

Steve Gratton

25 July 2009

• • Inflation

Successes

- Homogeneity
 - A fraction more time before the big bang
- Inhomogeneity
 - Small quantum fluctutations

• Problems

- Initial conditions
 - How did inflation start?

Stochastic Eternal Inflation

Successes

- Homogeneity
 - Lots more time before the big bang
- Inhomogeneity
 - Large quantum fluctutations

• Problems

- Initial conditions
 - Who cares?

Volume-Weighting

- Basically "rewards" histories that inflate a lot
- Perhaps related to "spatial averaging"
- Perhaps related to the anthropic principle: more inflation might lead to more final volume and so to more observers

The Youngness Paradox (1)

• "Normal" version:

- Universes that have evolved less will have formed later, so there should be more of them
 - A "typical" low-energy observer should be the first one in a pocket, and so say see as hot a CMB as possible

The Youngness Paradox (2)

• "Extreme" version:

- Should crazy things have happened in our past, with the skewed statistics dominating over normal dynamics?
 - A "typical" low-energy observer should see Planck-scale inflation just to the past!
 - So no nice density perturbations...

Stochastic Inflation

• We start with the slow-roll equation...

$$\dot{\phi} + \frac{V_{,\phi}}{3H} = 0$$
 $(H^2 = V(\phi)/3)$

• ...and add noise:

$$\dot{\phi} + \frac{V_{,\phi}}{3H} = \frac{H^{3/2}}{2\pi}n(t)$$

- Trying to solve this directly is the Langevin approach
 - Cf. Heisenberg approach to QM
- Can also convert this into a PDE for the probability density; the *Fokker-Planck* approach
 - Cf. Schrodinger approach to QM

New Approach: Path Integral, cf Feynman

• Consider a general path $\phi(t)$.

- After a short time the field will be at $\phi + \dot{\phi} \Delta t$.
- According to the Langevin equation, the field "should" change by

$$-\frac{V_{,\phi}}{3H}\Delta t,$$

with a spread of $H^3 \Delta t / 4\pi^2$.

•••

So, the probability of this segment of history occurring is:

$$\sqrt{rac{2\pi}{H^3\Delta t}}e^{-2\pi^2\left(\dot{\phi}+V_{,\phi}/3H
ight)^2\Delta t/H^3}d\phi.$$

• Multiplying for all the segments and taking the limit $\Delta t \rightarrow 0$, we obtain:

Probability of a history... $P[\phi(t)] \propto e^{-S[\phi(t)]}$ with $S[\phi(t)] \equiv \int_{0}^{T} dt L(t),$ where $L = \frac{2\pi^{2}(\dot{\phi} + V_{,\phi}/3H)^{2}}{H^{3}},$

Addition of the Volume-Weighting Term

 Just need to multiply each trajectory by its volume, namely:

$$a^3(T) = e^{3\int H(\phi(t))dt}$$

• So, putting it together we obtain...

The Measure for Volume-Weighted Stochastic Inflation $P_{V}[\phi(t)] \propto e^{-S_{V}[\phi(t)]}$ with $S_V[\phi(t)] = \int_{0}^{T} dt L_V(t)$, where $L_V = \frac{2\pi^2 (\dot{\phi} + V_{,\phi}/3H)^2}{H^3} - 3H$.

Now we can treat vol. weighting seriously!

Simplification to Quartic Case

• If the potential is $\lambda \phi^4$,

a change of variables simplifies the lagrangian to

$$L_V \propto \frac{\left(\dot{R}-R\right)^2}{2} - \frac{3}{R},$$

where $R \propto 1/\phi^2$.

Get Approximate Results via Saddle Point Histories

As the time interval increases, such solutions stop existing!

Where do we have to go? Into the complex plane!

Loitering and Attractors, or Why Eternal Inflation Forgets

• • And Inflation Ends Classically! $\int_{x,r}^{x} \operatorname{Re}(\phi)$

t

Conclusions

- There exists a powerful path integral formulation of stochastic eternal inflation,
 - in which volume-weighting can naturally be incorporated and taken seriously.
- Complex saddle points emerge, that are vital in allowing one to see
 - eternal inflation depends only weakly on initial conditions
 - that the "extreme" youngness paradox doesn't occur

(...very hard with Langevin/Fokker-Planck)

Scale Factor cutoff

Reflection: A democracy of measures?

- As inflation ends in the same way basically independently of final time, we've seen that the much-maligned proper time volume weighting can be used to answer at least this question unambiguously...
- Perhaps the "measure problem" is as much a problem with specific questions as for the weighting schemes themselves!