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Recap — last lecture

* Introduced notion of viscosity
e Diffusion of momentum through fluid due to the particle nature of fluid
* Leading order finite-A correction

* Viscous stress tensor and the Navier-Stokes equations
e Diffusion of vorticity in a viscous flow
 Energy dissipation in a viscous flow (2" law of TD = positivity of n)



This Lecture — more viscosity

e Steady state viscous flow in a pipe (Chapter 1.5)
* Analysis of laminar state
* Transition to turbulence

* Accretion disks (Chapter 1.6)
* Some basic principles
* Accretion disks as viscous systems
* Modeling geometrically-thin accretion disks



.5 : Steady-state viscous flow in a pipe

As an illustration of an explicit calculation involving viscous flows, we examine the
important case of steady-state, laminar, incompressible, viscous flow through a
pipe with constant circular cross-section, neglecting gravity...
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So, only surviving terms are:
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Fix a, b via boundary condition.

At R=0, regularity (finite u) demands a=0

At R=R,, set u=0 (no slip boundary condition). So,
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Can now calculate mass flux:
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So, mass flux completely determined by the pressure gradient, radius of pipe, and
coefficient of kinematic viscosity.

In fact, flow will become turbulent (not steady, ug # 0,u, # 0, motions on large
range of scales), above a critical Reynolds number.






1.6 : Accretion Disks

The theory of accretion disks is one of the most important applications of the
Navier-Stokes equations (indeed of fluid dynamics) in astrophysics.

Consider gas flowing on bound orbit towards a gravitating object (star, black hole...).

Almost always, the gas will have appreciable angular momentum about the central
object. Then...

* Gas will settle into plane defined by overall angular momentum vector (gas
streamers will intersect/shock and damp out out-of-plane motions).

* Within plane, gas will tend to settle onto circular orbits (a fluid element’s lowest
total energy configuration for a given specific angular momentum)
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Accretion requires fluid elements to lose angular momentum.

Two general pictures for how this can happen...

* Winds : Fluid elements in disk pass their angular momentum (via magnetic
forces) to material that carries it away in a wind.

* Internal viscosity : Fluid elements in disk pass their angular momentum to fluid
elements further out via action of shear “viscosity”.



ALMA observations of rotating wind
from the protostellar disk in HH212
(Lee at al. 2021,
https://arxiv.org/abs/2101.03293v1)
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Relative role of wind and internal viscosity in angular momentum transport is
uncertain and may vary from system to system (or even time-to-time in given
systems).

Here, we focus on models based on internal viscosity.

Let’s set up a simple model of a geometrically-thin accretion disk. We will use a
cylindrical polar coordinate system (R, @, z). Assume:

* Axisymmetry, d/d¢p = 0,
* Hydrostatic equilibrium in z-direction, u, = 0,
* Flow close to Keplerian, i.e., centripetal acceleration due to gravity,

e Zero bulk viscosity.



Continuity equation in cylindrical polars:
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Useful to work with surface density, :
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Integrating continuity equation over z, we have

82 1 0



Can get same result by thinking of the disk as a set of (Eulerian) rings:
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Now look at conservation of angular momentum.

In principle, can take polar-form of Navier-Stokes equation and apply same
assumptions. The phi-component reads:
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For thin disks, it is conceptually and mathematically easier to use the ring
approach:
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Summary: o 19
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Now, flow is approximately Keplerian, so du,/0t =0
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Substitute ug into (1), and specialize to Newtonian gravity of point source
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Surface density obeys a diffusion-like equation.
Notes

1. Ingeneral,v =v(R,%,T,...) and so this is a non-linear diffusion equation.
Reduces to linear equation if v = v(R).

2. Vertical structure only enters via the temperature dependence of v. So the
geometrically-thin assumptions allows the radial and vertical problems to be
mostly decoupled.

3. Diffusion-like nature of this equation shows that an initial ring of matter will
broaden and “slump” towards the central object.
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