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Taking stock

e Story so far...
* Developed basic equations of fluid dynamics
* Hydrostatic equilibria (& relevance to stellar structure)
e Supersonic flows and shocks (& relevance to supernova)
* Transonic flows and critical points (rocket nozzles, spherical accretion/winds)
* Fluid instabilities

* Current focus has been on ideal, high-collisionality gas
* Formally, our current treatment deals with the zero MFP (A — 0) limit.



This Lecture

* Viscous flows (Chapter )
* Viscosity as the diffusion of momentum (lowest order finite-A correction)
 Viscous stress tensor (1.1)
* Navier-Stokes equation (l.2)
 Vorticity in viscous flows (1.3)
* Energy dissipation in viscous flows (1.4)



Chapter | : Viscous Flows

Consider a simple linear shear flow...

The flux of the i-th component of
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The flux of the i-th component of
momentum in the j-th direction
(from above) is
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The net flux of the i-th component
of momentum in the j-th direction

IS
~ kBT
a p(u; — uj) T



Repeating: net flux of the i-th component of momentum in the j-th direction is
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This is non-zero due to the existence of the velocity gradient and the finite length
scale 61 over which the particle momenta get mixed. Writing
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This "mixing length” is naturally identified with the mean free path
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So, net flux is
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For a neutral gas, we can use a “hard sphere” model for the cross section.
g =Ta
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This term goes into the conservative form of the momentum equation
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A more rigorous derivation from kinetic theory shows that « = 5/7/64.
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Note about shear viscosity coefficient n :

* nis independent of density (denser gas has more particles to transport
momentum but mean-free-path is commensurably smaller)

* nincreases with T; an isothermal system has constant n

* Functional dependence on T depends on collision model...

* Hard sphere model gives 1 oc T1/2
* Coulomb collisions (relevant for fully ionized plasma)

Ao T7, vin o VT = N o T5/2



More generally, we write
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viscous stress tensor

Our approach so far has not been general wrt geometry (i.e. assumed no velocity
gradients in the i-th direction). Let’s ask... what is most general form of al-'j that is

* Galilean invariant (shouldn’t introduce viscous stresses via frame transformation)
 Linear in velocity gradients

* |sotropic (basic response of fluid same in all directions)

Answer:
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where 1 and ¢ are independent of velocity Bulk viscosity



So, momentum equation now reads...
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Viscous force

This is the general form of the Navier-Stokes equation.




Outside of shocks, bulk viscosity usually not important.

If flow is also isothermal (so that n=const), then we have
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This is the more commonly used form of the Navier-Stokes equation.

The importance of viscosity in a flow is characterized via the Reynolds humber
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_ U = characteristic velocity of system
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Consequences of viscosity

* Shear leads to transmission of momentum through flow (layers rub)

* Vorticity
* Canintroduce vorticity into initially irrotational flows from the boundaries
* Vorticity diffuses through the flow (advection/diffusion = Re)

* Generally has stabilizing effect on various fluid instabilities

* Dissipates kinetic energy into heat...



Vorticity in viscous flows

Let’s re-examine the evolution of vorticity once the effects of viscosity are included.

Start with new momentum equation for n=const and ¢=0:
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Then tidy up terms...
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= VXx(u:-V)=-V X (uxw).

lgnore gradients of this quantity
(strictly, isothermal and uniform
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p — Lines of vorticity are advected in the flow AND

=0 since surfaces of

constant p and p align diffuse through the flow due to viscosity. Viscous
term gives a way for vorticity to enter a previously

n irrotational flow due to boundary interactions.
— =V X (u X W) + —Vzw Relative importance of advection and diffusion
ot P given by Reynolds number.
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.4 : Energy Dissipation in a Viscous Flow

Viscosity is a dissipative process. It can lead to the irreversible conversion of kinetic
energy into heat.

To gain insight into this, we restrict (purely for convenience) to incompressible
flows so that we don’t need to worry about p dV work. Kinetic energy of fluid is
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Consider rate of change of kinetic energy density:
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Look at term:
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Integrating over volume:
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Energy flux into volume including Rate Qf change Qf E_kin due
work done by viscous forces u-o viscous dissipation



If volume V is whole fluid, then surface integral is zero. So,
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But for an incompressible flow we have 07’;]- = n(0ju; + O;u;)
So,
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2"d |aw of thermodynamics dictates that kinetic energy must “grind down” to heat
rather than reverse. So we can see that the 2" law dictates thatn > 0.
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No viscosity “Spitzer” level viscosity

Reynolds et al. (2005)
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