ Clei(kxfwt)sz
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H.3. Rayleigh-Taylor and Kelvin-Helmholtz Instability

From @, we have

—kC = —iwA +iUkA = i(kU — w)A

®
kC' = i(kU' — w)A @

We need one more equation if we're to solve for A, C, C’. We get that from
pressure balance across the interface.

p=—p( ?;erlu +g§>+pF(t)
Y=y (—atl+ Suf +g£> + p'F'(t)

and equality at z = 0:
9¢ 2 , '
p( 9t+7+ f) ( 9t+7+€ (t) ®

K =pF(t) - p'F'(t)

where

The perturbation vanishes for z — 400 at all times, so we can look at
equation (x) for each fluid in the limit |z| — oo, taking limit carefully so that
U terms cancel, to get

1 1
pE(t) = pF'(t) = 5U%p — U™
—_——

conditions at oo
and so a constant

Therefore, K(t) is actually a constant.
Next in our attempt to use ® to match across boundary, we need to
determine u and u’. Now

u=-Vo=-V(-Uz+¢)=Ux—-Vo
2 _ y2 ¢

= u =U"— 2Ua— (dropping 2nd order terms)
x
and similarly
12 — U/2 _ 2U/67d
Ox

So, ® reads

9¢ 5§ _ ;09 _ o _9¢ b _ 0 1 1
p(—atJr/—Uaangf)—p(—at+2}/—U&E+g§>+ pP—3

|

eq.h.3.4

|

|

eq.h.3.5

|

eq.h.3.6




H. FLUID INSTABILITIES

,(_§Cw€f+ﬁ)=#(€$—Ugi+ﬁ>

= piwC — pUikC + pgA = pliwC’' — p'U'ikC’ + p'gA
= p(kU — w)C +ipgA = p (kU — w)C" +ip'gA

Now eliminate C' and C’ from ® and @ to give

p(kU — w)? + p'(kU" — w)? = kg(p — p')

This is the dispersion relation for our system. Let’s now look at some specific
applications.

(A) Surface gravity waves: two fluids at rest initially with p’ < p (i.e. denser
fluid on bottom). The dispersion relation gives

Wp+p') =kglp—p)
2= 97

=
p+p

So, for £k € R, we have that w € R and hence system displays
oscillations/waves. Phase speed is

w gp—p

k k p+ p’ \(,_Z
waves are
dispersive

If p/ < p, then w/k = +/g/k.

Example. Surface waves on ocean.

(B) Static stratified fluid: two fluids at rest initially with p’ > p (i.e. denser
fluid on top). Then
2 _ 900 —=¢)

w
p+p

So, for k € R we have w? < 0 and so w is purely imaginary.

/

. g
= 4iy [ 2
Vkp+p

“
k

s
+
s

The positive root of this gives us exponentially growing solutions. This
is the Rayleigh-Taylor Instability.
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H.4. Thermal Instability

(C) Fluids in motion: two fluids with p > p’ (so stable to Rayleigh-Taylor)
but different velocities non-zero U and U’. Take full dispersion relation:

p(kU = w)? + p'(kU" — w)? = kg(p — p')

divide by k? and solve the quadratic in w/k,

w_pU+pU  Jgp—p pp(U-U)?
ko p+p kp+p  (p+p)

There is instability if

gp—rp  pf'(U-U")?
kp+p (p+p')?

<0 (instability)

If g = 0, then any relative motion gives instability, i.e. Kelvin-Helmholtz
Instability;

If g # 0, then unstable modes are those with

(P> — p')g

i.e. gravity is stabilising influence.

H.4 Thermal Instability

This concerns the stability of a medium in thermal equilibrium (heating =
cooling) to perturbations in temperature. Consider the following system:

— No gravitational field;
— Static thermal equilibrium

u0:0,Q0:O,Vp0:0,Vp0:O where p = Kp”
VKp=0

Let’s start by deriving an alternative form of the energy equation that
involves the entropy-like variable K; this will be well suited to problems of
thermal instability.

p=Kp’ = dp = p"dK + Kvp" tdp

—prdK + 2, © [ eq.n.al
P
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H. FLUID INSTABILITIES

R R R
p=—pT = dp=—"T4dp+
[ 7 7

pdT

R«
:gdp—f——pdT ®) eq.h.4.2
P K

Equate ® and @ to give

p’YdK+’ygdp: de+ 7—\)'*pdT
p p [
= pTdK = (1 —fy)]fp)dp—&- %pdT

=  dK=)p"7(1-7) :;dp—FR*dT

p(l—7)
—dQ
First law of thermodynamics:
d& )
dQ =pdV + —dT, (unit mass)
dT
and so
dQ =pd(1/p) + Cy dT
p Ry .
=—-—=dp— ———dT. since we have (v —1)Cy = R,/
p? n(l =) =1 /

Then we have
dK = —(1 —v)p'77dQ for fluid element

Turn this into Lagrangian energy equation by noting that Q = —dQ /dt,
DK

= (v — 1D
D (y=1Dp7Q
1DK D y
———=—(IhK)=—(—-1)-
1 DK '
——=—(y- 1)@ ENTROPY FORM OF ENERGY EQN ® eq.h.4.3
K Dt 14

This joins our usual continuity and momentum equations

dp
§+V.(pu):0 @ ‘ eq.h.4.4
0
pa—ltl—i—pu-Vu:—Vp @\ eq.h.4.5
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H.4. Thermal Instability

Now we look at thermal stability. Consider small perturbations to the

equilibrium
p— po+Ap
p—po+Ap
u — Au
K — Ko+ AK.
Linearize the equations:
0A
® = a—f+pov-(Au)=0
0Au
® = Po—gr = —V(Ap)
0AK y—1_ .
=— A
® = 5 pr Q,
where we can write ) )
0 0
AO = aQ’ Ap + a—Q Ap
ap Ply
so that
0AK
—— =—-A"Ap— B*A
ot P p
with ) )
A== 5| =73,
Po P, Po
We also have
p=Kp’

= Ap = plAK + ’V%Ap

We seek solutions of the form

so, instability if Re(q) > 0. Substituting into linearized equations gives

©®
O]
®

)

®

=

=
=
=

Ap _ pleik-erqt
Ap _ pleik-erqt
Au = uelkxtat

AK = K elkxtat

gp1 + poik - up =0
gpour = —ikp;

g1 =—-A"p1 — B*py

p1 = po K1+

YPo
— P
Po

dp
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We can combine these to obtain the dispersion relation:
Aq B ¢ po) 1
= et o
k q k po ) Po
- q?’—i—A*png—i—k?’y%q—B*k?pg:O
0

cubic in g, call E(q)

This has at least one real root — system is unstable if that real root is

positive, ¢ > 0.
Now E(00) = 00, E(0) = —B*k?p]. So the system is unstable if B* > 0.

—1 8¢
B =" — oQ >0 (condition for instability)
9l 0
pO p P
S
()|
T2 9Q
= - = 0
p OT )
. 9Q
unstable if a7 <0 FIELD CRITERION
p

The system is always unstable if it’s Field unstable (named after George
Field who wrote the classice paper on thermal instability in 1965).

However, even a Field stable system can be unstable if A* < 0 =
aQ / oT ‘p < 0. From the dispersion relation, we see that this can happen for

long wavelength modes, i.e. £ small. Then
g+ A*p)) =0 = q~ —A"p]
Interpretation:

— Short wavelength perturbations are readily brought into pressure
equilibrium by the action of sound waves, therefore, thermal instability
proceeds at fixed pressure;

— Long wavelength perturbations: there is insufficient time for sound
waves to equalise pressure with surroundings, so they tend to develop at
constant density.
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H.4. Thermal Instability

Example. Let’s assume a specific form for @)

Q=ApT* - H

Ap
i Toc—l - H
Rr.Y

Q| Aup_, o

= R,

p

This is Field unstable, 8@/8T ‘ <0if a < 1.
p

Bremsstrahlung has a = 0.5 = Flield unstable.
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CHAPTER 1

Viscous FLows

Thus far, we have been assuming that changes in the momentum of a fluid
element are due entirely to pressure forces (acting normal to the surface of the
element) or gravity (acting on the bulk).

This assumption is justified in the limit A\ — 0, i.e. the the particles
composing the fluid have vanishingly small collisional mean-free-path.

For finite-A, momentum can diffuse through the fluid. This brings us to a
discussion of wviscosity.

.1 Basics of Viscosity

In a viscous flow, momentum can be transferred if there are velocity differences
between fluid elements.

Continuity equation unchanged

0
57/; + 9i(puj) =0

But momentum equation needs to be changed

0
a(ﬂui) = —0;04j + pgi, g;i = —0;¥

with

/
Oij = puitj +poij — 0y
~—

viscous
stress tensor

As we'll see later, oy
The connection between the viscous stress tensor and the microphysics (i.e.
the mean-free-path) is uncovered by considering a simple linear shear flow:

is related to velocity gradients.
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I. VIscous FLoOwS

JA

\J

Vo

\J

~.Y¥

Figure 1.1: Linear shear flow

Microscopically, thermal/random motion of the particles can allow
momentum to “diffuse” across streamlines. Becomes more important as gas
gets less collisional.

Let’s analyse the microscopic behaviour: assume the typical (thermal)
velocity in j-direction is uj. So the momentum flux associated with this is

pPUU;

i-cpt of momentum
carried in j-direction

Typical thermal velocity is ~ /kT'/m. So, flux of ith-component of momentum
in the upward jth direction is

[ kT
pu; o) —, a~1
m

For the element on the other side of the surface in the j-direction, the
corresponding momentum flux across surface is

. [kT
m

where ] is i-velocity of that element. For a j-separation of 4/ we have

So,
kT

net momentum flux = —p(9;u;)dl\ | —
m

The relevant scale 4l is the mean-free-path

R —

no
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[.2. Navier-Stokes Equation

where o is the collision cross section of the particles. If we treat the particles
as hard spheres of radius a (decent approximation for neutral gas), then

0':7TCL2

So,
kT

m
net momentum flux = —p(9ju;) —— o/ —
pra m

Putting this into momentum equation:

0
—(pus) = —0j(pusuj + pdyj) + GJ{ %\/ka 0jul} + pg;

ot
—_——
=n, shear viscosity

A rigorous derivation shows that, for this hard-sphere model, o = 5,/7/64.
Observations about the shear viscosity:

— 1 is independent of density (a denser gas has more particles to transport
the momentum but the mean-free-path is shorter);

— 7 increases with T
— Isothermal system has 1 = const.

For a fully ionized plasma (e.g. the ICM), the mean-free-path is set by
Coulomb collisions. Then

)\ocTQ, vthocﬁ = nocT5/2.

Thus the viscosity has a stronger temperature dependence than found for
hard-sphere collisions.

.2 Navier-Stokes Equation

The most general form of o}; which is
— Galilean invariant;
— Linear in velocity components;
— Isotropic
is given by
ol =1 <ajui + Ojuj — i&ﬁkuk) + (05 Ok us,

with 1 and ¢ independent of velocity. This is a symmetric tensor which ensures
that there aren’t unbalanced torques on fluid elements.
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I. VIscous FLoOwS

The term associated with 7 relates to momentum transfer in shear flows
(this term has zero trace).

The term associated with ( relates to momentum transfer due to bulk
compression (Oxur = V - u).

Putting this into the momentum equation gives

d(pui)
ot

= — 0j(puiu;) — d;pdi;
2
+ 9; {77 <3jui + Oiuj — 35ijakuk) + C(Sijakuk} + pgi

which we can combine with continuity equation to give
Bui

P <8t + ujé?jui) = — 8jp5ij

2
+ 0; {17 (6juz’ + Oiuj — 35ijakuk) + C5z‘j3kuk] + pgi

This is the general form of the Navier-Stokes equation.
Outside of shocks (¢ ~ 0) and for isothermal fluid ( = constant) we have

ou 1 1
A ou-Vu=-"Vp-Vvi+ 1 |V2u+-V(V-u)
ot p p 3
~—
=v
kinematic
viscosity

.3 Vorticity in Viscous Flows

Start with the Navier-Stokes equation with ( = 0 and 1 = const.. Take the
curl of this, recalling definition of the vorticity w = V X u:

ow
E‘FVX(U'VH)

1 1
=V x (—Vp— v+ 1| v+ -V(V- u)})
P p 3
To tidy up LHS, use the vector identity and definition of vorticity:
1
u-Vu:§Vu2—u>< (V X u)
= V X (u-Vu)=-V X (uxw).
To tidy up RHS, assume a barotropic fluid, p = p(p):
1 1 1
= Vx(pr)—V(p)prerVpr

1
=—-— Vpx Vp
P N—
=0 since surfaces of
constant p and p align
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I.4. Energy Dissipation in Incompressible Viscous Flows

Putting pieces together, we get

ow N2
= a—W—Vx(uxw)—kQVZw
ot P

where, in the last step, we have ignored gradients of v = n/p (so strictly
assumed uniform density). So, vorticity is carried with flow but also diffuses
through flow due to action of vorticity.

.4 Energy Dissipation in Incompressible Viscous
Flows

Viscosity leads to dissipation of kinetic energy into heat — an irreversible
process.

Let’s analyse this in the case of an incompressible flow so that we don’t
need to about about pdV work. Then the total kinetic energy is

1
FEyin = §/pu2 dVv
Let’s consider the rate of change of Ey;, with time
o [1 0
ot (2,0”2) — Yig, (pus)

= —uiﬁj (puiuj) — uic’)jéijp + uiajagj
= —u;0j(puiju;) — u;0ip + 0} (uiogj) — all-j(‘)jui

Look at the first term of RHS:
u; 0 (puiuj) = u; (ujaj(pui) + puiMO)
where last term is zero due to incompressible assumption,
V.-u=0 = Oju; =0

Also note that
1

1 0 1
0; (puj . 2uiui) = ipuiui%'—i- u;0; <2puiui)
= u;u;05(pu;)

1
uiaj(puiuj) == 8]' (puj . 2uluz> .
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0 (1 1

= (pu2> = —0; (puj : 2uiui) — 0i(uip) + pdiu; + 0 (uioy;) — oy;05u;
1

= —0; (pui {2u2 + i} — ujagj) — 07;0ju;.

Integrating over the volume,

2
=2 Zu2av
ot ot )y 2™

1
= —/& <pui [2u2 + ];] — ujagj> dV — /a;jajui dv

1
= —% (pu {2112 + ];} —u -a’) -dS - /a;jajui dv

Energy flux into volume including Rate f)f change Qf E.kin due
work done by viscous forces u-o viscous dissipation

8Ekin7 8/ 1

Let’s take the volume V' to be the whole fluid so that the surface integral
is zero (e.g. v at bounding surface = 0, or v at co = 0).
Then

aEkin
ot

= — agj(?jui dV

1
=3 /ogj (Oju; + Ozuj) dV since ¢’ is symmetric
But o}; = n(0ju; + diuy) for an incompressible fluid. So,

6E‘kin o 1 o N2
T —E/n(ajuer&u]) dV

We see that n needs to be positive in order for us to obey the 2nd law of
thermodynamics.

Note. The course book [pafd]| together with its correction posted on the
course website have adopted a different sign convention, choosing to set

Oij = puity + poij

/
+ Oij
sign
change

2
/
o = — m <8Jul + &-uj — géwﬁkuk — Cél-jf)kuk
sign sign
change change

The alternative convention adopted in these notes is more standard.
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I.5. Viscous Flow through a Pipe

.5 Viscous Flow through a Pipe

Now consider flow through a long pipe with a constant circular cross-section

R

Figure 1.2: A pipe

Assume

— Steady flow with ug = ug = 0, u. # 0;
— Incompressible, uniform density fluid;
— Neglect gravity.

Navier-Stokes equation reads

0

0 o 1 9 1 0
@{—FW— —;Vp—i—u Viu + ng

|

symmetry
steady incompressible
state
2 1
= vV-u=-Vp
)
By symmetry we have

op Op

For the z-component

10p 10 < R 8u2) 1 Ap

B — ——

p 0z ROR OR p
function of function of R only constant, written

z only in terms of global

pressure gradient

Integrating gives

U= — Ap R*+alnR+D
4pvl

where a and b are constants. Apply boundary conditions:
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— At R =0, u finite = a = 0;
— At R = Ro,u =0 (no slip BC at wall).

Ap o 2
= =—(R;— R
Y= pl( 0 )
So velocity profile is parabolic.
The mass flux passing through an annular element 2rRdR is 2mr Rpu dR.

So, the total mass flow rate is

" Ap

m 4
8 vl it

Ro
0= /0 2 puR dR =
Asn — 0,i.e. v — 0, the flow rate — oo (or, in other words, an inviscid flow
can’t be in steady state in this pipe if there is a non-zero pressure gradient).
If Ap increases sufficiently, it becomes unstable and irregular, giving
turbulent motions above critical speed.
The actual transition to turbulence is usually phrased in terms of the

Reynolds number
LV
Re= —
v
where L and V are “characteristic” length and velocity scales of the system.

We have turbulence when
Re > Regrit

1.6 Accretion Disks

Accretion disks are one of the most important applications of the N-S equation
in astrophysics.

Consider some gas flowing towards some central object (star, planet, black
hole...). Almost always, the gas will have significant angular momentum about
that object. If gravitationally bound to the object, the gas will settle into a
plane defined by the mean angular momentum vector. Residual motions in
other directions will be damped out on a free-fall timescale.

The gas will settle into circular orbits — the lowest energy configuration
for a given angular momentum. In the vertical direction (parallel to angular
momentum vector) the system will come into hydrostatic equilibrium with
internal vertical pressure gradient balancing the vertical component of gravity.
In the radial direction (along direction towards central object), the system will
achieve a state where the centripetal force is supplied by gravity and the radial
pressure gradient.

Very important special case is when the disk is “thin”, meaning that scale-
height in vertical direction h is much less than radius r. Then, radial pressure
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|.6. Accretion Disks

gradients are negligible and we can just write

GM GM
2 _
PR="TF = =\
where  is the angular velocity of the flow around the central object. This
means that

— #0 = shear flow

Viscosity will allow angular momentum to be transferred from the fast
moving inner regions to the more slowly moving outer regions. This means
the inner disk fluid elements lose angular momentum. We have

J=R*)=+VGMR per unit mass

meaning that inner disk fluid elements drift inwards.

Ultimately, most of the mass flows inwards; a small amount of the mass
carries all of the angular momentum out to large radius.

Let’s set up a simple model for a geometrically-thin accretion disk. We
assume:

Cylindrical polar coordinates (R, ¢, z);

— Axisymmetric, 9/0¢ = 0;

— Hydrostatic equilibrium in z-direction, u, = 0;
— ug close to Keplerian velocity (i.e. thin disk);
— ug small and set by action of viscosity;

— Bulk viscosity zero.

Continuity equation in cylindrical polars is

Bp 10 a/@/v
ot T Rag ) +M i)

axlsymmetry hydrostatlc eqm.

Define the surface density > by

EE/ pdz

Then, integrating above form of continuity equation over z we have

ox 1 0

— 4+ =—(RXugr) =0 @ eq.i.6.1

ot  ROR
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We can get the same result by thinking of the disk as a set of rings/annuli:

central
object

Figure 1.3: Infinitesimal annulus element of disk

flux out

ate of change .
: 8 flux into
of annulus

of mass in =
annulus
the annulus

- gt(%RARZ) = 27 RY(R)up(R) — 27(R + AR)S(R + AR)up(R + AR)
) (R+ AR)S(R + AR)up(R + AR) — RE(R)ug(R)

= —_— = —
ot AR
[3)3 0 .

= i —@(RZUR) taking AR — 0

Now we look at conservation of angular momentum. Here we use the
ring /annulus approach (but we could also start with the Navier-Stokes equation

in cylindrical polars). Clearly,

rate of change ang. mem. ang. mem. net torque on ring
= of mass — of mass + . .
of ang. mtm. . . . . (viscous, magnetic, etc.)
entering ring leaving ring
= ;(QWRARZRZQ) = f(R)— f(R+AR)+ G(R+ AR) — G(R)
where
f(R) = 2r RXupQR>
and G(R) is torque exerted by disk outside of radius R on the disk inside of
radius R: 90 40
G(R) = 2rRvYRo SR = 27rR31/E@
0 10 10 dQ
—(RY%uy) = ———=(SR? === 233) .i.6.2
gr [2us) =~ g B usur) + 1 og (” dR © [ el
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|.6. Accretion Disks

Now assume Oug/0t = 0 since gas is on Keplerian orbits. Then

Y 19 19 o
— Y R? YR? )
Ruogp + pag H weur) = R8R( iR

9 10 10 o

— up == (RY Y R? YR? >

- uog (Fur) + 5 (SR uun) = R@R( iR

9 wsR 0 10 [ ,d0
N —W+M+ZW8R(%3)_R8R (VER dR)

o .. D ,dQ
= RSupg o (RQ) = 8R< SR dR>
7R (I/ER3%)

= _orN 9/
T TRYZ(R2)

Substitute this into @ and specialise to the case of a Newtonian point source
gravitational field Q = \/GM/R? gives

1/2
9t ROR 8R( vERT)

So the surface density 3(R,t) obeys a diffusion equation.
Note (Notes on accretion disks).

— In general, v = v(R, ) and so this is a non-linear diffusion equation for
Y. Tt reduces to linear if v = v(R);

— Solutions of this equation show that an initial ring of matter will broaden
and then “slump” inwards towards the central object;

Figure 1.4: The viscous evolution of a ring
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— Timescale for evolution is t, where

S 11 1 »
Z O RV2Zy nRpY?2 L2
t, "RR ' R" R?
2
LB BRu o
14 U¢V

where Re is the Reynolds number;

— If viscosity is due to particle thermal motions, typical values would
suggest that Re ~ 10! This means

t, < age of universe

There must be another source of effective viscosity: we now know that
there is an effective viscisty due to MHD turbulence driven by the
magnetorotational instability.

.7 Steady-State, Geometrically-Thin Disks
Consider a steady state such that 9/0t = 0. Then

ox 1 0

— + ==—=(RX =0

or " ror!tHn)

=~  RSup=0=--~

27

where 1 = —27 RYup is the steady state mass inflow rate. Now recall that
0 3dQ
T Ry (R2Q)
m 3 0

-~ oy = SR @(VERW) for Q> = GM/R®

m R*
YX=_—|1-4/—
= v 37T( R)

where we have taken as a boundary condition that v = 0 at R = R,. This
amounts to saying that there are no viscous torques at R = R,. Physically R,
can be:

— Surface of accreting star;

— Innermost circular orbit around a black hole.
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|.7. Steady-State, Geometrically-Thin Disks

Let’s now calculate the viscous dissipation neglecting pdV work and bulk
viscosity. Specifically, we will calculate the viscous dissipation per unit surface
area of the disk:

av
Faiss = — | 05,01 5=t
d / 0%y p AR A

1
= i/n(ajui—i-aiuj'y dz
d0\ 2
_ o ((dil
—/nR (dR) dz

dO\?
= VvXR?(—
VYR (dR)

Combining with our previous result for 3 and recalling that Q2 = GM/R3,

we have
3G M R,
Fiis = ——0 [ 14/ 22
diss 47TR3 ( R )

Note (Notes on dissipation in disk).

— Total energy emitted is

GMnn
2R*

L= / Faiss2rRAR =
Ry

Here, —GM /R, is gravitational potential at R,. Therefore, GMm /R,
is the rate of gravitational energy loss of flow. GM1m /2R, is radiated,
other half stays in flow as kinetic energy and is dissipated in boundary
layer on star, or carried into the black hole;

— At given location far from inner edge (R > R,) we have

3G M

Fiiss = IR

But an elementary estimate based on loss of gravitational potential energy

would give
1 0 (GMm 1 GMri
Faissest = 5555 a5 | = || 5 = 3
’ 2rRAR |OR R 2 AT R
—— y ~—
area of change in grav. half converts
annulus to radiation,

potential of 7

over annulus rest to kinetic

The extra factor of “3” in the correct formula is due to the transport of
energy through the disk by viscous torques.
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Radiation from Steady-State Thin Disks

If disk is optically-thick, all radiation is thermalised and it radiates locally as
a black body

top and
bottom of disk

= Teff =

So, for R>> R, Tug & R~3/4,
The radiation emitted at a frequency f is

o 9k f3
Ff—\/R* §m2ﬁRdR

So, we see that all of the observables from a steady-state disk are
independent of viscosity v (provided it is large enough to provide necessary
angular momentum transport). In order to study/constrain v, we need to
study non-steady disks.
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CHAPTER J

PLASMAS

Plasmas are fluids composed of charged particles, thus, electromagnetic fields
become important for both microphysics and large scale dynamics.

J.1 Magnetohydrodynamic (MHD) Equations

Consider a fully ionised hydrogen plasma, so contains only protons (number
density nt, bulk velocity u™) and electrons (n~,u~). Mass conservation for
each of the proton and electron fluids is

on* +qt
W‘FV'(’HU)—O
%%—V-(n_u_):()

The mass density is p = m*n™ +m™n~ and the center-of-mass velocity is

mTnTut +mn u"
u pr—

mtnt +m n-
So, we can combine these to give

dp

a5 + V. (pu)=0. CONTINUITY EQUATION
The continuity equation is the same as found before.
The charge density is ¢ = nTe™ + n~e” and the current density is

j=e™nTut + e n"u". So, the above information also gives conservation of
charge equation:

0
a—(j +V-.j=0, CHARGE CONSERVATION

When we formulate the momentum equation, we have to consider the
Lorentz force on each particle

F =e(E+ v x B)
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So, for the two species of particles:

Jr
mtnt (é;lt +u- Vu+> =etnT(E+ut xB) - fTVp

mn~ (6; +u- Vu_> =en (E+u xB)—f"Vp

where f¥ is fraction of pressure gradient that accelerates the protons/electrons.
Summing these equations gives

B
p<£4u-V@:wE+ij—vp

Ohm’s law lets us relate j to E and B:
j=0(E+uxB)

where o is the electrical conductivity. This equation is needed to close the set
of equations.
So, recapping the current set of equations

op ,

E_l,_v.(pu):o @ \ eq.j.1.1

Jq . .

5 TVi=0 @ | eq.j.1.2
Ju .

p(at+u-Vu>:qE+J><B—Vp ® ‘ eq.j.1.3

j=o(E+uxB) @ | eq.j.1.4

We need to relate ¢,j, E and B — Maxwell’s equations!
V-B=0

v-E=1
€0
1 OE

VXB=wmj+—5—-

0B
VxE_—E

where we note eoug = 1/c?.

Simplifying MHD

Let us simplify in the case of a non-relativistic, highly conducting plasma.
Suppose fields are varying over length scales [ and timescales 7. Then

(i)
0B E l
= — ~ =~ U

VXE=—-——
ot B T
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(ii)

1 OE L /1N u?
———/|IVXB|l~=5|-] ~5 <1

c? Ot / | | c? (7’> c2

for non-relativistic flows. Therefore, displacement current can be ignored
in non-relativistic MHD:;

(iii) Look at two terms from @:

|qE| E «E/lE (u>2
~N — — ~ ~ j— ]_
ixB| jB " By~ " O <

Therefore, charge neutrality is preserved to a high approximation due
to strength of electrostatic forces. If there is a charge imbalance, it will
oscillate with a characteristic frequency, the plasma frequency

ne2

Wy =
b €0Me

(iv) Neglecting displacement current in relevant Maxwell equation, we get

V X B = pj = poo(E+u x B)

Take curl:

V X (VXB) =pp0(VXE+V X (ux B))
—_——— N~——

oB

— V2B-V(%-B"" 5

0B 1
—— =Vx(uxB)+ —V’B
ot @ — o0
advection of
the field dissipation of
by the flow the field
through the flow

If the fluid is a good conductor, i.e. o is very large, then we can ignore
the diffusion term and we have an equation that is analogous to the
Helmholtz equation/Kelvin’s theorem:

0B

— =V X (uxB

ot ( )
We talk about the “freezing” of the magnetic flux into the plasma. In
the high ¢ limit we must also have

j=o0(E+uxB) is finite

= E+uxB=0 as o — 00
= E-B=0
i.e. ELB
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So, the full set of ideal MHD equations, i.e., equations describing a non-
relativistic, perfectly conducting, charge neutral plasma are:

dp

0
p(u+u-Vu):jXBVp

ot
E+uxB=0
V-B=0 OB

7= B

V.E=0 g =V X (uxB)
V x B = u0j = V X B = puoj
V XxE=— 0B/ot V-B=0
p=Kp’

J.2 The Dynamical Effects of Magnetic Fields

The magnetic force density appearing in the above ideal MHD equations is

1
fnag =j X B=—(VxB)xB
Ho

So using vector identity this is

1 B?
fmag_[ -V |— + (B‘V)B
o 2 ——
magnetic tension
magnetic pressure  term (vanishes for
term with straight field lines)
pmag:B2/2H0

Since there are new force terms in the momentum equation, this will change
the nature of the waves that are possible.

J.3 Waves in Plasmas

We can repeat the perturbation analysis that we conducted for sound waves
but now include the effects of a magnetic field. We will perturb about an
equilibrium consisting of a static (u = 0) plasma with uniform density po,
uniform pressure pg, and uniform magnetic field By.

We start by writing down the governing equations of ideal MHD, assuming
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a barotropic equation of state:

ap B
§+V' (pu) =0

ou
p(at+(u-V)u)
0B

V-B=0
p=p(p)

1

(VxB)xB-Vp
Ho

We now introduce perturbations and linearize the equations:

aép
E‘FPOV‘((SU)—O
odu 1
= = B) x By — ¢?
Pop; MO(VXCS ) X Bo —¢;Vip
B
% _ ¥ x (6u x By) = —By(V - 6u) + (By - V)ou
V.-B=0

We now adopt our usual plane wave form for the perturbations,

5P _ 5plei(k~r—wt)
(SP _ (5plei(k~r—wt)
du = dugetkr—oi)

6B = B, eikr—et),
The continuity equation becomes,

—iwdp + ipok - du =0
= wip = pok - du.

The momentum equation becomes,

—iwpedu = — (k x 6B) x By — ic2dpk
Ho

1
= wpodu = m ([Bo - 6B)k — (Bg - k)oB] + c2dpk.
0

Finally, the flux-freezing (induction) equation becomes,

—iwdB = —iBy(k - du) +i(By - k)ou
= wéB = By(k - du) — (Bp - k)du.

(J.2)
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The full dispersion relation for MHD waves is then derived from eliminating
the perturbation amplitudes from these expressions. Here, we are going to
gain insight for the physics by just focusing on some special cases.

Firstly, we consider the case of modes with wavevectors orthogonal to the
background magnetic field direction, k || Bg. The linearized equations then
become

wdp = pok - du

wpedu = i(BO - oB)k + 2opk
Ho

wéB = By(k - du)

We can immediately notice from the second of these relations that the
velocity perturbations are aligned with the wavevector, du || k, i.e. these
are longitudinal modes. Eliminating §p and B from this set of equations in
favour of du, we get

1
w?podu = —B2(k - Su)k + Zpo(k - du)k
Ko

Take the dot product of this last equation with k and then cancel k - du
throughout (since we know that this must be non-zero since modes are
longitudinal),

k.ZBQ
oo =00 4 2
Ho

B2
= w? = (cg + ) k2

Hopo
w? = (cg + vi) k2,

where we have defined the Alfvén speed,

B2
va =
HopPo

This describes dispersion-free longitudinal waves with a phase speed /2 + v%.
The restoring force comes from both the gas pressure and magnetic pressure
acting in phase. This is known as the fast magnetosonic wave.
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Figure J.1: Fast magnetosonic wave

We now consider the case of modes with k || Bg. The linearized equations
become,

wdp = pok - du
|

wpodu = — [(Bg - 6B)k — Bk 6B] + ¢2dpk
0

wdB = By(k - du) — Bpkdu.

Eliminating dp and dB from this set of equations in favour of du, we get
2 L oo 2
wppdu = —(Bik“du — (Bg - du)Bokk) + 5 (k - ou)k.
Ho

There are actually two distinct wave modes wrapped up in these expression, a
longitudinal mode and a transverse mode. To extract the longitudinal mode,
take the dot product with k

1
w?po(k - du) = M—(ng:Q(k -6u) — (Bg - 6u) Bok?) + c2(k - du)k?
0
and cancel factor of k - Ju to get
= w? = 2k2.

These are simply sound waves, with the magnetic field not playing a role since
the velocity perturbations are directed along the magnetic field.
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— —>

u k

Figure J.2: Longitudinal wave with k || B

Return to the more general expression for the case k || Bo;
2 L po;2 2
wppdu = —(Bik“du — (Bg - du)Bokk) + c5(k - ou)k.
Ho
Taking the cross product with k, we get

2o B o vik?.

w =
1o pPo

This describes transverse waves with phase speed v where the restoring force
is provided by magnetic tension. These are Alfven waves.

Figure J.3: Alfvén wave

J.4 Instabilities in Plasmas

The presence of magnetic forces can profoundly affect the nature of instabilities
in plasmas. For example, we can repeat the derivation of the Rayleigh-Taylor
instability including a magnetic field aligned with the interface.
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P1 p1 > P2

interface

Figure J.4: Configuration of fluid interface

We will not repeat the analysis here, but we find the new dispersion relation
is
— 2 (k- B)?
W=k P1 P2+_( )
pL+p2 Ho p1+ P2

For sufficiently small wavelength (high |k|), the second term always wins,
giving stable oscillations (Alfvén waves in this case). The interpretation is that
magnetic tension forces tend to stabilise R-T modes.

J.5 Magnetorotational Instability

We end with a discussion of an MHD instability which is extremely important
for accretion disks. We examine the stability of a plasma which is in orbit
about a central object.

Q(r) decreases
outwards.

N o

Figure J.5: Shear flow in an accretion disk

To uncover the essence of the instability, we simplify as much as possible.
We conduct a “local analysis” meaning that we consider the dynamics in

111



J. PLASMAS

some small patch of the rotating flow at R = Ry, working in the comoving
reference frame of the equilibrium flow. We assume that the equilibrium flow
has an angular velocity about the central body Q(R). We let our local frame
of reference rotate at Q(Ry) and set up a Cartesian coordinate system with
z pointing “upwards” (meaning aligned with the angular velocity Q) and
X pointing outwards (i.e. away from the central body axis). Working in a
Lagrangian picture, the momentum equation is:

@:—EVp—i-i(V X B) x B+2ux Q4+ Q x (2 xr) — RQ(R)’R,

Dt P Hop

where the last term is an expression of gravity. Further simplifying, let us
assume that the flow is cold so that pressure forces are negligible (this assume
can be readily relaxed but will make the analysis more involved). Introducing
perturbations and assuming a plane-wave form, we have

D Au 1 d0? .
—2A Q=—(By-V)AB-AzR—R
Dt e ,u0p< 0 V) v dR
. /) d0? .
= —iwAu — 2Au x Q = Bok AB — Ar R—R
Hop dR

The induction equation gives

0AB
WZVX (AUXBO):(BOV)AU
= —iw AB = ik By Au
= AB = —@AU,
w

and we can easily relate Ax and Auy;

D Ax
— Au,
Dt “
= —iw Az = Auy
A,
= A:E:2 Y )
w

So eliminating in favour of Au in our perturbed form of the momentum
equation, we have

' kB i Au, . dQ? .
" Bk Z20Au - 2% pEE R

—jwAu — 2Au x Q = o - - IR

Writing this out in components and noting that B2 /pouo = v4 gives,

dQ2
2 . 2

Ay, — 2iAu, Qw = Aug, + Aupg————
wAu iAu, Qw = (kva)*Au U R

wW? Auy, + 2iAu Qw = (kva)? Auy,
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or in matrix form.

w? — (kva)? — d(%% —2iw 2 Aug ) _ 0.
21w w? — (kva)?) \Auy

We obtain the dispersion relation by setting the determinant of the matrix
to zero. This gives

[wz — (kva)? — d(cfflz;)] [wQ — (k:vA)ﬂ —40%0,% =0

Writing as a quadratic in w? gives our final form of the dispersion relation:

2 2
wt — w? [4(22 - d(cllgR) + 2(14:1)14)2] + (kva)? [(k:vA)2 + dgl?R)] =0.

If we “turn off” magnetic forces by setting v4 = 0, the dispersion relation
gives

dQ?

2 _ 2
w® = 4Q +d(1nR)

1
R3dR
= 02 (Keplerian)

RYQ?) = k%

For a Keplerian profile Q?> = GM/R3, or indeed any profile in which the
specific angular momentum R?Q) increases with radius, this describes local
radial oscillations of the flow at the radial epicyclic frequency kg.

Now turn on magnetic forces, so v4 > 0. There will be instability if
w? < 0. Considering the basic properties of the dispersion relation, viewed as
a quadratic in w?, we see that there will be instability if

This is the magneto-rotational instability (MRI). For sufficiently weak magnetic
field or long wavelength (small k) modes, there will be instability if the angular
velocity decreases outwards,

d?

TR < 0 (instability).

Magnetic tension will stabilize modes with k& > k.. where

dQ?

(0 1) (= 3Q? for Keplerian)

(kcritUA)2 = -
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Specializing to the Keplerian case, we find that the fastest growing mode has
a growth rate

3
’wmax‘ = 59
and wavenumber given by
Emaxva = (L.

The instability has an interesting property — while the magnetic field is
essential for its existence, the maximum growth rate is independent of the
magnetic field. Formally, within ideal hydrodynamics, the instability exists as
By — 0 but not at By = 0. Of course, the wavelength of the mode with the
maximum growth rate kpax — 00 as By — 0 and so in practice finite viscosity
or finite conductivity effects will kill the MRI for sufficiently small Bj.

The MRI is central to the modern theory of accretion disks. MRI drives the
turbulence that, as we have described previously, is essential for the transport
of angular momentum in an accretion disk.
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CHAPTER K

APPENDIX : TYPOS AND
CORRECTIONS

For convenience, here we collect together typos that were present in the set of
notes posted at the start of Lent-2021 term and which have been corrected in
the current set of notes.

o Section 1.3 : Vorticity in Viscous Flows (page 92) : There is a missing u
in the second line following the statement “To tidy up the LHS..”. The
expression should read

= V X (u-Vu)=-V X (uxw). (CORRECT),
and not

=  Vx(Uu-V)=-Vx(uxw). (INCORRECT),

o Section 1.6 : Accretion Disks (page 99) : There was a typo in the
derivation and final expression for the radial velocity, ugr. The final
expression should read

% (VZR?’@

up = . ;‘R) (CORRECT),
RY.2(R?Q)
and not
2 (vSR3SE
up = M (INCORRECT),
RY.2(RO2)

This same typo was repeated in the line above (i.e. the line immediately
prior to the statement of the final result):

REuRaaR(R2Q) = £z (1/233((5;) (CORRECT)
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and not
0

Q
R¥up - (RO?) = % <yzR3jR> (INCORRECT)

The same typo was repeated when the expression for ug was restated
on page 100.
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