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Recap

* Developed basic equations of fluid dynamics (for ideal gas)
* Hydrostatic Equilibrium and Stellar Structure



This Lecture

* Start looking at dynamics

e Sound waves (Chapter F.1)
* Intro to perturbation analysis for fluids

e Sound waves in a uniform medium

* Dispersion free waves

* |sothermal and adiabatic sound speeds
* Sound waves in a stratified medium

* Dispersive waves
* Acoustic cutoffs and acoustic shocking



Sound waves in a uniform medium

Consider an equilibrium consisting of uniform density, pressure, u=0 (no gravity).

P = pPo (uniform & constant)
P = Do (uniform & constant)
u=20

Now introduce small perturbations (Lagrangian, so for given fluid element):

p=po+ Ap
p=po+Ap
u= Au

Relationship between Lagrangian and Eulerian perturbations

5p — A,[) — E - X0 So in case, no distinction
N~~~ N~~~ between Lagrangian and Eulerian
Eulerian Lagrangian  Element displacement dot

pert. pert. sradient of unpert. state perturbations...



Now we introduction perturbation into continuity and momentum equation and
keep first order terms.

Start with continuity equation:

dp B
aﬂ-v-(pu)—o

Apply perturbation and neglect 2" order terms:

0
57 (Po + 8p) + V- [(po + Ap)Au] =0
0
0 0A 0 2nd order 2nd order
= Z"‘a—f"‘M—I—M—FpoV-(Au)—I—A u) =0
0
= —(Ap) + poV - (Au) =0 D



Similarly, for the momentum equation

ou
E—l—(u-V)u— —;Vp
0 1
—(Au) = ——V/(A
57 (AU pOV( p)
= 2(Au) __ V(Ap)
ot dp P=P0 PO
Take time-derivative of (1):
0? 0
—(Ap) = —pg— [V - (A
0
=—poV - |=—(A
Po L’)t( u)]
dp 9
= —| Vi(Ap)
dp P=P0

assuming barotropic EoS

@



So we have

0*(Ap)  dp

2= 4 V2 (Ap). WAVE EQUATION

P=P0

Consider plane-waves
A,O _ Apoei(k-x—wt)

dp

> (—iw)*Apy = 1 (ik)* Apo
Plp=po
= w? = dp k?
dplp=p,

So we have dispersionless waves with phase velocity v, = w/k.

dp
Cs = | 7
dp

SOUND SPEED AS THE DERIVATIVE OF p(p)
p=p0



Example : Isothermal case (effective
heat transport through gas that keeps
temperature constant)

Example : Adiabatic case(no heat
exchange between fluid elements)

o dp 5 dp
cc = — e
| dp|p | dplg
p=Kp’
R« dp .
P = pl = 1[ =vKp -1 _ P
H Differ by factor y “Pls p
=L (—) \/ )
= CsI= Cs, A =
¥ v

Important to note that thermal structure of perturbations does not need to be that
same as that of the background structure... e.g., can have adiabatic perturbations in an

isothermal background atmosphere



Let’s look at relationship between density and velocity perturbations:
A[) _ A[)()(%i(k'r_wt)

Au = Auge!kFr=wt)
Substitute into (1)

— iwAp + poikAu =0
= Au = E@ = (:S@
k po 0
So we see that:
* Density and velocity perturbations are in phase since Au/Ap € R
* The actual fluid velocity is much less than the sound speed:

Ap
Aug = (:Sﬁ < 4
PO



CMB (Planck collaboration)
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Sound waves in a stratified medium

Let’s now look at situation with (externally imposed) gravity; sound waves
propagating in a background atmosphere which is in hydrostatic equilibrium.

Consider isothermal atmosphere with constant gravitational field, 8 = —9% .
Equilibrium is:
uog = 0
- R.T
po(z) = pe /M H==
gp
R T R
po(z) = po(z) = pe~ /1.

Nature of sound waves traveling in x- and y-direction is unaltered. So let’s just
examine waves travelling in z-direction. Let u = uz



So relevant fluid equationsare 9, 9

Introduce perturbations

u— Au
po — po+ Ap
po — po + Ap.
And recall relation between Eulerian and Lagrangian pert", op = Ap — & - Vp,
dpo )
0p=Rp =&~
<
5p = Ap — 62% > Eulerian to Lagrangian perturbation relation
ou = Au, |
d£ a£ 2nd order &f
Au=—=5414. _ 98
STa T o Ve ot



Now we introduce perturbations into fluid equations. Start with continuity egn:

2(po +dp) + 2[(po +dp)ou.] =0

ot 0z
= Q (po + Ap — 62%) + 2(poAuz) =0 (ignoring 2nd order terms)
ot 0z 0z
N 396413AP_3&300_§/§}3%{1300A N 3Auz_0
bt T ot ot 9z 0t 0z 0z TP T T
0Ap dpo  Opo JAu,
= ot _é% 8z+82Au2+p0 0z =0
€. |t
_ 0Ap N S JANT B ®
o 7h

Similarly, momentum equation gives (exercise for student!)

JAu, 1 dAp
ot py Oz

OAu, ¢ dAp 5 Op
o pg 0z p




So, taking time-derivative of (3)

0*Ap 0 (8Auz) _0

+
oz Moz \ o
0 A 0 [c?OA
~ a2p_p0 (u p)=0,
t 0z \ po 0z
82Ap C?L 82Ap C 3;00 (9Ap — 0 Assuming isothermal
Ot2 _MP(T 022 pj 02 Oz so ¢, constant
%A 0*A 0po DA B
= p i p + C’u, ,00 p f— O % _ g (ﬁe_z/H)
_Ot? 072 po L0z \(92‘\ 0z 0z
e N ~~ 4 — L —z/H
normal sound wave equatlon extra piece associated —gre
with stratification _ M
H

0% Ap 2 0*Ap B c2 OAp

otz % 922 H 0z =0




Dispersion relation... put Ap o e!(kz=«t)

2 2,2 , 21k
= —w” = —ck +Cuﬁ
ik
= w? =c? (k2 - lﬁ) DISPERSION RELATION
2
o 1k w®
> Moy a2
L o w? 1
= = -7 —



Casel: w > c¢,/2H

1 2 2
Imk = — I i T L)
2H ek i\/(c,u) (2H

i £+ w/cy 2_(1/2H)?*z—w
P CVTAE R

- N >y
T~ —~

Ap x e

Exp. decay, Traveling wave with phase velocity
scaleheight w o\ 2 112
2H L W (&) - ()
A,O X e—z/QH A
| 2P +z/2H
—Z/H X e
pPo X € Po

+2z/2H Eventually, perturbations become

Auz X € large; 1st order pertn theory fails.

Casell: w<c,/2H

k purely imaginary

—kz 1wt

Ap x e e

No propagation of energy



lonized hydrogen (u=0.5) and T=4
C, = 1000km/s

Intracluster Medium in the Perseus cluster in X-rays
(Chandra X-ray Observatory; Fabian et al. 2006)
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Unsharp-mask image of Perseus cluster of galaxies
Sanders et al. (2006)



Density

Projected Xray Emissivity Jet Mass Fraction

Yang & Reynolds (2016)
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