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This Lecture

* Hydrostatic Equilibrium (Chapter E)

 Basic concepts and examples of hydrostatic equilibrium (E.1)
* Externally imposed gravitational field
 Self-gravity

e Stars as self-gravitating polytropes (E.2)

* Lane-Emden equation

* [sothermal spheres (E.3)
* Bonnor Ebert spheres

 After this lecture, you should be able to complete Example Sheet 1



E.1: Basics of Hydrostatic Equilibrium

We consider static, equilibrium configurations:
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HSE in an external gravitational field

Simplest case to consider is when W is some just specified function of position (so
generated by some external agent rather than the fluid mass itself).

If P = P(p), this allows us to solve the equation of hydrostatic equilibrium to
derive the density structure.

Example : Isothermal atmosphere in a constant gravitational field g = —9z
R
¥

Isothermal : p=—pT = p= Ap, A const.

1
A-—-Vp=-VV¥ = —gz
P

gz

= Inp=— A + const.
A g Earth’s atmosphere...
= ) = poexp | — ' 2 T=300K, =28, -9.8m s2
PPt ( R.T ) H=2S, 8

e-folding height 9km



Altitude . km

&)

M)

&)

001 01 1 10 100 1000 2001 240 240

Pressure, hPa Temperature, K

http://acmg.seas.harvard.edu/people/faculty/djj/book/bookchap2.html



Mauna Kea Observatories, Hawaii 4200m

Subaru



Example : Vertical density structure of an isothermal, rotationally-supported,
geometrically-thin gas disk orbiting a central mass.

At a given patch of the disk, transform into a locally co-moving and co-rotating
frame. In z-direction, pressure forces balance z-cpt of gravity,
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So, hydrostatic equilibrium gives
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SE of self-gravitating systems

Now consider static equilibrium of a fluid generating its own gravitational field.
Need to simultaneously solve:
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Example : Isothermal self-gravitating slab.
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Evaluate y-integral:
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Final result:
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Stars as self-gravitating polytropes

Consider a spherically-symmetric self-gravitating system in hydrostatic eqgm. This is
a good approximation to a star. We have
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Since p>0, this implies that p is a monotonic function of W.

But we also have that
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So p is also a monotonic function of W,

p=pW¥),p=p¥) = p=p(p) STARS ARE BAROTROPES



So stars are barotropes.

Let’s write p = Kp'™'/" Ingeneral, n(p).
When n=constant, the structure is called a polytrope.
Many real stars can be approximated as polytopes.

Important to note that, in general

1
14+ — #7.
n

This equality only holds if the star is isentropic (uniform entropy). This is true if, for
example, the star is convective throughout.



Analysis of the structure of a polytope:

The equation of hydrostatic equilibrium is
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Feeding this into Poisson’s equation:
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Analytic solutions exist for n=0,1,5:
Example, solution for n=0 (corresponding to uniform density)
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Isothermal spheres

Isothermal case corresponds to n — co. Hydrostatic equilibrium gives

Poisson eqn:
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At large radius, this equation implies

pocfr_2 as r — o0

= M(r) ocr

Physical solutions (finite total mass) require truncation at some finite radius, hence
need to be confined by some finite external pressure.

Truncated isothermal spheres are known as Bonnor-Ebert spheres.



Stability needs:
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ESO (Dark Clouds in B68)




