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Recap

* Need for an equation of state to close equations of fluid dynamics

k
p=0p(p,T) =nkpT = & o
Ky
e Barotropic fluids
* |sothermal p=Ap
« Adiabatic p=Kp’
* Energy equation
OF owv :
E + V- [(E +p)u] — pﬁ - chool




This lecture

Energy equation (cont.)

* Radiative cooling processes (D.3)
e Cosmic Ray heating (D.3)

* Energy Transport processes (D.4)



D.3 : Heating and Cooling Processes

How do we determine the cooling rate, Qcool ?

What kind of processes can heat a fluid?

Cooling (and heating) processes depend upon the detailed microphysics of the
system under consideration.

Here, we discuss a few of the most important examples relevant to the energy-

budget of a thermal gas (i.e. one in which the bulk of the particles are in
thermodynamic equilibrium) in an astrophysical setting (diffuse and dominant

element is hydrogen).



 Collisionally-excited atomic line radiation
» Electron-ion collision lead to excited electronic states (inelastic collision)
* Excited state decays via the emission of photons at well-defined energies
* Number of collisions per ion per unit time & n,
* Number of collisions per unit volume per unit time < n, x n;,,,

L¢ ("L(‘.(”'i()n()f_X/A:TX/\/T = Q = pf(T)
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 Collisionally-excited atomic line radiation
» Electron-ion collision lead to excited electronic states (inelastic collision)
* Excited state decays via the emission of photons at well-defined energies
* Number of collisions per ion per unit time & n,
* Number of collisions per unit volume per unit time < n, x n;,,,

L¢ (’L(‘./”'i()n()f_'X:/A:TX/\/T = Q = pf(T)

 Recombination emission
* Free electron captured by ion... puts ion in excited

Electron cascades down energy levels, eventually forming ground state

So ion de-excites via line emission
Number of recombinations per ion per unit time « n,

Number of recombinations per unit volume per unit time < n, x n;,,,

= Q=pf(T)
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Free-free emission Lff = Nop*T1/?
(Bremsstrahlung) O = AgpT"/?
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Perseus cluster in X-rays (Chandra; Fabian et al. 2006)
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What about heating?

Heating can occur through the dissipation of kinetic energy via internal processes
within the fluid... e.g., shocks (Chapter F) and viscosity (Chapter I).

Heating can also occur from an external agent. Most important example:

* Cosmic Ray Heating : heating by high-energy (often highly relativistic) particles
that are diffusing/streaming through the thermal fluid.

* High-energy particle ionizes atoms in fluid, freeing high-energy electrons
* High-energy electrons proceed to collide with atoms/ions, thermalizing the energy

ionisation rate per unit volume o« CR flux X p

= Qeool X CR flux. (independent of p)
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Putting all of these processes together, we can usually write:

Qcool — A)OTQ — H

N—— S~
radiative =~ CR heating

cooling



D.4 : Energy Transport Processes

Energy transport processes move energy around in the fluid.

Can often write as extra flux term in the energy equation.

* Thermal conduction (e.g. ionized gas):
* transport of thermal energy down temperature gradients due to the diffusion of hot e".

e Conductive energy flux:
Feona = —kVT

* Local rate of change of energy density per unit volume due to conduction
—V - Feond = /‘{'VQT

* Important in ICM cores, white dwarfs, supernova shocks
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e Radiation transport
* Transport of energy through system due to radiation — relevant for optically-thick systems
* If medium is dominated by scattering opacity, this also looks like a diffusion problem:

Frad X _verad
* The general topic of radiation transport, and the dynamics of fluids that carry along trapped

radiation, is very complex and beyond the scope of this course
* Important in stellar interiors, black hole accretion disks

* Convection
* Transport of energy by fluctuating or circulating fluid motions
* Important in core of massive stars, envelopes of low-mass stars, interiors of some planets.






