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Recap

* Continuity equation (conservation of mass)
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Today’s lecture

 Gravitation (Chapter C)

 Basics (C.1)
e Gravitational potential and Poisson’s Equation
* Cases with special symmetries

e Gravitational potential energy (C.2+C.3)
* The Virial Theorem (C.4)



C.1: Recap of basics

Define gravitational potential W : force per unit mass g given by |g = —VV

Conservative force... work done independent of path:

_/rocg.dlz/rocV\Il-dl:\Il(oc)—‘l’(r)

Newton’s law for point mass
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* So, we have

V-g=-V2U=—47Gp PoISSON’S EQUATION

* Orinintegral form:

/ V-ng:—47rG/ pdV
V V

N /g-dS:—47rGM
S



Integral form very useful for computing g when there are symmetries
that permit trivial evaluation of surface integral...

* Example 1 : Spherically-symmetric system

/g .dS = —4xG M(r)

Inass
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GM(r)

g = ;I
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g = -GMr/r2







' . . . .
. . .
3 , & . '
‘ ) o . :
. B -

" Observations -
. from starlight

.
LU e
4 ’
. o
.
o '
)
d .
. ..
‘ ‘
I
. A .
o

Observatlons from L

21 cm hydrogen e

¢ .
a .
LSRN
or,
v, 0
o
» .
.
+e
.
-
" &
Y
.

Expected from
the V|S|ble dISk

20,900 30 000 40,000 ;



* Example 2 : Cylindrically-symmetric system

]g-dS:—47rG/ HdV
vV

= — 27 Rl|g| = —4nGl-  M(r)
——

enclosed mass
per unit length

2GM(R)
- R
R

= g =



* Example 3 : Planar geometry with reflection symmetric in z=0
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C.2 : Potential of spherically-symmetric system

* For spherically-symmetric system,

. dWw
g = —|glt, gl = / dmp(r r’*dr’ = ar
] r
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U = /r() {/ 47Tp )7«’2 dr’ }d’l“ Defining zero of potential at infinity
o 70 G
{ / 47T } + / —47Tp(7‘)7“2 dr Integrate by parts
r=0o0 Joo T
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Evaluate assumlng
M(r) > 0asr— 0



C.2 : Potential of spherically-symmetric system

* For spherically-symmetric system,

. dWw
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C.3 : Gravitational Potential Energy

Thought experiment to assess gravitational potential energy of system of particles :
consider dismantling a system of point masses, taking them to infinity one-by-one.

Can then see
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Let us again evaluate this for spherical system. We have:
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* So...
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* Integrate by parts again:
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* This last form has a nice interpretation : evaluate energy by “peeling” away shells.



C.4 : Virial Theorem

Virial Theorem is a powerful result relevant to isolated gravitating systems.
Here, we will examine the scalar virial theorem (3 general tensor virial theorem).

Consider gravitating system of many particles of mass m. and position r;,. Start by
considering the time derivative of the quantity I; = m;r?
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Sum over particles

1d%1
5@ = Z(I‘z . FZ) + 2T where I = ZL m/r’? '
V. the virial
(R. Clausius)
System is isolated, so F, = Z]- F;; with F;; = —F;
Taking particles in pairs, we have
V=2 > Fij-(ri—r)
i g>i
Assume forces are local (r; = r;) or gravitational
Gm;m;
Fz’j = — ; JI‘Z'J' where rj; =I; — Iy



So:

ZZ Gm; mJ

T J>1

i.e., the virial is simply the gravitational potential energy.

Putting into previous result:

1d21
= 9T+Q
2 dt2

Now assume that the system is in a state of dynamical equilibrium... LHS zero.

2T +Q =0 THE VIRIAL THEOREM




Implications of the Virial Theorem

1. Connects mass, velocity, and size of gravitating system:
1 o 1 2
T = Z§mzvz = §M<v )
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Perseus cluster (X-ray image w/Chandra; Fabian et al. 2006)
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Perseus cluster (X-ray image w/Chandra; Fabian et al. 2006)



2. Gravitating systems have negative specific “heat” capacity

Eiotal =1+ ()
1 GM
= EBiotal = —1 = _§M<U2> — —
7

Broadly, this is why gravitation creates structure from initially smooth conditions

Dramatic manifestation is the gravothermal collapse (e.g. globular clusters).

Note that, for gravitating gas ball, T is directly related to gas temperature






evaporate” and carry away energy

System shrinks and “heats” up

o

Fastest stars

Runaway process (eventually stabilized by binary formation)



