

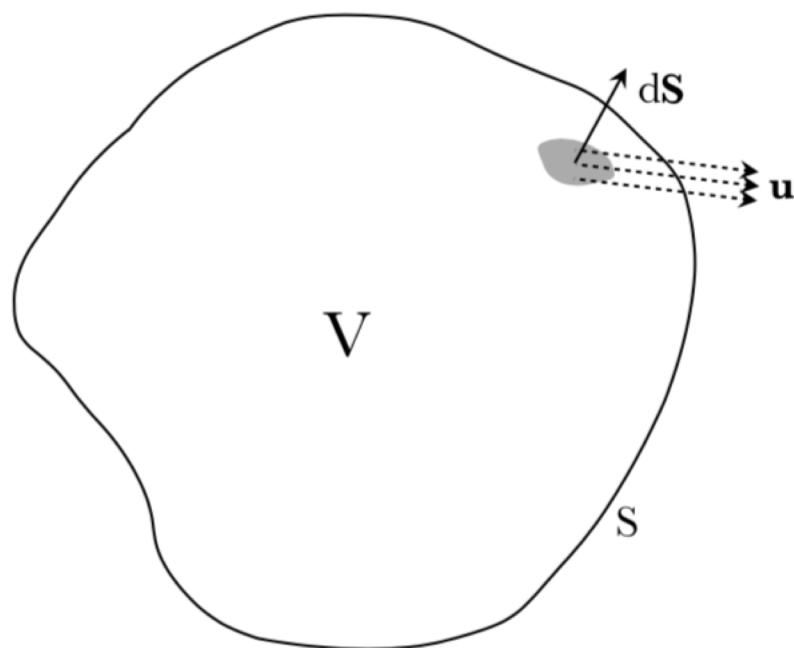
Part II Astrophysics/Physics

Astrophysical Fluid Dynamics

Lecture 2 : Continuity and Momentum Equations

Recap

- Fluid as a continuous media that flows (fluid elements)
- Collisional vs collisionless fluids
- Eulerian and Lagrangian frameworks


$$\underbrace{\frac{DQ}{Dt}}_{\substack{\text{Lagrangian} \\ \text{time derivative}}} = \underbrace{\frac{\partial Q}{\partial t}}_{\substack{\text{Eulerian} \\ \text{time derivative}}} + \underbrace{\mathbf{u} \cdot \nabla Q}_{\substack{\text{"convective" derivative}}}$$

- Concept of streamlines, particle paths and streaklines

Today's lecture

- Continue with our formulation of the fluid equations...
 - Will establish a set of partial differential equations and constitutive relations that describe the time-changing properties of the fluid $\rho(\mathbf{r},t)$, $p(\mathbf{r},t)$, $\mathbf{u}(\mathbf{r},t)$...
 - Here, we will focus on non-relativistic fluids
 - Generalization to relativistic systems is straightforward in principle
- Conservation of mass (B.3)
 - Continuity equation for fluid
- Conservation of momentum (B.4)
 - Pressure and stress tensor
 - Momentum equation for fluid
 - Concept of ram-pressure

B.3 : Conservation of Mass

rate of change of mass in $V = -$ rate that mass is flowing out across S

$$\begin{aligned}\frac{\partial}{\partial t} \int_V \rho dV &= - \int_S \rho \mathbf{u} \cdot d\mathbf{S} \\ \Rightarrow \int_V \frac{\partial \rho}{\partial t} dV &= - \int_V \nabla \cdot (\rho \mathbf{u}) dV \\ \Rightarrow \int_V \left(\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) \right) dV &= 0.\end{aligned}$$

$$\boxed{\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0}$$

EULERIAN CONTINUITY EQUATION

Lagrangian view:

$$-\nabla \cdot \rho \mathbf{u} = -\rho \nabla \cdot \mathbf{u} - \mathbf{u} \cdot \nabla \rho$$

$$\frac{D\rho}{Dt} = \frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho = -\nabla \cdot \rho \mathbf{u} + \mathbf{u} \cdot \nabla \rho = -\rho \nabla \cdot \mathbf{u}.$$

$$\boxed{\frac{D\rho}{Dt} + \rho \nabla \cdot \mathbf{u} = 0}$$

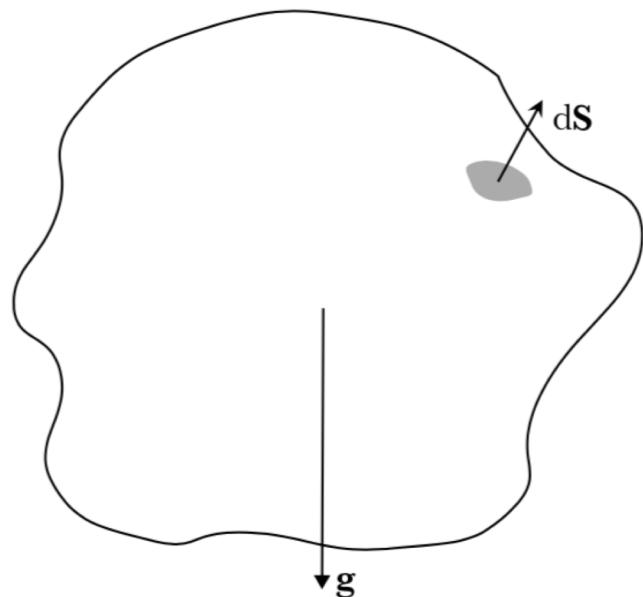
LAGRANGIAN CONTINUITY EQUATION

Important special case is an **incompressible fluid**:

$$\frac{D\rho}{Dt} = 0. \quad \Leftrightarrow \quad \nabla \cdot \mathbf{u} = 0.$$

B.4 : Conservation of Momentum

- Recall elementary concept of pressure: force $d\mathbf{F}$ acting on one side of surface $d\mathbf{S}$ is


$$d\mathbf{F} = p d\mathbf{S}$$

- More generally, it is possible to have forces that are not-perpendicular to the surface (e.g. viscous stresses), so we will have a tensor relation

$$dF_i = \sigma_{ij} dS_j$$

- Simple isotropic fluid pressure corresponds to $\sigma_{ij} = p\delta_{ij}$

- Examine momentum conservation for fluid element subject to pressure forces and an external gravitational field \mathbf{g} . Pick some arbitrary direction \mathbf{n} in which to project forces

$$\mathbf{F} \cdot \hat{\mathbf{n}} = - \int_S p \hat{\mathbf{n}} \cdot d\mathbf{S} = - \int_V \nabla \cdot (p \hat{\mathbf{n}}) dV = - \int_V \hat{\mathbf{n}} \cdot \nabla p dV$$

So, equation of motion for fluid element is

$$\left(\frac{D}{Dt} \int_V \rho \mathbf{u} dV \right) \cdot \hat{\mathbf{n}} = - \int_V \hat{\mathbf{n}} \cdot \nabla p dV + \int_V \rho \mathbf{g} \cdot \hat{\mathbf{n}} dV$$

$$\Rightarrow \frac{D}{Dt} (\rho \mathbf{u} \delta V) \cdot \hat{\mathbf{n}} = - \delta V \hat{\mathbf{n}} \cdot \nabla p + \delta V \rho \mathbf{g} \cdot \hat{\mathbf{n}}$$

$$\Rightarrow \hat{\mathbf{n}} \cdot \mathbf{u} \underbrace{\frac{D}{Dt} (\rho \delta V)}_{=0 \text{ by mass conservation}} + \rho \delta V \hat{\mathbf{n}} \cdot \frac{D \mathbf{u}}{Dt} = - \delta V \hat{\mathbf{n}} \cdot \nabla p + \delta V \rho \mathbf{g} \cdot \hat{\mathbf{n}}$$

$$\Rightarrow \delta V \hat{\mathbf{n}} \cdot \left(\rho \frac{D\mathbf{u}}{Dt} + \nabla p - \rho \mathbf{g} \right) = 0 \quad \forall \delta V, \hat{\mathbf{n}}$$

$$\Rightarrow \boxed{\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \rho \mathbf{g}} \quad \text{LAGRANGIAN MOMENTUM EQUATION}$$

$$\boxed{\rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \rho \mathbf{g}} \quad \text{EULERIAN MOMENTUM EQUATION}$$

This is just “F=ma” for the fluid element.

See importance of pressure gradients

Let's make explicit the conservation law:

- Notational convenience:

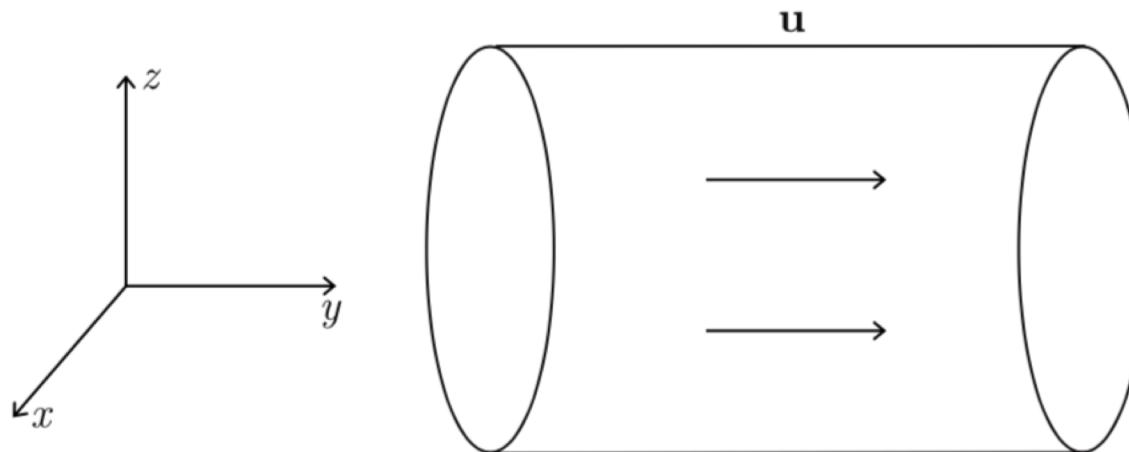
$$\frac{\partial}{\partial t} \equiv \partial_t \quad \quad \frac{\partial}{\partial x_i} \equiv \partial_i$$

- Then

$$\begin{aligned}
 \frac{\partial}{\partial t}(\rho u_i) &\equiv \partial_t(\rho u_i) \\
 &= \boxed{\rho \partial_t u_i} + \boxed{u_i \partial_t \rho} \\
 &= \boxed{-\rho u_j \partial_j u_i - \partial_j p \delta_{ij} + \rho g_i} - u_i \partial_j(\rho u_j)
 \end{aligned}$$

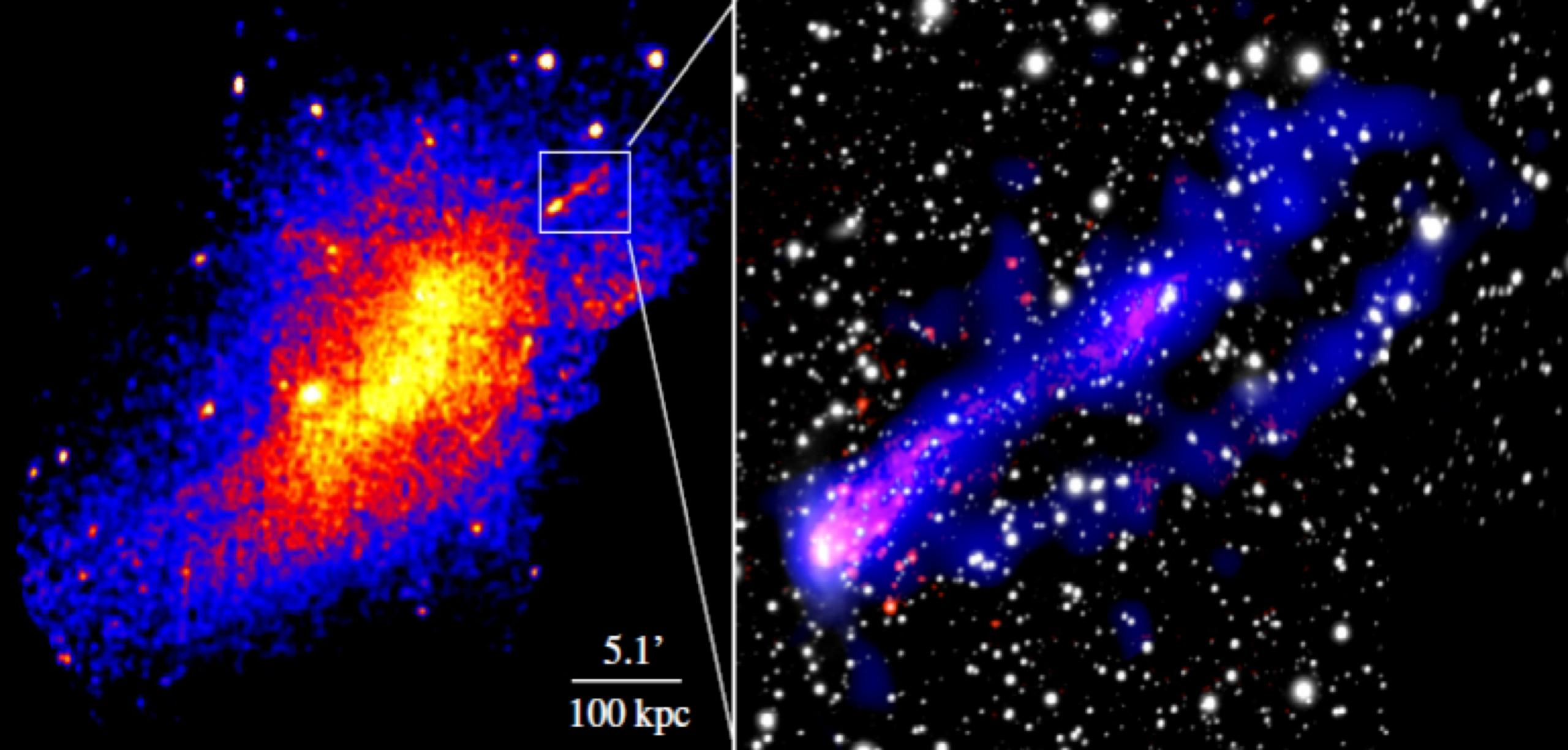
mtm equation

continuity equation

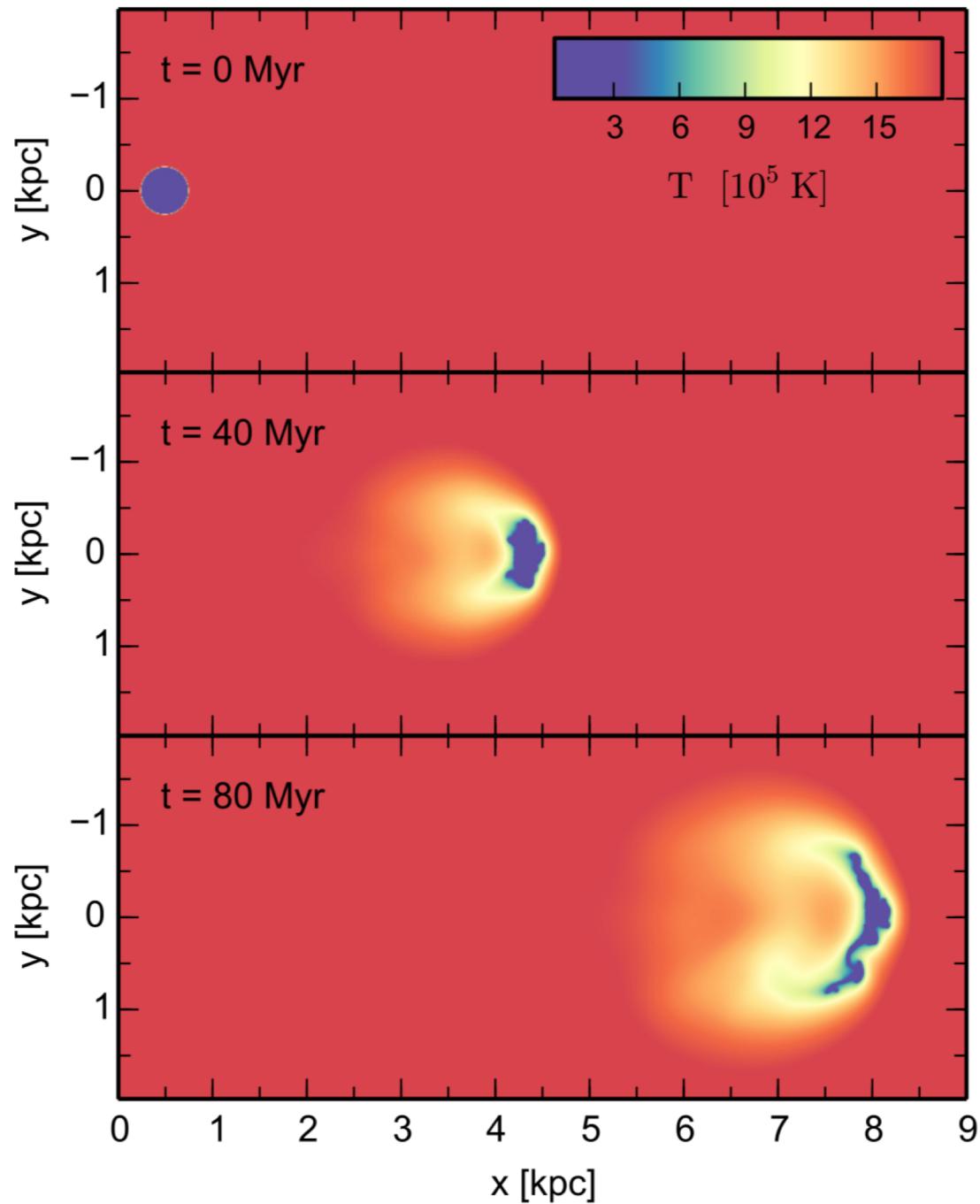

$$\Rightarrow \partial_t(\rho u_i) = -\partial_j \left(\underbrace{\rho u_i u_j}_{\substack{\text{stress tensor} \\ \text{due to bulk flow} \\ \text{‘Ram Pressure’}}} + \underbrace{p \delta_{ij}}_{\substack{\text{stress tensor} \\ \text{due to random} \\ \text{thermal motions}}} \right) + \rho g_i = -\partial_j \sigma_{ij} + \rho g_i$$

$\sigma_{ij} = p \delta_{ij} + \rho u_i u_j$

$$\partial_t(\rho \mathbf{u}) = -\nabla \cdot \underbrace{(\rho \mathbf{u} \otimes \mathbf{u} + p \underline{\underline{\mathbf{I}}})}_{\text{flux of momentum density}} + \rho \mathbf{g}$$


$$\partial_t \rho = -\nabla \cdot (\rho \mathbf{u})$$

- Example – flow in a pipe


$$\sigma_{ij} = \begin{pmatrix} p & 0 & 0 \\ 0 & p + \rho u^2 & 0 \\ 0 & 0 & p \end{pmatrix}$$

Galaxy ESO137-001 in the cluster Abell 3627 (Sun et al. 2007)

