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Recap

Notion of hydrostatic equilibrium

1
-Vp=-VVU EQUATION OF HYDROSTATIC EQM.
P

If system self-gravitating, also see to solve

V2V = 47Gp
Spherically-symmetric self-gravitating polytropes ( p = Kp' /™)
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This Lecture

* Hydrostatic equilibrium (cont)...

e Scaling relations (E.4)

* Mass-radius relationship for polytropic stars
e E.g. White Dwarfs

* Reconciling with mass-radius relation of main sequence stars
* Consideration of timescales
* Mass transfer binaries and response of the stars

 After this lecture, you can do...

 Example Sheet 1 (all)
 Example Sheet 2 up to Q6



Mass-Radius Relation for Polytropic Stars

We can consider families of stars that can be treated as polytropes with a given
polytropic index. Examples...

* Fully convective stars dominated by ideal gas pressure,
p=Kp’ (y=5/3)

* White Dwarfs (well below the Chandrasekhar mass)
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* Both cases correspond to n=3/2.



Key point is that the shape of the density distribution within each star in the family
is identical, given by the appropriately scaled solution of Lane-Emden.

To be concrete, for now, consider a family of stars with p = Kp'*1/™ where both n
and K are fixed across the family.

Upr —Ww 1" _,
— :> \I] - \D(' — [’- T 1 1./”;
o= k] r - Vo= K(n+ 1)l
4rGp. ArGpe /"
¢ = nmGp . N ¢ — 7r Pe .
\IJT — \I’(: K (1 -+ ’I’I.‘)
— \IJT o \II ]” . ()'II.
P = Pe \I]T o \Il(_. = Pe

The surface of the star corresponds to the first zero of the solution of the Lane-
Emden equation, i.e. {max such that 0(&nax) =0



Total mass of the polytrope is

T'max
M = / Ar? pdr
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v
same for all
polytrope of index n

Radius follows from unraveling definition of ¢,

1-1/n Ll 4
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Eliminating density
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M ox Ri—n MASS-RADIUS RELATION FOR POLYTROPIC STARS



For n=3/2, this gives
M x R~

or R oc M~1/3

So more massive polytropes are smaller!

This is clearly seen in the white dwarf population.
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As we consider progressively more massive white dwarfs, the bulk of the electrons
need to be in high energy levels (Fermi surface is higher energy).

At some point, the electrons become relativistic... standard kinetic theory shows

that the equation of state “softens” from p = Kp>/3 top = K'p*/3 (corresponding
to n=3).
The scaling relation is M Rin . So, for n=3, the mass is independent of radius...

i.e., there is only one permitted mass for the configuration.
This is the Chandrasekar mass, about 1.4Msun

Plays a special part in Type-1a supernova
WD gains mass (merger or accretion)
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Mass Sequence stars to NOT show R o< M~1/3,
Instead, across much of the mass sequence we see R « M.

Our mistake was to assume constant K across the main sequence. Let’s examine
the temperature at the centre of the star:

p = Kpttl/m

R. 2 = 1.
ol R
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The thermonuclear reactions that power stars are extremely temperature
sensitive... so across the main sequence the stars will adjust as to produce

approximately the same temperature. Thus we need:
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p=

K o p t/m

Putting this into our analysis of mass and radius we get

[\[0(/):1/2. R /)_1/2 = M x R
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We can also use these techniques to examine the behaviour of an individual star
that is gaining or losing mass.

In this case, should we use constant K or constant T.? It depends on the timescale
on which the star’s mass is changing...

* Hydrostatic equilibrium is established on sound-crossing timescale...

th ~ R/Cs

* Energy/entropy of core can appreciably change on thermal timescale...

FOR
SUN




Example — Spherical rotating polytropic star with angular velocity Q gains non-
rotating mass on less than the thermal timescale. How does Q change?

* Conservation of angular momentum:

M R?*Q) = const.

* So
M R?AS) + QA(]\[R“) —
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= —_ = — ‘
() M R?
* But
AS) 5—3n)/(3—n) R ‘]\[(l_”)/(:g_”)
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AQ<0 if 2352>0  (eg. n=3) SPIN DOWN
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AM >0 = {
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Example — Star in a close binary system loses mass to a companion.

 Donor star loses mass
AM < 0

R o M(1-n)/(3-n)
* So radius increases if 1<n<3.

* There is then the potential for runaway mass transfer

Saddle point

Critical equipotential
of the effective potential
(gravity + centrifugal)
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