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Lecture 12 : The De Laval Nozzle
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Recap — last lecture

Concept of vorticity = rotational and irrotational flows

Barotropic (but otherwise general) flow obeys Helmholtz egn

ow (lines of vorticity
ot =V X (uXw) carried around in flow)
* |f also steady-state, then
|
u-V [—u + / i + \I’] 0 (H = constant along a streamline)
L Y J
H

If also irrotational, then
VH =0 (H = constant throughout fluid)



This Lecture

Important applications

De Laval nozzle (G.3)
* Basic formulism
 Critical points and sonic transitions
* Physical interpretation
* Applications

(set us up for discussion of spherical accretion next lecture)

By end of this lecture, you can do...
e All of Examples Sheet 1 and 2
 Example Sheet 3, Q1, Q4, Q9



G.3 : The De Laval Nozzle

Consider steady-state, barotropic flow through a restricted nozzle (no gravity):

Momentum eqn: A(z)
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u-Vu=—-Vp
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puA = constant M (mass flow per second)

Inp+Inu+InA=InM
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Carrying over:
u-Vu=[Vinu+ VinA|c

Now we assume that the flow is irrotational, so we can write

_ Loy 15 o2\ 2
(u-V)u—V<§u>—§u V(lnu)—u Vinu

So, 5 5
u*Vinu =[Vinu+ VinA|c;

= (u* —c*)VInu =c*VIn A

Important finding: when A(z) is an extremum, we must have either
* minimum or maximum of u, or
*u =¢

We have the potential for subsonic=»supersonic transition at extrema of A(z)!



(u* — )V Inu =c*VIn A




To analyze this system further, we use use Bernoulli’s equation and choose a
barotropic equation of state to evaluate the pressure integral

1 d
§u2 + L _n , constant [no gravity, steady, irrotationall
I p

Example 1 : Isothermal equation of state

Suppose that A(z) has a minimum (when A=Am) that

R pT allows flow to undergo a sonic transition:
p= : T = const.
. Lo, o Lo, o
—u“+c;lnp = —c; + c;In
/‘ dp / R, T dp 2 s P S A=Am
= = = -
Jop JooHop I 0|
R.T = u? =c? [1+2In (ﬂ>]
= Inp ' P
H - usin
2 — 2|14 om (4 :
=c;lnp = Cs A puA = constant

For given A(z), can solve for structure of flow p(z), u(z) as
a function of ¢, and M.



Example 2 : Polytropic equation of state

Complication is that c, varies (as density changes) so cannot be treated as a
parameter of the problem...
n+1 o

S
n

So...
[do_ [l
P

Mass conservation:

dp p puA:pA CSA Ap =M
n _|_ 1 1 dp m m
— | K /nE 1/2 .
n _|_ 1 1/n—1 Am n Am
n + ]. Am n
=K " npl/" 2 n/(2n+1)
_ 2 = P = i
— NCg A, (Am> K(n+1)




Then...

1 d
—u2+/—p:const
2 p
1/ M\’ 1
= — | — K(n+1)ptm == ¢ K(n+1) pt/"
1 1
2\ n Am Am
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For given A(z), this is an implicit equation for p(z), so can determine the structure
of the flow.



General points of interest:

(u* — ) VInu=c:VIn A

-

» SUPERSONIC

SUBSONIC >

A decrease = VInwu positive A increases = V In u positive

= u accelerates along streamline = u accelerates along streamline



w*Vinu=—cVinp

-

SUBSONIC >

» SUPERSONIC

_—

u < cs,ViInu > Vinp.

So density almost constant...
i.e. incompressible flow

I
I
I
I
|
I
I
I
I
|
I
I
I
I

A"l

U = Cgq

—

u > cs, ViInu < Vinp.

So velocity almost constant...
but density and sound speed drops



Water analogy



NINJA simulation









Space-X test



(u* — ) VInu=c*VIn A

Nozzles can choke due to shock
formation in the exhaust




Stability



Galaxy clusters: jet in M87

Credit:HST M87



Galaxy clusters: jet in Cen A

Credit: X-ray - NASA, CXC, R.Kraft (CfA), et al.; Radio - NSF, VLA, M.Hardcastle (U Hertfordshire) et al.; Optical - ESO, M.Rejkub



De Laval nozzle applied to jets... an early but unsuccessful model
(Blandford & Rees 1974)
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