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Recap — taking stock

* Formulation of basic fluid equations

* Hydrostatic equilibrium and stellar structure

* Sound waves — linear perturbation theory of simple configurations
* Shocks and supersonic flows — Rankine-Hugoniot relations

 Steady-state transonic flows — critical-point systems
* Nozzles (jets), accretion flows and winds.



This Lecture — Fluid Instabilities (Chapter H)

e Convective instability (H.1)
* Heuristic (fluid element) approach
e Conditions for instability
* Internal gravity waves

e Gravitational instability (H.2)
 Jeans analysis (linear perturbation theory)
* Jeans mass and Jeans length

* By end of this lecture, you can do...
* All of Examples Sheet 1, 2 and 3.



Chapter H : Fluid Instabilities

Suppose we have a fluid in a state of equilibrium...
 flow obeys all relevant fluid equations with d/9t=0.

e can be dynamical equilibrium with u # 0.

Now introduce (small) perturbation into the flow...
e Perturbation grows in time = configuration (linearly) unstable
* Perturbation decays in time or undergoes SHM = configuration stable

e (Perturbation undergoes growing oscillations = configuration overstable)



H.1 : Convective Instability

Convective instability concerns the stability of a hydrostatic equilibrium.
We can understand instability without doing full formal perturbation analysis.
* Consider an ideal gas in hydrostatic equilibrium

* Now perturb a fluid element upwards

e Perturbation is slow enough that fluid
element remains in pressure balance with
surroundings.

e Perturbation is fast enough that the fluid
element cannot exchange heat with

P, p surroundings

* ...so density evolves adiabatically.

p,p

0 surrounding
medium



Stability depends on new value of density...

" surrounding

medium p/ =K P*’Y

p;p

pr<p = perturbed element buoyant
= system unstable;

pt > = perturbed element sinks back
= system stable.



e For displaced fluid element: So, unstable if
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* For background atmosphere dz

1 i.e. system is convective unstable if
p =p+ d—féz entropy decreases in the upwards
- direction... Schwarzschild criterion



Can express the Schwarzschild criterion in terms of temperature gradients:

=
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So we are Schwarzschild stable if

dT > (1-2 T dp (of course, dp/dz<0 given the
dz p dz need for hydrostatic equilibrium)

Positive temperature gradients are always stable (since y > 1).

Can tolerate a moderate temperature inversion, but instability sets in if dT/dz
becomes too negative



2-d simulation of convection



3-d simulation of solar
convection



Time-lapse of solar surface



The Corona
The ionized elements within the corona glow in

The Convection Zone




If the atmosphere is convectively stable, the fluid element will just undergo
oscillations
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So, SHM with frequency

‘ 7 [dT 1T d e

N? = J [( — (1 — ) (p] BRUNT-VAISALA FREQUENCY
T [ dz p dz

These are called internal gravity waves (restoring force is gravity).

We will return to internal gravity waves after we’ve gained a little more experience
with perturbation theory.



H.2 : Gravitational Instability

This concerns the stability of a medium against gravitational collapse. Consider:
* Uniform medium that is initially static
* Barotropic equation of state

* Gravitational field generated by medium

Follow the standard “linear perturbation analysis playbook”...
Step 1 : Define the equilibrium

p = po, const.
p = po, const.
u=20



Step 2 : write down governing equations for the system

%—FV'(/)U):()
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V20 = 47Gp

Step 3 : introduce small perturbations

p=po+ Ap
p=po+ Ap
u= Au

U =W,+ AW



Step 4 : Linearize the equations (i.e. expand and neglect all 2"9 order and higher

terms).
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Step 5 : Assume plane wave form for perturbations and substitute into linear egns
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Step 6 : solve algebraic system to derive dispersion relation f(w, k) = 0.
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Define the Jeans wavenumber (inverse of the Jeans length) 12 — 47Gpy/c?2
Then,

W? = (K — k)

2

1. For k>>k,... we have w? = c?k?, so normal dispersion-free sound waves.

2. For k = kj... we have gravitationally-modified sound waves (group vel. < c)
3. Fork<k,...if k € R, then w? < 0so w = +i® with @ € R. So,

k-x—wt) wt ik-x
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Thus, perturbation grows exponentially... gravitational instability.



Maximal stable wavelength is

U T2
Aj=— = \/ = JEANS LENGTH
A',] G[)()
Associated mass scale is
My ~ po3 JEANS MASS

So system will undergo gravitational collapse if its mass exceeds Jeans mass.

Consider a collapsing system, and suppose that the collapse is isothermal (cooling
and heating processes balance). Noting that M; « cg’p(;l/z e (T3/p0)1/2, we see

= Jeans mass decreases as system collapses

= system undergoes gravitational fragmentation.
Key physics in star and galaxy formation.
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