

Part II Astrophysics/Physics

Astrophysical Fluid Dynamics

Lecture 4 : The Energy Equation

Story so far...

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

CONTINUITY EQUATION

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p - \rho \nabla \Psi$$

MOMENTUM EQUATION

$$\nabla^2 \Psi = 4\pi G \rho$$

POISSON'S EQUATION

This lecture

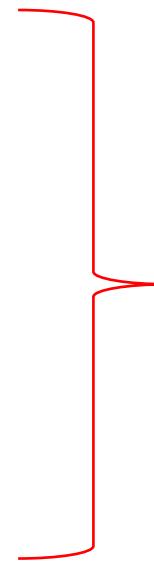
- The Energy Equation (Chapter D)
- Equation of state (D.1)
- Barotropic fluids (D.1)
 - Examples - isothermal and adiabatic cases
- The energy equation (D.2)

D.1 : Equation of State

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p - \rho \nabla \Psi$$

$$\nabla^2 \Psi = 4\pi G \rho$$



unknowns:

$\rho(\mathbf{r}, t), \mathbf{u}(\mathbf{r}, t), p(\mathbf{r}, t), \Psi(\mathbf{r}, t)$

3 scalar + 1 vector fields

equations:

2 scalar + 1 vector

Must have additional constraints – hence need for an **equation of state**, $p = \dots$

Equation of state depends upon microphysics of the fluid.

Most important case is that of an ideal gas:

$$p = p(\rho, T) = nk_B T = \frac{k_B}{\mu m_p} \rho T$$

Still doesn't close our system of equations...

- Introduce new unknown scalar field, $T(\mathbf{r}, t)$
- Must close equations with a new PDE encoding conservation of energy
- Will discuss such an equation a little later in this lecture

Barotropic fluids

A **barotropic fluid** is one in which pressure is purely a function of density, $p = p(\rho)$

In this case, the fluid equations form a closed system even without the addition of an energy equation.

Example : Electron degeneracy pressure

Important in systems with free electrons that are (relatively) cold and dense.

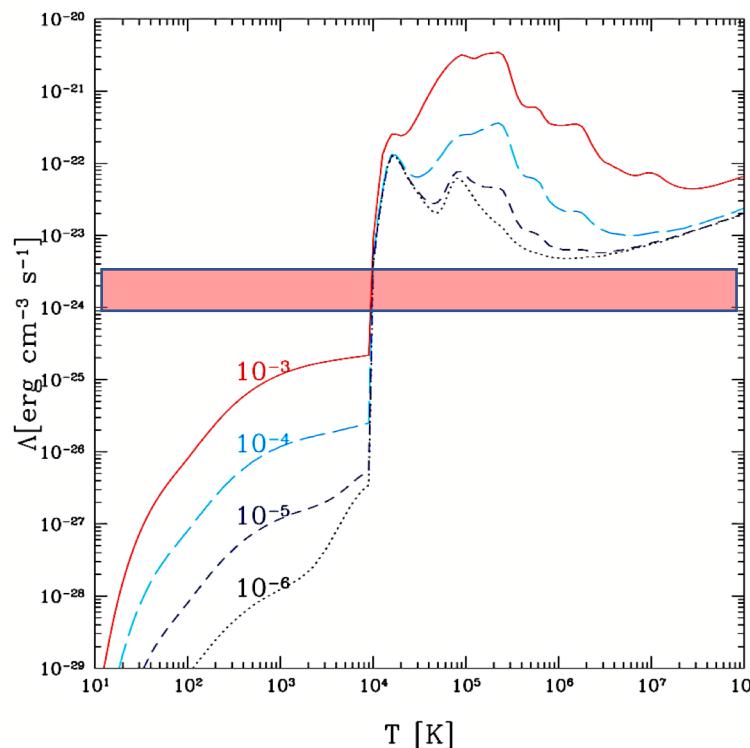
$$p = \frac{\pi^2 \hbar^2}{5m_e m_{\text{ion}}^{5/3}} \left(\frac{3}{\pi} \right)^{2/3} \rho^{5/3} \quad (\text{non-relativistic})$$

e.g., interiors of white dwarfs, iron core in massive stars, deep interior of Jupiter.

Example : Isothermal ideal gas

$$p = A\rho \quad A = \frac{k_B T}{\mu m_p} = \text{constant}$$

Most commonly realized when there are strong heating and cooling processes that balance at some well defined temperature.



Example : Adiabatic ideal gas (reversible thermodynamic changes)

$$p = K \rho^\gamma$$

where K and γ are constants.

Proof : start with first law of thermodynamics:

$$\underbrace{dQ}_{\text{heat absorbed by unit mass of fluid from surrounding}} = \underbrace{d\mathcal{E}}_{\text{change in internal energy of unit mass of fluid}} + \underbrace{p dV}_{\text{work done by unit mass of fluid}}$$

$$p = \frac{\mathcal{R}_*}{\mu} \rho T,$$

$$\mathcal{E} = \mathcal{E}(T)$$

Includes microphysical degrees of freedom

$$\begin{aligned} dQ &= \frac{d\mathcal{E}}{dT} dT + p dV \\ &= C_V dT + \frac{\mathcal{R}_* T}{\mu V} dV \end{aligned}$$

For reversible change, $dQ = 0$, so

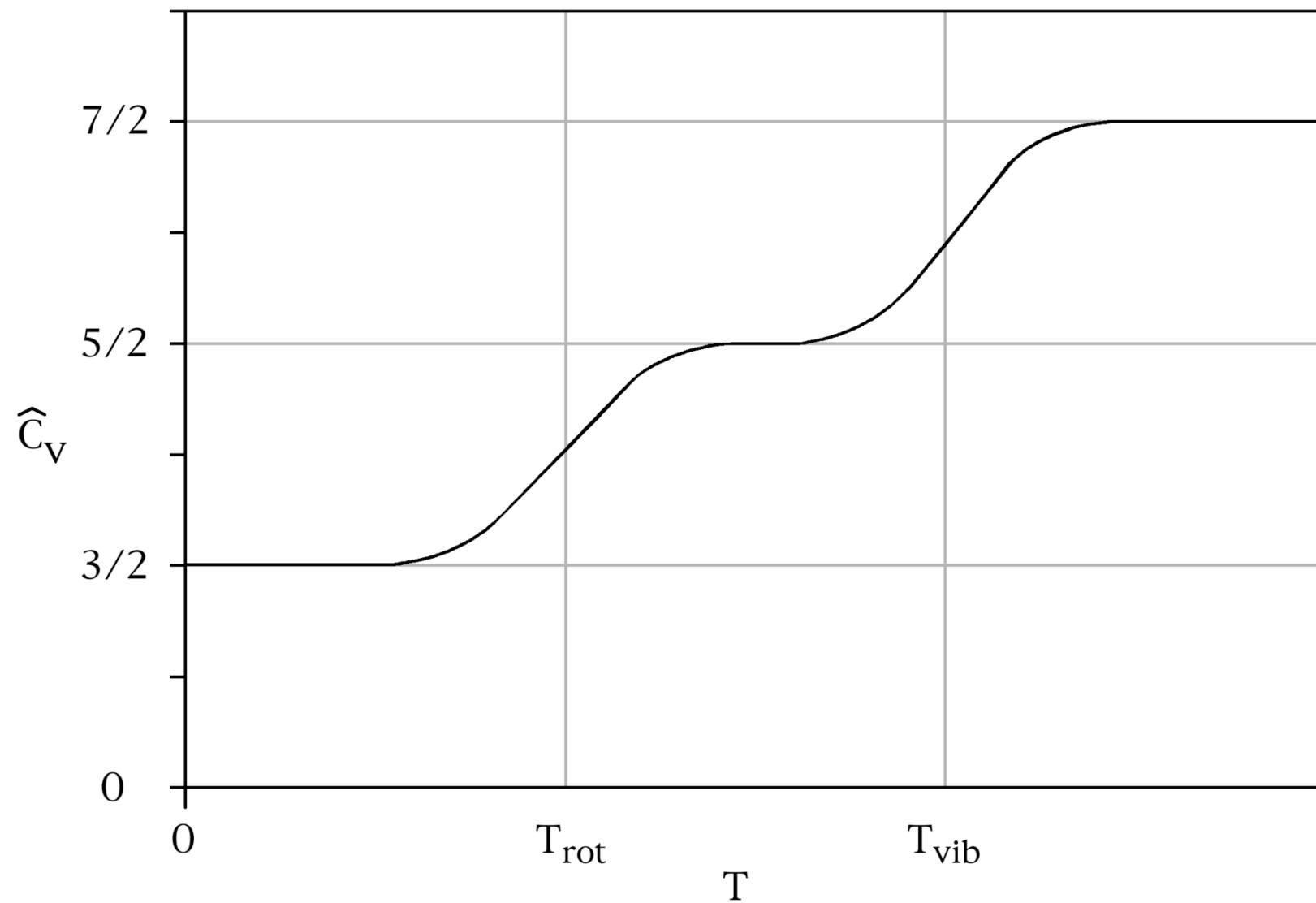
$$\begin{aligned} C_V dT + \frac{\mathcal{R}_* T}{\mu V} dV &= 0 \\ \Rightarrow C_V d(\ln T) + \frac{\mathcal{R}_*}{\mu} d(\ln V) &= 0 \\ \Rightarrow V &\propto T^{-C_V \mu / \mathcal{R}_*} \\ \Rightarrow p &\propto T^{1 + C_V \mu / \mathcal{R}_*} \end{aligned}$$

If there are f degrees of freedom in which the gas can store internal energy, then

$$C_V = f \frac{\mathcal{R}_*}{2\mu} \quad \left(\frac{1}{2} k_B T \text{ per particle per degree of freedom} \right)$$

monoatomic; $f = 3$

diatomic; $f = 5$ (if two rotational modes excited)



Return to ideal gas law

$$p = \frac{\mathcal{R}_*}{\mu} \rho T \quad \text{with } \rho = 1/V \text{ for a unit mass of fluid}$$

$$\Rightarrow pV = \frac{\mathcal{R}_* T}{\mu}$$

$$\Rightarrow p dV + V dp = \frac{\mathcal{R}_*}{\mu} dT$$

So:

$$\begin{aligned} dQ &= \frac{d\mathcal{E}}{dT} dT + p dV \\ &= \underbrace{\left(\frac{d\mathcal{E}}{dT} + \frac{\mathcal{R}_*}{\mu} \right)}_{\text{specific heat capacity at constant pressure, } C_p} dT - V dp \end{aligned}$$

We have shown that

$$C_p - C_V = \frac{\mathcal{R}_*}{\mu}$$

Define ratio of specific heat capacities,

$$\gamma \equiv \frac{C_p}{C_V} = \frac{f+2}{f}$$

So we can see

$$\begin{aligned} p \propto T^{1+C_V \mu / \mathcal{R}_*} &\Rightarrow p \propto T^{\gamma / (\gamma - 1)} \\ V \propto T^{-C_V \mu / \mathcal{R}_*} &\Rightarrow V \propto T^{-1 / (\gamma - 1)} \end{aligned} \quad \left. \begin{array}{l} \\ \end{array} \right\} p \propto \rho^\gamma$$

Fluid element behaves adiabatically if $p = K \rho^\gamma$ with $K = \text{constant}$

The fluid is isentropic if all fluid elements behave adiabatically with same K
($\ln K$ proportional to the entropy per unit mass)

D.2 : The Energy Equation

In general case, we will need to account for the heating and cooling of the fluid as it flows. We need to derive a PDE that describes energy conservation in the flow.

Again, start with the first law of thermodynamics but now do not assume $dQ=0$...

$$dQ = dE + \underbrace{pdV}_{dW = -pdV}$$

Apply this to a given fluid element (Lagrangian framework)

$$\frac{D\mathcal{E}}{Dt} = \boxed{\frac{DW}{Dt}} + \boxed{\frac{dQ}{dt}} \quad \xrightarrow{\hspace{1cm}} \boxed{\frac{D\mathcal{E}}{Dt} = \frac{p}{\rho^2} \frac{D\rho}{Dt} - \dot{Q}_{cool}}$$

$$\boxed{\frac{DW}{Dt} = -p \frac{D}{Dt} \left(\frac{1}{\rho} \right) = \frac{p}{\rho^2} \frac{D\rho}{Dt}}$$

$$\boxed{\frac{dQ}{dt} \equiv -\dot{Q}_{cool} \quad \text{rate of cooling per unit mass}}$$

Define total energy per unit volume: $E = \rho \left(\underbrace{\frac{1}{2} u^2}_{\text{kinetic}} + \underbrace{\Psi}_{\text{potential}} + \underbrace{\mathcal{E}}_{\text{internal}} \right)$

Evaluate Lagrangian changes of E

$$\frac{D E}{D t} = \frac{D \rho}{D t} \frac{E}{\rho} + \rho \left(\mathbf{u} \cdot \frac{D \mathbf{u}}{D t} + \frac{D \Psi}{D t} + \frac{p}{\rho^2} \frac{D \rho}{D t} - \dot{Q}_{\text{cool}} \right) \quad (**)$$

with

$$\frac{D E}{D t} \equiv \frac{\partial E}{\partial t} + \mathbf{u} \cdot \nabla E \quad \rho \frac{D \mathbf{u}}{D t} = -\nabla p + \rho \mathbf{g} = -\nabla p - \rho \nabla \Psi$$

$$\frac{D \rho}{D t} = -\rho \nabla \cdot \mathbf{u} \quad \frac{D \Psi}{D t} \equiv \frac{\partial \Psi}{\partial t} + \mathbf{u} \cdot \nabla \Psi$$

Substituting into (**):

$$\begin{aligned}\frac{DE}{Dt} = & -\frac{E}{\rho}\rho\nabla \cdot \mathbf{u} - \mathbf{u} \cdot \nabla p - \rho\mathbf{u} \cdot \nabla\Psi + \rho\frac{\partial\Psi}{\partial t} \\ & + \rho\mathbf{u} \cdot \nabla\Psi - \frac{p}{\rho}\rho\nabla \cdot \mathbf{u} - \rho\dot{Q}_{\text{cool}}\end{aligned}$$

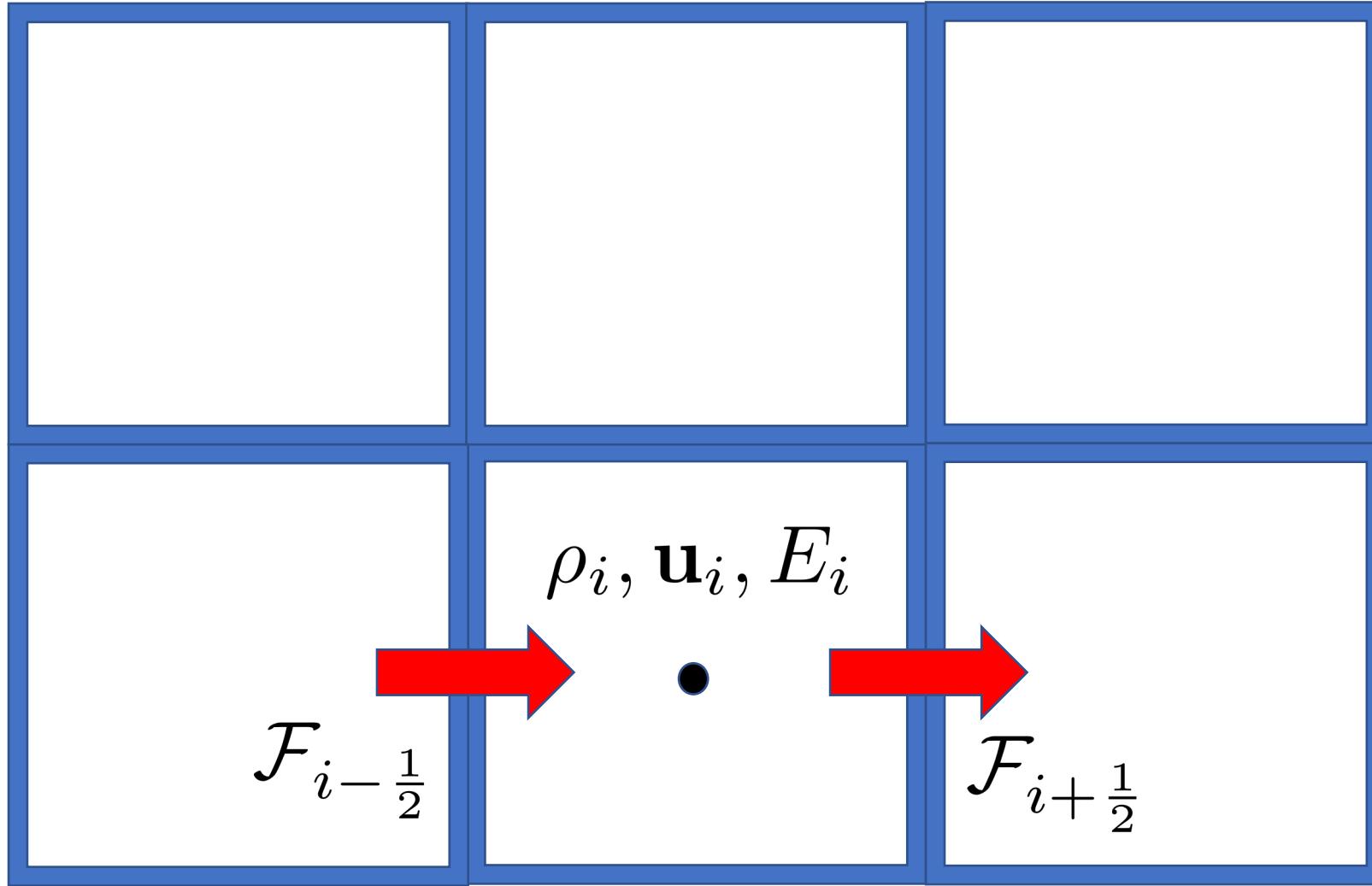
$$\Rightarrow \frac{\partial E}{\partial t} + \mathbf{u} \cdot \nabla E = -(E + p)\nabla \cdot \mathbf{u} - \mathbf{u} \cdot \nabla p + \rho\frac{\partial\Psi}{\partial t} - \rho\dot{Q}_{\text{cool}}$$

$$\boxed{\frac{\partial E}{\partial t} + \nabla \cdot [(E + p)\mathbf{u}] = \rho\frac{\partial\Psi}{\partial t} - \rho\dot{Q}_{\text{cool}}}$$

ENERGY EQUATION

LHS has the standard “conservative form” – changes of total energy density due to divergence in the flux of enthalpy ($E+p$).

Gravitational field is only a source of total energy if it is changing over time.



$$\mathcal{F} = (E + p)u_x$$

$$\frac{\partial E}{\partial t} = -\nabla \cdot ((E + p)\mathbf{u}) \quad \Rightarrow \quad \frac{E_i(t + \delta t) - E_i(t)}{\delta t} \Delta V = -(\mathcal{F}_{i+\frac{1}{2}}(t) - \mathcal{F}_{i-\frac{1}{2}}(t)) \Delta A + \dots$$