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Recap

* Fluid as a continuous media that flows (fluid elements)
* Collisional vs collisionless fluids

* Eulerian and Lagrangian frameworks

Dt = E + u-Vao
HH
. v “convective”
Lagrangian . Eulerian derivative
time derivative time derivative

* Concept of streamlines, particle paths and streaklines



Today’s lecture

e Continue with our formulation of the fluid equations...

» Will establish a set of partial differential equations and constitutive relations that
describe the time-changing properties of the fluid p(r,t), p(r,t), u(r,t)...

* Here, we will focus on non-relativistic fluids
* Generalization to relativistic systems is straightforward in principle

e Conservation of mass (B.3)
e Continuity equation for fluid

e Conservation of momentum (B.4)
* Pressure and stress tensor
* Momentum equation for fluid
* Concept of ram-pressure



B.3 : Conservation of Mass

rate of change of mass in V' = — rate that mass is flowing out across S

8/pdV——/pu-dS
N /6dV— /v (pu) dV

- )

|
+
<

«(pu) =0 EULERIAN CONTINUITY EQUATION




Lagrangian view: V.pu=—pV u—u-Vp
A

D 0 \
Dl[t) 8§+u V,()——V pu+u-Vp=—pV-.-u

D
Di) +pV-.-u=0 LAGRANGIAN CONTINUITY EQUATION

Important special case is an incompressible fluid:

Do _ = V-u=0
Dt Tu=u



B.4 : Conservation of Momentum

* Recall elementary concept of pressure: force dF acting on one side of

surface dS is JF — pdS

* More generally, it is possible to have forces that are not-perpendicular
to the surface (e.g. viscous stresses), so we will have a tensor relation

sz — O'idej

 Simple isotropic fluid pressure corresponds to oij = pdij



* Examine momentum conservation for fluid element subject to
pressure forces and an external gravitational field g. Pick some
arbitrary direction n in which to project forces
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So, equation of motion for fluid element is
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This is just “F=ma” for the fluid element.
See importance of pressure gradients




Let’s make explicit the conservation law:
* Notational convenience:
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d(pu) = =V - (pu®@u+pl) +pg
R e

flux of
momentum
density

Op = —V - (pu)



* Example — flow in a pipe

i, 0
ogij = |0 p + pu?
0 0







Galaxy ESO137-001 in the cluster Abell 3627 (Sun et al. 2007)
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