Part II Astrophysics/Physics

Astrophysical Fluid Dynamics

Lecture 1: Introduction

Administrative details

- Course materials accessible via moodle:
 - 24 lectures (recordings)
 - Slide sets for each lecture
 - PDF notes companion to the lectures (not intended to be complete)
 - Four examples sheets

Books:

- Course closely follows "Principles of Astrophysical Fluid Dynamics" by C.J.Clarke and R.F.Carswell
- Other good reference books:
 - "Fluid Mechanics" (2nd Ed.) by L.D.Landau & E.M.Lifshitz
 - "The Physics of Fluids & Plasmas: An Introduction for Astrophysicists" by A.Rai Choudhuri

Today's Lecture

- A : Basic Principles
 - What is a fluid?
 - Where do we find fluids in astrophysics?
 - Concept of a fluid element
 - Collisional and collisionless fluids

- B: Formulation of the Fluid Equations (Part I)
 - Eulerian vs Lagrangian frameworks
 - Descriptions of the kinematics (streamlines, particle paths & streaklines)

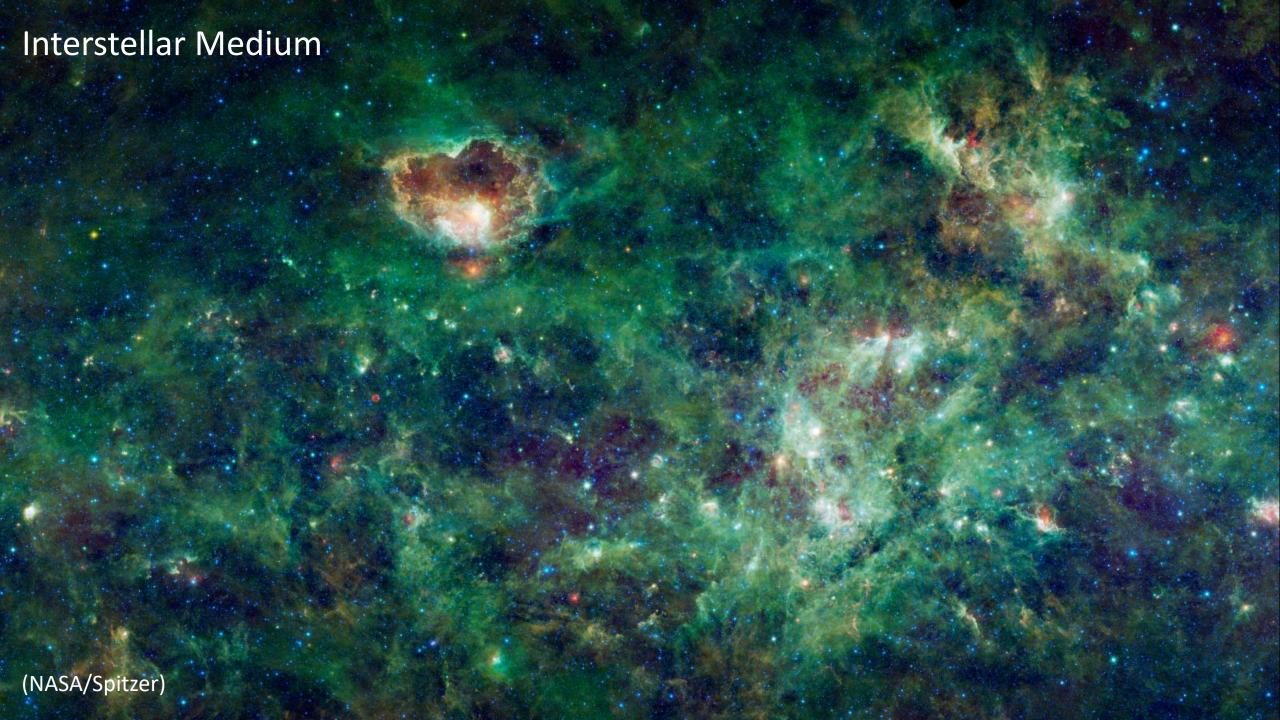
Chapter A Basic Principles

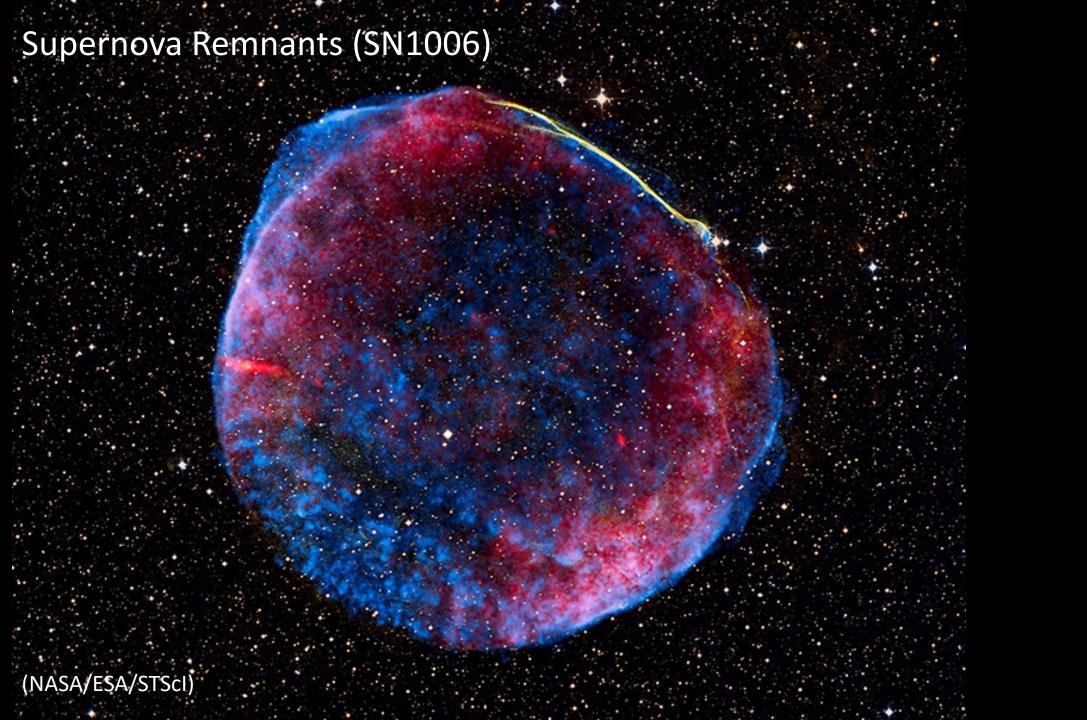
A: Introduction

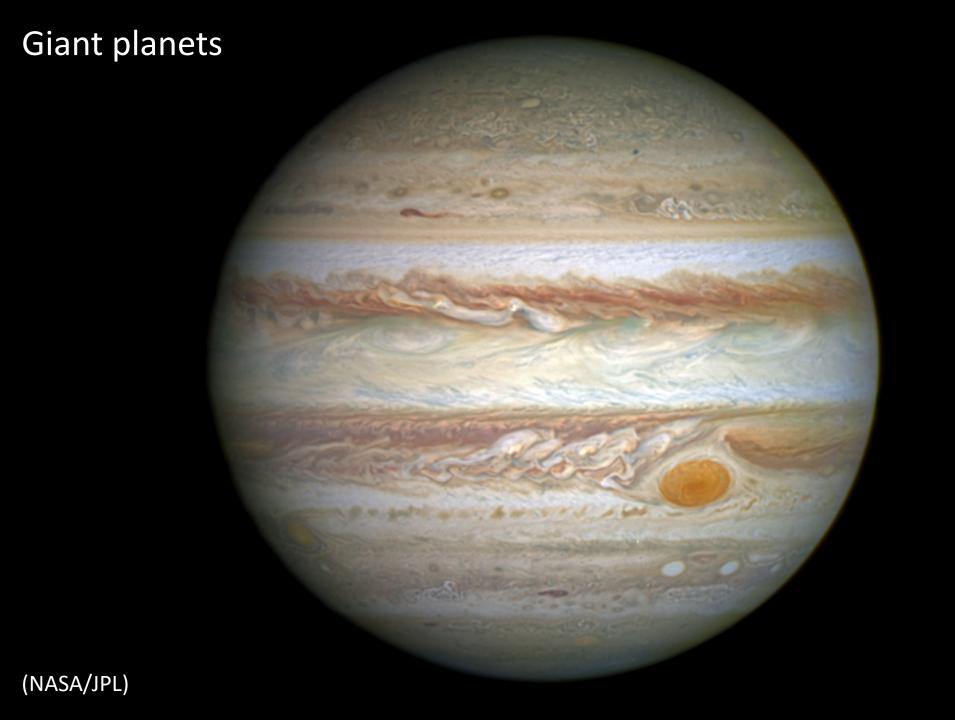
- Fluid flows!
- Fluid is described as continuous medium
 - Possesses well-defined macroscopic properties (density, velocity, pressure, ...)
 - Can approach fluid dynamics from a kinetic theory perspective

Where do we find fluids in astrophysics?

Internal structure and dynamics of stars (GONG/AURA/NSF)







Fluid element: a region of fluid (size ℓ_{region}) that is

• Small enough that every macroscopic property q is approx constant

$$l_{\rm region} \ll l_{\rm scale} \sim \frac{q}{|\boldsymbol{\nabla} q|}$$

Large enough to contain large numbers of particles

$$nl_{\rm region}^3 \gg 1$$

(n is number of particles per unit volume)

If such fluid elements can be defined, continuum description is valid. Otherwise, must describe the system at the particle-level.

A.2: Collisional vs collisionless fluids

Mean-free-path λ : typical distance travelled by a particle before its direction of travel is significantly changed due to particle collisions.

In a **collisional fluid**, we have $\ell_{\text{scale}} >> \lambda$. Then...

- Particles locally attain velocity distribution that maximizes entropy.
- \bullet So, well-defined velocity distribution and pressure as function of density ρ and temperature T

$$p=p(
ho,T)$$
 Equation of state

Almost all fluids considered in this course are collisional.

- In a collisionless fluid $\ell_{\text{scale}} << \lambda$. Then
 - Velocity distribution of particles not determined locally
 - Depends on initial conditions and non-local conditions
 - Adds significant complexity to treatment!

Examples of collisionless fluids

- "Stellar fluid" in a galaxy
- Dark matter
- Intracluster medium of galaxy clusters (transitional case)

Intracluster medium: typical properties

- n_e ~ 0.001-0.1cm ⁻³
- T~10⁷-10⁸K (fully ionized)
- R~1Mpc with ~100kpc core

(1pc=3.26 light years)

Particle-particle collisions due to Coulomb interactions

$$\lambda_e = \frac{3^{3/2} (k_B T_e)^2 \epsilon_0^2}{4\pi^{1/2} n_e e^4 \ln \Lambda}$$

$$\lambda_e = \lambda_i \approx 23 \text{ kpc} \left(\frac{T_e}{10^8 \text{ K}}\right)^2 \left(\frac{n_e}{10^{-3} \text{ cm}^{-3}}\right)^{-1}$$

Chapter B: Formulation of the Fluid Equations

B.1: Eulerian vs Lagrangian framework

Eulerian description: consider the properties of the fluid as a function of time in a frame of reference fixed in space

$$\rho(\mathbf{r},t), \quad p(\mathbf{r},t), \quad T(\mathbf{r},t), \quad \mathbf{v}(\mathbf{r},t)$$

Lagrangian description: consider the properties of a particular fluid element as a function of time.

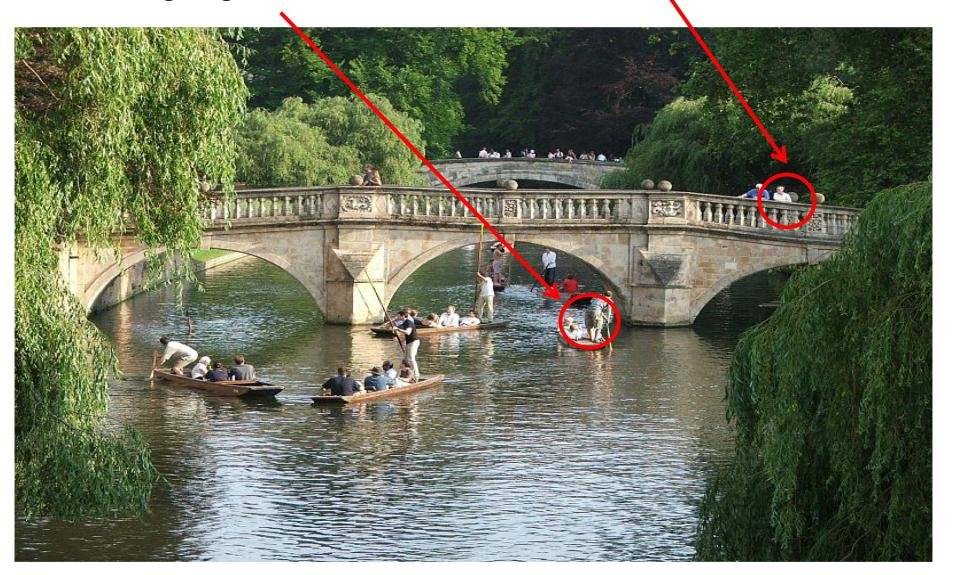
These frameworks underlie the two principle methods of computational fluid dynamics:

- Eulerian → grid-codes (space tiled by a "grid" and fluid flows through that grid)
- Lagrangian → smoothed particle codes (fluid elements treated as "smoothed particles" that propagate through continuous space.

Formulation of fluid equations

Lagrangian view

Eulerian view



Consider fluid element with quantity Q:

- Fluid elements moves from $\mathbf{r} \rightarrow \mathbf{r} + \delta \mathbf{r}$ in time $t \rightarrow t + \delta t$
- So, rate of change of Q for fluid element is

$$\frac{\mathrm{D}Q}{\mathrm{D}t} = \lim_{\delta t \to 0} \left[\frac{Q(\mathbf{r} + \delta \mathbf{r}, t + \delta t) - Q(\mathbf{r}, t)}{\delta t} \right]$$

But

$$Q(\mathbf{r} + \delta \mathbf{r}, t + \delta t) = Q(\mathbf{r}, t) + \frac{\partial Q}{\partial t} \delta t + \delta \mathbf{r} \cdot \nabla Q + \mathcal{O}(\delta t^2, |\delta \mathbf{r}|^2, \delta t |\delta \mathbf{r}|)$$

So

$$\frac{\mathrm{D}Q}{\mathrm{D}t} = \lim_{\delta t \to 0} \left[\frac{\partial Q}{\partial t} + \frac{\delta \mathbf{r}}{\delta t} \cdot \nabla Q + \mathcal{O}(\delta t, |\delta \mathbf{r}|) \right]$$

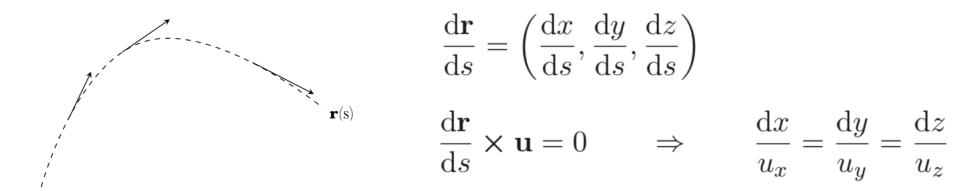
$$\frac{\overline{\mathrm{D}Q}}{\overline{\mathrm{D}t}} = \underbrace{\frac{\partial Q}{\partial t}}_{\text{Lagrangian time derivative}} + \underbrace{\mathbf{u} \cdot \nabla Q}_{\text{"convective" derivative"}}$$

$$\mathbf{u} \cdot \nabla \equiv u_x \frac{\partial}{\partial x} + u_y \frac{\partial}{\partial y} + u_z \frac{\partial}{\partial z}$$

B.2: Kinematics

Definitions:

• Streamlines: family of curves that are instantaneously tangent to velocity vector of the flow $\mathbf{u}(\mathbf{r},t)$



• Particle paths: paths through space taken by individual fluid elements; given by solution of

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \mathbf{u}(\mathbf{r}, t)$$

• **Streaklines**: locus of points of all fluid elements that have passed through a given point in the past

$$\mathbf{r}(t) = \mathbf{r}_0$$

(imagine the point as a source of "dye" or "smoke").

Streamlines, particle paths, and streaklines all coincide if the flow is steady (i.e. $\frac{\partial \mathbf{u}}{\partial t} = 0$).

Streamlines past an airfoil

