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Abstract

The standard ΛCDM cosmological model, based on Einstein’s theory of Gen-
eral Relativity, explains the late-time acceleration of the Universe by introducing
a cosmological constant to represent dark energy. The observed tension between
the value of the Hubble constant obtained using late-time and early-time measure-
ments, alongside other problems with ΛCDM, has emphasized the need to under-
stand the true nature of this dark energy. In this work, the gravitational theory itself
is modified to explain the observed acceleration of the Universe. In particular, the
f (T, TG) modification of the Teleparallel Equivalent of General Relativity, based on
the torsion scalar T and the invariant TG which is the teleparallel equivalent to the
Gauss-Bonnet term, is studied through the use of dynamical systems. By analysing
the phase portraits of differential equations encompassing the dynamics of the four
chosen models, or forms of f (T, TG), their predicted cosmological evolution is in-
vestigated and compared to observations to study the viability of this modification.
We find that all the models can result in a dark-energy-dominated universe, in line
with observations. The dynamics of a cosmological constant can be reproduced
with phantom-like and quintessence-like solutions also possible. Finally, by study-
ing the behaviour at infinity, we see that the models can also result in past/future
singularities.
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1

Introduction

Einstein’s theory of general relativity (GR), first published in 1915 (Einstein, 1915), rev-
olutionised the way we understand gravity, which underpins our understanding of the
Universe. Until then, gravity was understood in the simple Newtonian way, an action-
at-a-distance attractive force between two massive objects, inversely proportional to the
square of their distance apart. Einstein not only improved upon Newton’s theory, but
completely reinvented it. He explained gravity through the curvature of spacetime;
matter curves spacetime and this curvature dictates how matter moves. Since its publi-
cation, GR has passed every experimental test it was subjected to, the first of which was
explaining the anomalous perihelion precession of Mercury’s orbit (Turyshev, 2008).
Up until the present day, more and more predictions of this theory are being confirmed
by observations as our experimental tools are getting even more refined. One of these
latest major results was the first image of a black hole obtained by the Event Horizon
Telescope (EHT) collaboration (Akiyama et al., 2019). These astronomical objects were
predicted by Einstein in places where the curvature of spacetime becomes so large that
not even light can escape. In 2016, another of Einstein’s predictions was confirmed
by observations. The Laser Interferometer Gravitational-Wave Observatory (LIGO) de-
tected gravitational waves, which are ripples in the fabric of spacetime itself, originating
from the merger of two black holes (Abbott et al., 2016). This was not only a triumph
for the LIGO experiment, whose mirrors can detect a change in distance 10,000 times
smaller than a proton, but also for GR. All these successes have cemented this theory
as our best description of gravity. But the theory is not without its flaws, and the search
for a modified theory of gravity has been gathering steady momentum in the past few
years for good reasons (Clifton et al., 2012).

The first crack in the theory appeared with the cosmological constant Λ. When
Einstein was deriving his gravitational theory, the Universe was assumed to be static,
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Chapter 1. Introduction

Figure 1.1: The original graph from Hubble’s paper (Hubble, 1929) depicting Hubble’s
Law. The graph shows radial velocities of extra-galactic nebulae, corrected for solar
motion, against estimated distance.

there was no contraction or expansion. However, Einstein realised that his field equa-
tions could not describe such a static universe with a non-zero matter content without
the introduction of a cosmological constant term, something which he later referred
to as his “biggest blunder" (O’Raifeartaigh, 2018), a comment which took on an even
greater meaning with the discovery of the expansion of the Universe. In 1922, Fried-
mann was the first to show that Einstein’s theory could describe such an expanding
universe (Friedmann, 1922). In 1927, Lemaître subsequently proposed an expanding
universe to explain the observed redshift of spiral nebulae and proposed a law relating
redshift with the velocity of recession (Lemaitre, 1927). This relation was then confirmed
observationally by Hubble in 1929 and thus became known as Hubble’s Law (Hubble,
1929). Hubble’s original graph showing the linear relation between recession velocity
and distance can be seen in Fig. 1.1.

The discovery that matter in the Universe seems to be expanding away from other
matter led to the idea that in the past, everything was contained in a much smaller
volume than it is now. If we trace this evolution back enough, we arrive to what is
now known as the Hot Big Bang, the initial explosion that created all the content of
the Universe. The theory of the Universe as a system that evolves over time is what is
known as the Big Bang theory (Liddle, 2003) and in the 1940s was developed mainly by
Gamow (Alpher et al., 1948).

On the other hand, physicists like Hoyle, Bondi and Gold did not agree with this
emerging theory of the Universe and formulated the Steady-State Theory. This sug-
gests that matter is constantly being created in order to fill the gaps in an expanding
universe and thus the Universe remains unchanged (Bondi and Gold, 1948).
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Chapter 1. Introduction

Figure 1.2: Temperature map of the CMB obtained by Planck (Planck Collaboration et al.,
2016)

The debate about which of the two theories, the steady-state theory or the Big Bang
theory, correctly describes the Universe, was by and large decided in favour of the latter
through the discovery of the cosmic microwave background (CMB) by Penzias and Wil-
son in the mid-1960s (Penzias and Wilson, 1965). The CMB is radiation that can be de-
tected in whatever direction we point our telescopes to from Earth and which originated
from what is known as the last-scattering surface. This is the point in the Universe’s
history at redshift z ≈ 1100 when the temperature was low enough so that photons
and atoms could decouple and consequently photons undergo last scattering (Dodel-
son, 2003). Thus, the CMB can offer a snapshot of what this hot, dense early Universe
looked like (Jones and Lasenby, 1998). The Far InfraRed Absolute Spectrophotome-
ter (FIRAS) experiment of the Cosmic Background Explorer (COBE) mission determined
the temperature of the CMB to be 2.72548± 0.00057 K (Fixsen, 2009). Although the tem-
perature spectrum of the CMB is remarkably smooth, small fluctuations of a few tens
of microKelvin, have been detected (Liddle, 2003). These anisotropies can be seen in
Fig. 1.2 which shows a temperature map of the CMB obtained by the Planck space tele-
scope (Planck Collaboration et al., 2016). The anisotropy spectrum can reveal a great
amount of information about the Universe, including strong indications of a spatially
flat geometry and values of various cosmological parameters (Jackson, 2007).

Einstein was quick to accept the Big Bang theory and its implications of an expand-
ing Universe, even before the discovery of the CMB. He published a model of the ex-
panding Universe in 1931 in which he omitted the cosmological constant term (Einstein,
1931; O’Raifeartaigh and McCann, 2014), claiming that had the expansion of the Uni-
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verse been discovered before the publication of his theory, no such term would have
been included in the first place. This is in contrast with other physicists, such as Fried-
mann and Lemaître, who still included Λ in the field equations (O’Raifeartaigh, 2018).

Einstein’s determination to eliminate Λ from his theory was thwarted by the dis-
covery of the acceleration of the Universe (Riess et al., 1998) in the late 1990s. This
acceleration was inferred from the observation that certain astronomical objects appear
dimmer than expected at large redshift. The details of this discovery are discussed in
Sec. 3.1.5. Observational evidence also indicates that although the Universe seems to be
flat, the total matter density of the Universe is much less than that required for such a
flat universe (Ostriker and Steinhardt, 1995) and so the existence of dark energy needs
to be inferred in order to explain both of these phenomena. Dark energy makes up
67.9 ± 1.3% of the energy content of the Universe (Aghanim et al., 2020) and is theoreti-
cally described by Λ in the context of GR in the standard model of cosmology.

Another major cosmological discovery was that of the existence of cold dark matter
(CDM). The existence of low-luminosity matter was first inferred by Zwicky in his
1933 paper in which he found that the dynamical mass of a galaxy cluster was at least a
hundred times greater than its luminosity mass (Arun et al., 2017; Zwicky, 1933). One of
the most compelling pieces of evidence in favour of dark matter was first discovered by
Rubin (1983) and involves the rotation curve of spiral galaxies. Newtonian mechanics
predicts that the rotational velocity v of a galaxy should vary with the distance r from
the centre as v ∝ r−1/2. What is observed however is that the rotational velocity remains
constant at large distances. Rubin noticed that this rotation curve is best described by
a dark matter halo extending to a large distance beyond the visible matter radius of
the galaxy. Other evidence in favour of dark matter includes the velocity of galaxies in
clusters (Rasia et al., 2004), and gravitational lensing (Kaiser and Squires, 1993). Dark
matter makes up 25.8± 0.8% of the energy content of the Universe, which is the majority
of all the matter content (Tanabashi et al., 2018). Together, Λ and CDM are a vital part
of the standard cosmological model, ΛCDM, which is based on Einstein’s theory of GR.
The other major principles of the ΛCDM model are discussed in Sec. 3.1.

The ΛCDM model seems to explain the dynamics of our Universe quite accurately.
However, in the context of this model, dark matter and dark energy make up more than
95% of the energy content of the Universe. Although we have started to make some
progress in our theoretical understanding of dark matter (Feng, 2010), it has not yet been
directly detected and both of these dark components remain a mystery. This suggests
that there might be a different theory of gravity which can explain all the observed phe-
nomena without the need to infer the existence of dark energy and dark matter (Clifton
et al., 2012).
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Despite our lack of understanding of dark energy and dark matter, the ΛCDM model
is widely accepted by the scientific community. However, the model is not without its
flaws. One of the most significant tensions that has become even more evident through
recent measurements is known as the Hubble tension (Bernal et al., 2016). The Hubble
constant H0 measures the current rate at which the Universe is expanding. There are two
main methods by which this constant is measured. One uses local measurements from
astronomical objects of known brightness called standard candles (Riess et al., 2016).
This method gives a value of H0 that is independent of any cosmological model. The
other method uses the fluctuation spectrum of the CMB together with the ΛCDM model
to obtain a model-dependant value of H0 (Jackson, 2007). More details about these two
methods and the precise values obtained are given in Sec. 3.1.1. It has become clear in
recent years that the values obtained using these late-time and early-time measurements
of H0 are diverging. As measurement techniques become more accurate, this divergence
can no longer be attributed to systematic errors and the statistical difference between
the two values has reached a 5σ level (Riess et al., 2021). This could mean that the
ΛCDM model is incomplete, i.e. another component must be added for this tension
to be resolved. An example of this approach is the work by Poulin et al. (2019), in
which early dark energy is used to resolve the Hubble tension. The disadvantage of this
method is that even more unknown components are added in order to make the model
fit observations. The alternative explanation is that the ΛCDM model, and the theory
of gravity it is based upon, GR, are not the right description of Nature and need to be
modified.

There are further motivations for finding modified theories of gravity including
other problems with ΛCDM; see Sec. 3.1.6. Another motivation comes from the attempt
at finding a unified theory that explains all the fundamental forces in a single theoretical
framework. Attempts at unifying GR and quantum mechanics, the two main theories
in modern physics, have so far been unsuccessful, and so modified theories of grav-
ity might allow for different approaches through which this problem is tackled (Clifton
et al., 2012).

There have been numerous proposals of modified theories of gravity. A review of
these theories is given by Clifton et al. (2012). One of such modified gravity theories
is the Teleparallel Equivalent of General Relativity (TEGR), which explains gravity
through torsion rather than curvature (Bahamonde et al., 2021). TEGR itself produces
the same dynamics as GR, however, modifications of these two theories produce distinct
dynamics.

In this work the f (T, TG) (Kofinas and Saridakis, 2014) extension of TEGR will be
considered to uncover new behaviour. This modification is based on the torsion scalar
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T and the invariant TG, the teleparallel equivalent of the Gauss-Bonnet term in GR. The
cosmological dynamics that this theory can produce will be investigated to determine
whether the f (T, TG) modification can describe the late-time behaviour of the Universe.
This will be done via a dynamical systems approach. This method has the power of
uncovering the general dynamics of a gravitational model without the need to impose
any constraints or initial conditions (Bahamonde et al., 2018). Thus, this provides the
perfect approach at an initial investigation of this modification.

The structure of the dissertation is as follows. In Chapter 2 the theories of GR and
TEGR are introduced. Modifications of the two theories are also discussed, with an
emphasis made on the f (T, TG) modification. In Chapter 3, the standard cosmologi-
cal model is discussed together with the dynamics of the Universe and problems with
ΛCDM. This is then compared to the cosmological dynamics resulting from the f (T, TG)

modification. This chapter concludes with an introduction to the dynamical systems
approach applied to cosmological models. Chapter 4 discusses in detail the dynamical
analysis performed on the four chosen f (T, TG) models, and the cosmological implica-
tions of the results. Finally, Chapter 5 summarises the findings of this work and draws
some conclusions.

Note that the convention c = 1 will be used throughout this study unless otherwise
stated.
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2

General Relativity and its Teleparallel
Equivalent

Even though, in recent years, growing problems with Einstein’s theory of GR have
started to surface, mainly when incorporated into the ΛCDM cosmological model as
seen in Chapter 1, it still remains an extremely successful theory. So much so that most
of the alternative gravitational theories build upon the geometric foundations of GR
and its teleparallel equivalent, rather than taking a non-geometric approach. Thus, in
this chapter, the mathematical formulation of GR will be explicitly developed and then
compared to TEGR, which explains gravity through torsion rather than curvature.

Although TEGR and GR are dynamically equivalent theories, TEGR offers new pos-
sibilities when it comes to modifications of the theory. This is in part due to the possi-
bility of constructing second order theories which are distinct from the original theory
itself, something which is not possible using curvature-based GR. Thus, TEGR and its
modifications warrant in-depth investigations, as indeed are being carried out in the
literature. For a review of such modifications see (Bahamonde et al., 2021). The main
modification that will be introduced in this chapter is the f (T, TG) modification, which
will be the focus of most of this work.

2.1 | Einstein’s Theory of General Relativity

2.1.1 | An Introduction to Tensors and Manifolds
Tensors are algebraic objects on which GR is based upon. Carroll (2004), defines a tensor
as ’a multilinear map from a collection of dual vectors and vectors to R.’ We say that a
tensor has rank (k, l), where k is the number of covariant indices, and l is the number

7
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of contravariant indices. Tensors are invariant under a change of coordinate systems,
however tensor components change as,

T′µ1...µk
ν1...νl =

∂x′µ1

∂xµ1
...

∂x′µk

∂xµk

∂xν1

∂x′ν1
...

∂xνl

∂x′νl
Tµ1...µk

ν1...νl , (2.1)

where we are transforming from a coordinate system xi to another coordinate system
x′i.

The physical importance of tensors is rooted in their property of being invariant un-
der diffeomorphism transformations. This means that the form of any physical law is
preserved under an arbitrary differentiable coordinate transformation. This is an impor-
tant condition for physical laws as coordinate maps do not exist a priori in nature but are
rather a mathematical construct to help express physical laws and so should not affect
the predictions of a theory. The same concept is seen in the theory of Special Relativ-
ity (SR) in which the laws of mechanics have the same form in any inertial frame (Blago-
jević, 2002).

Another mathematical object of importance is a manifold. An n-dimensional man-
ifold is a topological space which locally looks like Rn. Two illustrative examples of a
two-dimensional manifold are the surfaces of a two-sphere and that of a torus. In GR,
spacetime is represented by a four-dimensional manifold. The local properties of Rn

reflect the laws of SR holding locally about each point in spacetime, which is known as
local Lorentz invariance (Bahamonde et al., 2021).

With every manifold we can associate a metric tensor gµν which generalises the idea
of an inner product of two vectors in flat space. gµν is a symmetric tensor of rank (0,2)
which is usually taken to be non-degenerate, i.e. it has non-zero determinant, in order
to define the inverse metric tensor gµν. A metric which has one time-like dimension is
called Lorentzian. These are the type of metrics that are dealt with in GR.

The metric also generalizes the concept of Pythagoras’ theorem in flat space since
we can use it to define the line element (Carroll, 2004),

ds2 = gµνdxµdxν , (2.2)

with xµ representing a coordinate system. This idea can then be extended to define the
path length for spacelike paths, i.e. paths with ds2 > 0,

∆s =
∫ √

gµν
dxµ

dλ

dxν

dλ
dλ , (2.3)

and the proper time for timelike paths, i.e. those with ds2 < 0,

∆τ =
∫ √

−gµν
dxµ

dλ

dxν

dλ
dλ . (2.4)
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In GR the metric tensor is not known a priori like in SR but is rather the solution of
Einstein’s field equations (see Sec. 2.1.4). The metric tensor in GR is referred to as the
fundamental object of study as its uses are far-reaching. In addition to the generalisation
of the line element, these also include the determination of causality by defining the
speed of light, and the definition of a notion of past and future.

The metric tensor and its inverse can also be used to raise and lower indices of tensor
objects through the following relations (Carroll, 2004),

gµνVν = Vµ , (2.5)

gµνων = ωµ . (2.6)

This gives us a way to change covariant components into contraviariant ones and vice
versa.

A special example of a metric tensor is the Minkowski metric ηµν on flat space
whose matrix representation is given by diag(−1, 1, 1, 1). Since the metric tensor is
not unique for a given manifold, there are other metrics that can be used on flat space
such as ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2 arising from spherical polar coordinates
(t, r, θ, ϕ) (Camilleri, 1999).

2.1.2 | The Levi Civita Connection
When dealing with a curved manifold, the concept of a partial derivative is no longer
sufficient and needs to be generalised to the covariant derivative ∇, an operator which
gives the partial derivative in the case of flat space but transforms as a tensor in the case
of an arbitrary manifold. For a vector field Vµ, we can do this by writing ∇ as the sum
of the partial derivative and some correction in the form of a matrix,

∇µVν = ∂µVν + Γ̊ν
µλVλ . (2.7)

The matrices Γ̊ν
µλ are called the connection coefficients.

To understand the need for these corrections, consider the parallel transport of a
vector. This is the concept of moving a vector along a path while keeping it constant at
all times. This is done unknowingly when dealing with vectors in flat space. In order to
compare two vectors, for example by subtracting them, we shift both to the same start-
ing point. Now consider a vector on a curved surface such as a sphere. When parallel
transporting this vector along a curve with the same start and end points, the resulting
vector will not necessarily align with the original vector even though the vector was
not transformed in any way. This is illustrated in Fig. 2.1. The difference arises due to
the curvature of the surface and in order to compare vectors, the covariant derivative
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Figure 2.1: Parallel transport of a vector on a sphere. Figure adapted from Carroll (2004).

is used so as to account for such differences. The idea of the covariant derivative of a
vector can then be extended to tensors.

We can define the torsion tensor using these connection coefficients,

T̊ λ
µν = Γ̊λ

µν − Γ̊λ
νµ = 2Γ̊λ

[µν] . (2.8)

This torsion tensor will be of specific importance when dealing with TEGR.
In GR, a unique connection arising from the metric of a manifold gµν is used. This

is referred to as the Levi-Civita connection, with the connection coefficients called the
Christoffel symbols, and is defined as (Carroll, 2004),

Γ̊σ
µν =

1
2

gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) . (2.9)

This connection is metric compatible and so satisfies ∇ρgµν = 0. It also has the property
of being torsion-free, meaning that the Christoffel symbols are symmetric in the lower
two indices. A direct consequence of this is that T̊ λ

µν = 0 leaving only one way to
describe gravity, through curvature.

2.1.3 | The Riemann and Einstein Tensors
The connection defined above sets the geometrical framework to describe gravity. How-
ever, certain specific tensors need to be constructed in order to describe a theory which
is diffeomorphism invariant as discussed in Sec. 2.1.1. These will be required to charac-
terize gravitational fields and construct a Lagrangian which will eventually lead to the
Einstein field equations.
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The most fundamental of such tensors is the Riemann tensor, or the curvature ten-
sor (Wald, 1984),

R̊ρ
σµν = ∂µΓ̊ρ

µσ − ∂νΓ̊ρ
µσ + Γ̊ρ

µλΓ̊λ
νσ − Γ̊ρ

µλΓ̊λ
µσ , (2.10)

which characterises the curvature of a manifold at every point in the following way. If
all the components of this tensor vanish, then we can always find a coordinate system
in which the metric gµν is constant everywhere and thus the manifold can be considered
to be flat. Having a constant metric is also a sufficient condition for having R̊ρ

σµν =

0. Thus, having a non-zero Riemann tensor necessarily implies that the manifold has
curvature (Camilleri, 1999).

In order to describe the symmetries of the Riemann tensor it is useful to use the
Riemann tensor with all lower indices, using the metric tensor as defined in Eq. (2.6),

R̊ρσµν = gρλR̊λ
σµν . (2.11)

The Riemann tensor has the following properties:

■ It is antisymmetric in the last two indices: R̊ρσµν = −R̊ρσνµ

■ It is also antisymmetric in its first two indices: R̊ρσµν = −R̊σρµν

■ It is symmetric in the first pair of indices with the second pair: R̊ρσµν = R̊µνρσ

■ It satisfies the first (algebraic) Bianchi identity: R̊ρ[σµν] = 0

■ It satisfies the second (differential) Bianchi identity: ∇[λR̊ρσ]µν = 0.

These symmetries reduce the number of degrees of freedom of the tensor from n4 to
1

12 n2(n2 − 1), with n being the dimension of the manifold. In GR, n = 4 and so the
Riemann tensor has 20 independent components (Carroll, 2004).

When defining the Riemann tensor as in Eq. (2.10) using the Levi-Civita connection,
the only independent contraction that one can perform is,

R̊µν = R̊λ
µλν . (2.12)

Other contractions either vanish or reduce to ±R̊µν (Schutz, 2009). This is known as the
Ricci tensor and is a symmetric tensor.

We can take a further contraction using the metric, to obtain the Ricci scalar,

R̊ = R̊µ
µ = gµνR̊µν . (2.13)

This scalar will turn out to be extremely useful when defining the Einstein-Hilbert action
in Sec. 2.1.4.
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Taking two contractions of the second Bianchi identity gives a relation between the
covariant derivatives of the Ricci tensor and scalar (Carroll, 2004),

∇µR̊ρµ −
1
2
∇ρR̊ = 0 . (2.14)

If we define the Einstein tensor as,

G̊µν = R̊µν −
1
2

R̊gµν , (2.15)

then Eq. (2.14) reduces to,

∇µG̊µν = 0 . (2.16)

The Einsten tensor in Eq. (2.15) will appear in the Einstein field equations and Eq. (2.16)
is essential to ensure consistency of these field equations (Wald, 1984).

2.1.4 | Gravitation and the Einstein Field Equations
A physical law of gravity should mathematically describe two things; how the gravi-
tational field affects the motion of matter, and how matter determines the gravitational
field. Newton’s classical theory of gravity does this through the equations,

a = −∇Φ (2.17)

∇2Φ = 4πGρ , (2.18)

where a is the acceleration of a body, Φ is the gravitational potential, G is Newton’s
gravitational constant, and ρ is the matter density (Carroll, 2004).

Einstein formulated his theory of gravitation based on the Weak Equivalence Princi-
ple (WEP):

’The motion of freely-falling particles are the same in a gravitational field and a
uniformly accelerated frame, in small enough regions of spacetime.’ (Carroll, 2004)

and the Einstein Equivalence Principle (EEP):

’Any local physical experiment not involving gravity will have the same result if
performed in a freely falling inertial frame as if it were performed in the flat spacetime

of special relativity.’ (Schutz, 2009)

The WEP implies that gravity and inertia should be seen as related phenomena, while
the EEP means that gravity does not change any physical laws locally. The WEP leads
to the idea that the motion of a test particle in a gravitational field can equivalently be
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Figure 2.2: A visual representation of matter causing the spacetime manifold to curve.
Figure credit: NASA (Mattson, 2015).

viewed as the motion along a geodesic in curved space. A geodesic is the generalisation
of a straight line to curved space; it is the path of least resistance that a particle will
travel along when not experiencing any external, non-gravitational forces. It is also a
curve of extremal length between two points, meaning that it is stationary with respect
to (wrt) variations. A particle’s position x is thus determined by the geodesic equation
(Schutz, 2009),

d2xα

dτ2 + Γ̊α
µν

dxµ

dτ

dxν

dτ
= 0 . (2.19)

If we use the Levi-Civita connection in flat space, Eq. (2.19) reduces to d2xµ/dλ2 = 0
which is simply the equation of a straight line (Carroll, 2004).

The source of the curvature of spacetime is the matter in spacetime itself. In simple
terms as John Wheeler puts it in Misner et al. (1973),

’Spacetime tells matter how to move and matter tells spacetime how to curve.’

A visual representation of this can be seen in Fig. 2.2. In GR, the Newtonian potential is
replaced by the metric while the mass density is generalised to the energy-momentum
tensor Θµν which encompasses all the information about the energy-like aspects of the
Universe including energy density, pressure and stress. These originate from matter,
radiation and non-gravitational fields.

By generalising Eq. (2.18) to a relativistic setting and ensuring that in the weak field
limit, the Newtonian theory is recovered, the Einstein field equations of general rela-
tivity can be obtained (Carroll, 2004),

R̊µν −
1
2

R̊gµν = 8πGΘµν . (2.20)
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The left hand side of the equation can be recognised as Einstein’s tensor G̊µν defined in
Eq. (2.15), while the right hand side represents the matter content of the Universe.

Equation (2.20) comprises of a total of sixteen equations, however since both sides
are symmetric tensors with two indices, these are reduced to ten independent equations.
Furthermore, the Bianchi identity in Eq. (2.16) represents four constraints on the Ricci
tensor and so the number of independent equations is reduced to six. Since the metric,
which is the dynamical variable, has ten unknown components, this implies that by
solving the field equations we cannot fully determine the metric. This ambiguity is
desired as it implies that the Einstein field equations only determine gµν up to a general
coordinate transformation (Ohanian and Ruffini, 2013).

A more modern approach to derive the field equations uses the principle of least
action and was first proposed by Hilbert in 1915. This principle states that the trajectory
of a particle is that along which the action is locally stationary. This action should be the
integral over the spacetime manifold M of a Lagrange density L (Carroll, 2004),

SH =
∫

M
LHd4x . (2.21)

L can be written as
√−g multiplied by a scalar, where g is the determinant of the met-

ric tensor. Since the gravitational potential in Newton’s theory satisfies a second order
differential equation, we require an action that depends on the derivatives of the metric
of at most second order. The Ricci scalar R̊, defined in Sec. 2.1.3, is the only independent
scalar constructed from the metric which depends on at most its second order deriva-
tives. Thus, Hilbert proposed the action (Hilbert, 1915),

SH =
1

2κ2

∫
M

R̊
√
−g d4x , (2.22)

where κ2 = 8πG. The coefficient of the integral is chosen so that in the weak-field limit,
Newton’s theory is recovered.

Varying this action wrt the metric, one finds that the condition for gµν to be a critical
point is,

R̊µν −
1
2

R̊gµν = 0 . (2.23)

These are the Einstein field equations in vacuum i.e. in the absence of any matter con-
tent. The variation is taken wrt the metric as this is the only fundamental degree of
freedom of the theory. In Sec. 2.2.3, when dealing with TEGR, we will see that this
theory has more than one degree of freedom and so the minimisation will need to be
performed more than once.

To factor in the contribution of matter, an action of the form,

S = SH + SM , (2.24)
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is considered. Varying wrt the metric once again we obtain,

R̊µν −
1
2

R̊gµν = 8πGΘµν , (2.25)

where the stress-energy-momentum tensor is given by,

Θµν = − 1√−g
δSM

δgµν
. (2.26)

In order to fit the astronomical observations of the time which implied a static uni-
verse, as seen in Chapter 1, it was necessary to modify the Einstein-Hilbert action to,

S =
1

2κ2

∫
M
(R̊ − 2Λ)

√
−g d4x + SM , (2.27)

where Λ is a constant known as the cosmological constant. Varying this action wrt the
metric gives the following field equations,

R̊µν −
1
2

R̊gµν + Λgµν = 8πGΘµν . (2.28)

By fine tuning Λ, Einstein managed to obtain a static universe solution.
The term in Λ in Eq. (2.28) is usually taken on the right hand side of the equation and

can be thought of as contributing to the energy-momentum tensor. Hence, adding the
cosmological constant is equivalent to introducing a vacuum energy density (Carroll,
2004) given by,

ρvac =
Λ

8πG
. (2.29)

Λ represents what is known as dark energy and makes up 68% of all the matter and
energy content in the universe (Ade et al., 2014) (see Chapter 3 for a further discussion).

2.1.5 | Modifications of GR
As discussed before, GR has proven to be a very successful theory. However, problems
with the theory remain. Some of these relate to inflation, late-times acceleration, the
tension in the value of the Hubble constant and the failure in unifying GR with quantum
theory in order to obtain a unified theory (Debono and Smoot, 2016). Details of some
of these problems will be further discussed in Sec. 3.1.6. These cosmological problems
challenge the position of GR as the accepted theory of gravitation and motivate the need
to look for modifications of it.

Another major problem is our inability to explain the nature of dark, or non-baryonic,
matter and dark energy. Some progress is being made especially when it comes to ex-
plaining the nature of dark matter, see for example Arkani-Hamed et al. (2009), however,
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an alternative is to modify the theory of gravity itself rather than modify the matter con-
tent of the theory. In this way the observed effects of dark matter and dark energy can
be explained without having to assume their existence. There are a number of ways
how this can be done, one of which is modifying the Einstein-Hilbert action, and thus
consequently the field equations.

An example of this is f (R̊) gravity, a family of modifications in which the action is
modified to (De Felice and Tsujikawa, 2010),

S =
∫

M
f (R̊)

√
−g d4x . (2.30)

Here f (R̊) is some differentiable function of the Ricci scalar R̊. The simplest function
is f (R̊) = R̊ which would recover the original field equations in Eq. (2.20). The correct
choice of the function f can lead to a theory in which late-times acceleration is explained
without the need for a cosmological constant (de la Cruz-Dombriz and Dobado, 2006).
The drawback of such a modification is that in order to accurately produce a theory
consistent with observations, an action with a complicated structure is required and so
other types of modifications should be examined.

Another family of modified theories involves the Gauss-Bonnet term (de la Cruz-
Dombriz and Sáez-Gómez, 2012)given by,

G̊ = R̊2 − 4R̊µνR̊µν + R̊µνκλR̊µνκλ . (2.31)

As a result of Gauss’ theorem, G̊ is a topological surface term and so an action of the
form,

S =
∫

M
G̊
√
−g d4x , (2.32)

does not affect the equations of motion. However, by considering the action,

S =
∫

M
f (R̊, G̊)

√
−g d4x , (2.33)

new dynamics can be obtained (Quiros, 2021).
Both of the modifications in Eqs. (2.30) and (2.33) lead to theories which are of fourth-

order in the derivative of the metric. Additionally, all other modifications of GR are
also restricted to at least fourth order due to Lovelock’s theorem. This states that if a
gravitational action in four dimensions contains only up to the second derivative of the
metric, then the only equations of motion resulting from such an action are the Einstein
field equations (Lovelock, 1972). This puts a lower limit on the complexity of the modi-
fied theories we can obtain from curvature-based GR and motivates the investigation of
TEGR.
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2.2 | Teleparallel Gravity
An alternate theory of gravity that Einstein himself investigated is TEGR. In this the-
ory, the gravitational interaction is a result of the torsion of a connection with zero
curvature rather than due to the curvature of a zero-torsion connection (Krššák et al.,
2019). TEGR can be dynamically equivalent to GR, however it can also produce novel
theories through modifications of the teleparallel action. One of the main differences
between TEGR and GR is that TEGR meets the requirements of a gauge theory, like
electromagnetism (EM). Although Einstein’s own attempts to unify EM and TEGR have
failed, modifications of TEGR are proving to be a good candidate for explaining what
GR, and other curvature-based gravity theories, fail to, such as the accelerated expan-
sion of the Universe (Bengochea and Ferraro, 2009) and inflation (Ferraro and Fiorini,
2007).

2.2.1 | Tetrads and the Spin Connection
As in the theory of GR, spacetime is a 4-dimensional manifold with a metric gµν whose
tangent space at each point is Minkowski Space with a metric ηAB. Note that capital
letters denote Lorentz indices whereas small Greek letters denote spacetime indices. In
teleparallel gravity, the dynamical variables are the tetrad (or vierbein) field eA

µ and the
spin connection ω̂A

Bµ. This means that in TEGR, the fundamental dynamical variable in
GR which is the metric, is split into two, the tetrad field and the spin connection.

The tetrads form a basis, independent of any coordinate system, for the tangent
space. They can be related to the basis formed from a coordinate system xµ through,

∂µ = eA
µeA . (2.34)

Similarly to how we cannot, in general, define a coordinate chart that covers the whole
manifold, we cannot find a tetrad field which exists globally and so we define such
tetrads only locally (Bahamonde et al., 2021). For the metric to be non-degenerate, the
tetrad is required to have an inverse/dual E µ

A which satisfies,

E µ
A eA

ν = δ
µ
ν and E µ

A eB
µ = δB

A . (2.35)

If we choose these basis vectors to be orthonormal, i.e.,

gµνE µ
A E ν

B = ηAB , (2.36)

then we obtain the following equations for the metric and inverse metric respectively,

gµν = ηABeA
µeB

ν , (2.37)
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gµν = ηABE µ
A E ν

B . (2.38)

Thus, the tetrad can be seen as the transformation between the spacetime metric gµν and
the local Minkowski metric ηAB. They can also be thought of as a set of orthonormal
vector fields which diagonalise the metric tensor.

We can use the tetrads and their inverse to switch between Latin to Greek indices
and back. For a vector V whose representation in a coordinate basis is Vµ∂µ, we can
obtain the tetrad representation VAeA using,

VA = eA
µVµ . (2.39)

This idea can then be extended to multi-index tensors (Carroll, 2004).
In the coordinate bases formulation, the covariant derivative was defined as the par-

tial derivative in addition to some correction term given by the connection coefficients.
In order to extend this concept to non-coordinate bases we need to define the spin con-
nection, ωA

Bµ, which gives the covariant derivative,

∇µXA
B = ∂µXA

B + ωA
CµXC

B − ωC
BµXA

C . (2.40)

Using the property that tensors transform independently of the basis, we can obtain
a relationship between the affine teleparallel connection Γρ

µν and the spin connection
ωA

Bµ,

Γρ
µν = E ρ

A (∂νeA
µ + ωA

BνeB
µ) . (2.41)

This is the unique affine connection satisfying the tetrad postulate,

∂µeA
ν + ωA

BµeB
ν − Γρ

νµeA
ρ = 0 . (2.42)

This postulate is a result of the requirement that the covariant derivative of the tetrad
field vanishes, i.e. ∇µeA

µ = 0. This condition is satisfied by any affine connection, ir-
respective of assumptions made when deriving it, such as the connection being torsion
free or metric compatible (Bahamonde et al., 2021).

2.2.2 | Local Lorentz Transformations and the Weitzenböck Gauge
The tetrad field and spin connection that give a metric gµν and an affine connection Γ̂ρ

µν

are not unique but are rather uniquely determined up to local Lorentz transformations.
This means that if one changes the tetrad to,

eA
µ → e′Aµ = ΛA

BeB
µ , (2.43)

18



Chapter 2. GR and TEGR 2.2. Teleparallel Gravity

the metric resulting from Eq. (2.37) is unchanged. We also have the usual freedom to
choose a different basis and so Eq. (2.37) is also invariant under general coordinate
transformations.

Similarly, the affine connection remains unchanged if we replace the spin connection
by,

ωA
Bµ → ω′A

Bµ = ΛA
C(Λ

−1)D
BωC

Dµ + ΛA
C∂µ(Λ−1)C

B . (2.44)

This means that we are free to choose a gauge through the spin connection. In telepar-
allel gravity the gauge that is chosen is known as the Weitzenböck gauge and is the one
in which the spin connection vanishes, i.e. ωA

Bµ = 0 (Bahamonde et al., 2021). Equa-
tion (2.41) then gives the Weitzenböck connection,

Γρ
µν = E ρ

A ∂νeA
µ . (2.45)

This is a metric compatible connection, i.e. ∇ρgµν = 0, with a vanishing curvature but
non-vanishing torsion.

2.2.3 | Teleparallel Equivalent of General Relativity
We can define the curvature and torsion tensors in the same way as in Eqs. (2.10) and
(2.8), respectively, using the teleparallel connection to get (Krššák et al., 2019),

RA
Bµν = ∂µωA

Bν − ∂νωA
Bµ + ωA

CµωC
Bν − ωA

CνωC
Bµ , (2.46)

and,

TA
µν = ∂µeA

ν − ∂νeA
µ + ωA

BµeB
ν − ωA

BνeB
µ . (2.47)

Since in the Weitzenböck gauge, the spin connection is zero, it follows from Eq. (2.46)
that the Riemann tensor vanishes. On the other hand the torsion tensor is non-zero and
simplifies to,

TA
µν = ∂µeA

ν − ∂νeA
µ . (2.48)

The geometrical difference between the curvature and torsion tensors is highlighted
in Fig. 2.3. Whereas curvature quantifies the rotation of a vector which has been parallel
transported along a closed curve on a manifold, torsion quantifies the non-closure of a
parallelogram formed when two vectors are transported along each other.

Although it will not be discussed in detail in this work, it is interesting to note that
the non-metricity of spacetime can also be used to describe gravity. This gives rise to
what is known as the symmetric teleparallel equivalent of general relativity (STEGR).
Together with GR and TEGR it forms part of ‘the geometrical trinity of gravity’ which is
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Figure 2.3: Geometrical difference between the curvature and torsion tensors. Figure
taken from (Bahamonde et al., 2021).

a consequence of the universality implied by the equivalence principle (Jimenez et al.,
2019). Each connection in these three theories of gravity should have 43 = 64 indepen-
dent components, however due to symmetries some of these freedoms are removed.
Adding the degrees of freedom (DOF) of all three theories together recovers the original
number of 64 DOF.

One can also define the contorsion tensor as the difference between the Weitzenböck
and Levi-Civita connections (Combi and Romero, 2018),

Kρ
µν = Γ̊ρ

µν − Γρ
µν . (2.49)

Despite Kρ
µν being defined as the difference between two non-tensorial quantities, the

contorsion tensor does indeed transform as a tensor. Expressing the torsion tensor as
T λ

µν = Γλ
µν − Γλ

νµ, allows us to write this contorsion tensor purely in terms of the torsion
tensor,

Kρ
µν =

1
2

gρσ(Tνσµ + Tµσν − Tσµν) . (2.50)

Since, in TEGR, all the information about the gravitational field is contained in the
torsion tensor, we can use this to construct invariants which will be useful when formu-
lating the Lagrangian of the theory. Of particular importance is the invariant T known
as the torsion scalar which is quadratic in the torsion tensor and is given by,

T =
1
4

TµνλTµνλ +
1
2

TµνλTλνµ − T νµ
ν Tλ

λµ . (2.51)

This scalar can be seen as the teleparallel equivalent to the Ricci scalar R̊ in GR in the
sense that we can use T to construct an action that gives rise to the field equations. This
action is given by,

STEGR = − 1
2κ2

∫
M

Te d4x , (2.52)
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where e = det(eA
µ) =

√−g (Bahamonde et al., 2021) and we are identifying the La-
grangian of the theory as L = −Te. Since the torsion tensor, and thus the torsion scalar,
only contain up to the first-derivative of the metric, so does this Lagrangian. This is in
contrast with GR whose Lagrangian LH is constructed from the Ricci scalar. This results
in the Einstein-Hilbert action containing up to second order derivatives of the metric.

Varying the action in Eq. (2.52) wrt the tetrad field results in the same field equations
derived from the Einstein-Hilbert action as given in Eq. (2.25). This is because the Ricci
scalar R̊ and the torsion scalar T are related via a boundary term B,

T + R̊ = B , (2.53)

and consequently GR and TEGR are necessarily dynamically equivalent theories. The
boundary term B is related to the Lovelock theorem discussed in Sec. 2.1.5 and is what
forces all second-order curvature-based theories to be equivalent to GR. When using
the tetrad field as the fundamental variable of the theory rather than the metric, we
can consider modifications of the four-dimensional action in Eq. (2.52) which produce
second order theories that are distinct from TEGR, without violating the Lovelock the-
orem (Bahamonde et al., 2021). This is one of the main advantages that the teleparallel
formulation has over traditional GR.

Apart from varying the action STEGR wrt the tetrad field, we can also vary this
action wrt the spin connection. This is because the spin connection represents an inde-
pendent degree of freedom and thus extra equations are required for it to be determined.
In TEGR, these spin connection equations coincide with the antisymmetric form of the
tetrad field equations and are automatically satisfied. This is in line with the idea that
the spin connection represents degrees of freedom associated with the Lorentz group
and so cannot contribute more independent dynamical equations to describe the gravi-
tational system (Golovnev et al., 2017).

2.2.4 | Modifications of TEGR
As was done in Sec. 2.1.5 for the theory of GR, we can also consider modifications of
TEGR to explain phenomena such as late-time acceleration as well as to produce com-
peting theories of cosmology more generally. The simplest modification that one can
perform is to extend the TEGR action to (Cai et al., 2016),

S =
1

2κ2

∫
M

e f (T)d4x . (2.54)

Although the Einstein-Hilbert action and the TEGR action, Eqs. (2.22) and (2.52), result
in the same dynamics, f (R̊) and f (T) theories give rise to different field equations. One
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of the main differences is that the f (T) field equations are of second order, meaning that
they contain up to second time derivatives of the scale factor a(t), while those resulting
from the f (R̊) modification are of fourth order. This has wide-ranging cosmological
implications and this theory has been studied extensively (Cai et al., 2016).

Although the torsion scalar T is the simplest, it is not the only invariant constructed
from the torsion tensor. One can define the invariant TG as,

TG = (Kκ
φπKφλ

ρKµ
χσKχν

τ − 2Kκλ
πKµ

φρKφ
χσKχν

τ

+ 2Kκλ
πKµ

φρKφν
χKχ

στ + 2Kκλ
πKµ

φρKφν
σ,τ)δ

πρστ
κλµν .

(2.55)

Here Kρ
µν is the contorsion tensor defined in Eq. (2.50) and δ

πρστ
κλµν is the generalised

Kronecker delta defined as,

δ
µ1...µp
ν1...νp =


+1 if ν1...νp are distinct integers and are an even permutation of µ1...µp

−1 if ν1...νp are distinct integers and are an odd permutation of µ1...µp

0 otherwise. .
(2.56)

We can thus consider another class of modified theories of gravity resulting from the
action,

S =
1

2κ2

∫
M

e f (T, TG)d4x . (2.57)

f (T, TG) gravity is the teleparallel equivalent to f (R̊, G̊) gravity resulting from the action
in Eq. (2.33). However, these two modifications result in different dynamics, as in the
case of f (R̊) and f (T) gravity. TG is quartic in the torsion tensor and so this class of
modifications is more general than the f (T) class (Kofinas et al., 2014). The f (T, TG)

modification will be the main focus of this work and the cosmology resulting from the
action in Eq. (2.57) is described in Sec. 3.2.
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3

Cosmology & Dynamical Systems

3.1 | The Standard Model of Cosmology
Our current best model for understanding the dynamics of the Universe is the ΛCDM
model as introduced in Chapter 1. ΛCDM has been successful in explaining multi-
ple properties of the observed Universe including the power spectrum of the CMB
anisotropies (Page et al., 2003), the abundance of the light elements hydrogen, helium
and lithium (Cyburt et al., 2016), the spectrum and statistical properties of large-scale
structure (Bernardeau et al., 2002), and the accelerated expansion of the Universe (Perl-
mutter et al., 1999; Riess et al., 1998).

The central assumptions of the ΛCDM model are the following (Perivolaropoulos
and Skara, 2021).

■ The main components of the Universe are radiation (photons and neutrinos), or-
dinary matter (baryons and leptons), CDM, which is responsible for structure for-
mation (Hu, 1998), and vacuum energy, which is driving the late-time acceleration.

■ GR is the correct theory that describes gravity on cosmological scales.

■ The cosmological principle holds at sufficiently large scales. This means that the
Universe is considered to be homogeneous and isotropic on large scales. Homo-
geneity means the Universe looks the same at each point i.e. it has the same den-
sity throughout, while isotropy means that the Universe looks the same, in terms
of polarisation, in every direction. This isotropy is confirmed by observations of
the CMB (Readhead and Lawrence, 1992) and large-scale smoothness has been
observed in galaxy surveys such as the Sloan Digital Sky Survey (SDSS) (Blanton
et al., 2017).
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■ The spatial geometry of the Universe is considered to be flat, in line with observa-
tions (Ade et al., 2014).

In this section the main features of the ΛCDM model and the need to look beyond it
to obtain a better cosmological model which describes Nature will be discussed.

3.1.1 | The Expansion of the Universe
A fundamental piece of observational evidence in cosmology is that everything in the
Universe is receding away from us. This is inferred from observing the spectra of galax-
ies. By comparing the observed emission spectra to the expected ones, their red shift z
can be calculated using,

z =
λobs − λem

λem
, (3.1)

where λobs is the observed wavelength and λem is the emitted one. For a nearby object,
we can relate this redshift to the velocity, v, of the galaxy through the equation,

z =
v
c

(3.2)

with c being the speed of light.
When observing a large number of galaxies, the general trend is found to be that

galaxies are receding away from us as their light as detected on Earth is red-shifted.
Some nearby galaxies are an exception to this rule as they have peculiar velocities
caused by random motion. This is because the principle of homogeneity only holds
for galaxies outside of the Local Group (Liddle, 2003).

In his 1929 paper (Hubble, 1929), Edwin Hubble proposes a linear relationship be-
tween the velocity v of a galaxy and its distance from Earth d given by,

v = H0d . (3.3)

The constant of proportionality H0 is what is known as Hubble’s constant. This linear
relationship can be seen in Fig. 1.1. To measure the recessional velocity v of an ob-
ject along our line of sight we make use of the redshift and relate it to the velocity via
Eq. (3.2). The distance d represents the proper distance to an object which can be esti-
mated by making use of what are known as standard candles. These are astronomical
objects whose intrinsic luminosity can be inferred from their other properties, such as
type Ia Supernovae (SNIa) and Cepheid variables.

Recent measurements using these standard candles give a Hubble constant value
of H0 = 73.30 ± 1.04 km/sec/Mpc (Riess et al., 2021) while data from Planck, gives
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Figure 3.1: The Hubble tension’s evolution over the past two decades. Figure taken from
(Ezquiaga and Zumalacarregui, 2018). The blue stars correspond to measurements of H0
made from the local Universe, calibrated using Cepheids. Red dots show measurements
from the CMB based on ΛCDM, and green crosses show measurements using gravita-
tional waves as standard sirens. Data sources include (Abbott et al., 2017), (Aghanim
et al., 2020) and (Riess et al., 2018).

H0 = 67.4 ± 0.5 km/sec/Mpc (Aghanim et al., 2020). The latter uses measurements of
the CMB anisotropies to give a ΛCDM-dependant value for H0. This statistically sig-
nificant 5σ difference between the two values has been confirmed repeatedly and there
is sufficient evidence to conclude that it does not arise from systematic measurement
errors. This difference is known as the Hubble tension and is an indication that the
ΛCDM model is not an accurate description of the Universe, thus motivating the need
to investigate modified theories of gravity resulting in different cosmological predic-
tions (Di Valentino et al., 2021). Figure 3.1 shows values of H0 obtained using different
standard candles and CMB measurements over the years and clearly reflects the grow-
ing Hubble tension. Note that in this figure, measurements using gravitational waves
as standard sirens are also included. This measurement compares the predicted energy
of the gravitational wave with the actual energy detected. This comparison can then be
used to calculate the distance to the galaxy in which the event creating these gravita-
tional waves took place. Significant improvement of this method is expected within the
next two decades which will surely improve our understanding of the nature of dark
energy (Holz and Hughes, 2005).

Note that although the expansion of the Universe might make it seem that homo-
geneity is violated as galaxies are observed to be receding away from us, this is not the
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case as everything in the Universe is experiencing the same phenomenon. This concept
is best understood by comparing the Universe to a balloon covered in dots, which is
being blown up. In order to express this mathematically we make use of comoving co-
ordinates which are coordinates that are carried through with the expansion. The real
distance r⃗ and the comoving distance x⃗ are related via,

r⃗ = a(t)x⃗ , (3.4)

where a(t) is known as the scale factor and characterises the expansion. At the present
time t0, the scale factor is set to be equal to one.

In accordance with Hubble’s Law, we can define the Hubble parameter as,

H(t) ≡ ȧ
a

. (3.5)

This measures how rapidly the scale factor changes (Dodelson, 2003). Through this
equation it is clear that the term ‘Hubble constant’ is misleading as although the cos-
mological principle forces H to be a constant in space, it is not necessarily a constant
in time. What is known as the Hubble constant H0 is rather the value of the Hubble
parameter at the present time i.e. H0 = H(t0) (Liddle, 2003).

3.1.2 | The FLRWMetric
In order to incorporate the cosmological principle in the mathematical description of
the Universe, we consider the spacetime manifold to be R × Σ, with R representing
the time direction and Σ being a maximally symmetric three-manifold. The spacetime
metric thus takes the form,

ds2 = −dt2 + a2(t)dσ2 , (3.6)

with dσ representing the metric on Σ (Carroll, 2004). This metric allows the spatial
component to be time-dependant.

The specific form of the metric in Eq. 3.6 which represents a maximally symmetric
space is known as the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and is
given by,

ds2 = −dt2 + a2(t)
[

dr2

1 − κr2 + r2(dθ2 + sin2 θ dΦ2)

]
, (3.7)

in spherical polar coordinates. Here the parameter κ = k/R2
0, with R0 being the current

radius of curvature, quantifies the geometry of the universe. k = −1 corresponds to
constant negative curvature and leads to an open universe, k = 1 represents constant
positive curvature and gives a closed universe, while k = 0 corresponds to a flat uni-
verse. The Planck collaboration in 2015 (Ade et al., 2016) constrained the value of the
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curvature density parameter ΩK, which can be thought of as the curvature density of
the Universe, to,

ΩK = 0.000 ± 0.005 . (3.8)

This strongly indicates a spatially flat universe and so we can simplify the FLRW metric,
in Cartesian coordinates, to (Kofinas et al., 2014),

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) . (3.9)

Note that in the rest of this work, a flat universe will be considered so as to reflect ob-
servational evidence. In addition, Cartesian coordinates will be used since they satisfy
the Weitzenböck gauge conditions. This is because since these coordinates respect cos-
mological symmetries, the antisymmetric part of the field equations will vanish in any
teleparallel gravity theory (Bahamonde et al., 2021).

Using Eq. (2.9), we can obtain the Christoffel symbols for the flat FLRW metric in
Cartesian coordinates,

Γ̊0
00 = 0 , (3.10)

Γ̊0
0µ = Γ̊0

µ0 = 0 , (3.11)

Γ̊0
µν = δµν ȧa , (3.12)

Γ̊µ
0ν = Γ̊µ

ν0 = δµν
ȧ
a

, (3.13)

with all the other components Γ̊ρ
µν equal to zero (Dodelson, 2003). Using these values

to explicitly calculate the Ricci tensor R̊µν and the Ricci scalar R̊ gives,

R̊00 = −3
ä
a

, (3.14)

R̊ij = δij(2ȧ2 + aä) , (3.15)

R̊ = 6

[
ä
a
+

(
ȧ
a

)2
]

, (3.16)

for i, j = 1, 2, 3. These will be used to obtain the specific form of Einstein’s field equa-
tions in the case of a flat FLRW universe.

3.1.3 | Cosmic Dynamics
Since the Universe is dynamic, the scale factor evolves with time and this evolution
depends on the matter and energy content. Mathematically, this evolution is described
through what are known as the Friedmann equations, obtained by substituting the
FLRW metric in Einstein’s field equations as given in Eq. (2.28).
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To obtain these equations we first need to specify the exact form of the energy-
momentum tensor which appears in the field equations. The simplest way to do this
is to model the contents of the Universe as a perfect isotropic fluid with density ρ and
pressure p. This gives the energy-momentum tensor with one index raised as,

Tµ
ν = diag(−ρ, p, p, p) . (3.17)

Thus, using the expressions in Eqs. (3.10) - (3.16), the time-time component of Ein-
stein’s field equations becomes (Liddle, 2003),

H(t)2 =

(
ȧ
a

)2

=
8πGρ

3
+

Λ
3

. (3.18)

This is known as the the first Friedmann equation, or simply as the Friedmann equa-
tion.

Due to isotropy, there is only one independent equation for the spatial part of the
Einstein field equations given by (Carroll, 2004),

ä
a
+ 2

(
ȧ
a

)2

= 4πG(ρ − p) . (3.19)

Substituting for (ȧ/a)2 from (3.18) we obtain,

ä
a
= −4πG

3
(ρ + 3p) , (3.20)

which is known as the second Friedmann equation or the acceleration equation. This
equation implies that if the content of the universe has a positive pressure, which is what
we are used to in the classical picture, then ä is negative, meaning that the Universe
undergoes a decelerated expansion.

We can apply the usual law of conservation of energy to the stress-energy tensor in
Eq. (3.17), by making use of the covariant derivative. Considering specifically the zeroth
component (Carroll, 2004),

0 = ∇µTµ
0

= ∂µTµ
0 + Γ̊µ

µλTλ
0 − Γ̊λ

µ0Tµλ ,
(3.21)

we obtain,
ρ̇ + 3

ȧ
a
(ρ + p) = 0 . (3.22)

This is known as the fluid equation and describes how the energy density in the Uni-
verse changes because of two effects. The first term in Eq. (3.22) represents the dilation
of energy because of the expansion of the Universe, while the second term shows that
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energy has gone into work during expansion. Note that pressure does not contribute
a force that helps the Universe expand. This is because in a homogeneous universe,
pressure is the same everywhere while a pressure gradient is needed in order to gener-
ate a force (Liddle, 2003). Note that we can use this fluid equation to give an alternate
derivation of Eq. (3.20). This is done by differentiating Eq. (3.18) wrt time, and then
substituting for ρ̇ using Eq. (3.22) (Liddle, 2003).

The final equation that is required in order to solve for the evolution of the unknown
quantities a(t), ρ(t) and p(t) is what is known as the equation of state (EoS) which
relates the pressure and density. In the context of cosmology, the EoS of the relevant
sources takes on the simple linear form,

p = wρ , (3.23)

where w is called the equation-of-state parameter. There are specific values of w that are
of interest. The first is w = 0 which holds in the case of non-relativistic matter, simply
referred to as matter or dust. This is any material which exerts negligible pressure.
Solving the fluid equation in this case gives ρ ∝ a−3. The second significant value of
w is 1/3 which corresponds to radiation. This follows from the fact that radiation, for
example in the form of photons and neutrinos, satisfies the equation p = ρc2/3. In this
case, the fluid equation gives ρ ∝ a−4. It follows that since radiation density drops off
at a faster rate than matter density, in a universe containing just these two components,
matter will eventually always dominate.

The final class of physically interesting values of w is motivated by the discovery
of the late-times acceleration of the Universe (see Sec. 3.1.5). From Eq. (3.20) we notice
that in order to achieve a positive acceleration we require ρ + 3p < 0. This inequality
is true for w < −1/3, with these EoS parameters corresponding to dark energy. For the
density of this component to remain constant, we require w = −1 and so this is the EoS
parameter of a cosmological constant (Melchiorri et al., 2003).

Constraints on the equation of state of dark energy support the cosmological con-
stant model however, some variation in w is not ruled out (Bean and Melchiorri, 2002).
As such, other values of w for dark energy, and their implications on the fate of the Uni-
verse, have been investigated in the literature. These are split into two classes, the first
of which is quintenssence-like dark energy with w > −1. This characterises a scalar
field that evolves over time, which is currently displaced from, but is slowly approach-
ing, the minimum of its potential (Caldwell et al., 1998; Ratra and Peebles, 1988). The
second class has w < −1, known as phantom energy, and is similarly represented by a
scalar field, this time with a negative kinetic energy term. Such a phantom energy den-
sity would become infinite over time, overcoming all other density components in the
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Figure 3.2: Evolution of radiation, matter and dark energy with redshift taken from
Frieman et al. (2008). The band for dark energy represents wDE = −1.0 ± 0.2.

Universe and leading to what is known as the "Big Rip" (Caldwell et al., 2003). However,
such phantom-like dark energy violates the null dominant energy condition, making it
difficult (although not impossible) to construct viable models of dark energy with this
EoS parameter (Carroll et al., 2003).

The Universe does not just consists of one of matter, radiation or dark energy, but
rather consists of a mixture of them. However, because of the different rates at which
their density drops off with the expansion of the Universe, different sources dominate
at different times. This is clearly highlighted in Fig. 3.2 which shows the evolution of
radiation, matter and dark energy. The times at which the Universe transitions from
radiation-dominated to matter-dominated, and then to Λ-dominated can be calculated
using the density parameter Ω as will be seen in Sec. 3.1.4.

In a universe dominated by matter or radiation, the scale factor varies polynomially
with time, whereas for a universe dominated by a cosmological constant, the scale factor
evolves exponentially as,

a(t) = eH0(t−t0) . (3.24)

This is known as a de Sitter universe. In line with observations pointing towards the
energy density of dark energy being constant with time, and since the density of matter
and radiation drops off as the Universe expands, Λ will eventually dominate, and thus
our Universe is asymptotically de Sitter (de Sitter, 1917).
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3.1.4 | Observational Parameters
Cosmological models, such as the ΛCDM model, have certain parameters which are
determined observationally. The first of these is the Hubble constant H0 which has been
described in Sec. 3.1.1. With the rapid improvement of the instruments available to us,
there are a wide range of properties of the universe which can now be measured to a
high degree of precision, for example anisotropies in the CMB (White et al., 1994). For
the scope of this project, the most significant observational parameters are the density
parameter Ω and the deceleration parameter q.

Although the first Friedmann equation, Eq. (3.18), has so far been given for a flat
universe, for a universe with curvature this equation can be expressed as (Carroll, 2004),

Ω − 1 =
κ

H2a2 , (3.25)

where Ω is what is known as the density parameter of the Universe, given by Ω = ρ/ρc.
ρc is the critical density which is the density at which the geometry of the Universe is
flat and is given by,

ρc =
3H2

8πG
. (3.26)

Thus we can see that the value of the parameter Ω determines this geometry of the
Universe. When Ω = 1, κ = 0 so the Universe is flat, when Ω > 1, κ > 0, giving a
closed universe, while when Ω < 1, κ < 0, giving an open universe.

For a flat universe,

Ω = 1 = Ωr + Ωm + ΩΛ , (3.27)

where Ωr is the density parameter of radiation, Ωm is that of matter and ΩΛ is that
of dark energy. Note that the present day values of these density parameters will be
denoted by a subscript 0. From (Ade et al., 2016), we can infer the present day value of
Ωr, to be about four orders of magnitude less than Ωm0 and thus Eq. (3.27) is very often
simplified to 1 = Ωm + ΩΛ to describe the late-time behaviour of the Universe, as will
be done in this work.

We can use the measured values of the density parameters to estimate the time at
which the different energy components started to dominate. At, for example, matter
and dark energy equality,

ρΛ(a)
ρm(a)

=
ρΛ0

ρm0 /a3 =
ΩΛ0

Ωm0

a3 . (3.28)

From the measured values of the density parameters we can calculate the value of the
red shift at radiation-matter equality to be z ≈ 3400. This is located at the intersection of
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the red and black lines in Fig. 3.2. Similarly we find that dark energy started dominating
over matter at z ≈ 0.55 (Velten et al., 2014), which is extremely recent in cosmological
time scales. This point corresponds to the intersection of the black and blue lines in
Fig. 3.2, and it is clear from this figure how close to the present time this equality was
reached.

In order to quantify the change of the rate at which the Universe is expanding, it is
necessary to define the deceleration parameter. We obtain the definition of this parame-
ter by considering the Taylor expansion of the scale factor a(t) about the present time t0

(Liddle, 2003),

a(t) = a(t0) + ȧ(t0)(t − t0) +
1
2

ä(t0)(t − t0)
2 + ... . (3.29)

Dividing by a(t0) this becomes,

a(t)
a(t0)

= 1 + H0(t − t0)−
1
2

q0H2
0(t − t0)

2 +
1
3!

j0H3
0(t − t0)

3 + ... , (3.30)

where we have defined the deceleration parameter q as,

q(t) = −1
a

d2a
dt2

[
1
a

da
dt

]−2

. (3.31)

q0 is then the value of this deceleration parameter at present times. We can relate the
deceleration parameter and the density parameters via the acceleration equation,

q0 =
1
2

Ωm0 + Ωr0 − ΩΛ0 . (3.32)

The motivation behind defining such a parameter comes from a time when the
present day Universe was thought to be matter dominated. In such a universe it was to
be expected that the expansion will be slowed down because of the gravitational pull of
matter i.e. the Universe would be decelerating. Even though this was not what was ob-
served, as will be discussed in the next section, the convention of a positive deceleration
parameter indicating a decelerating universe remains.

In Eq. (3.30) we have also defined the jerk parameter j as,

j(t) =
1
a

d3a
dt3

[
1
a

da
dt

]−3

, (3.33)

with j0 = j(t0). In the ΛCDM model, the value of the jerk parameter is fixed at one at all
times. Alongside the Hubble and deceleration parameters, since j depends only on the
scale factor a, it is purely kinematic, meaning that it is independent of any gravitational
theory and thus can provide a way to search for departures from the standard model

32



Chapter 3. Cosmology & Dynamical Systems 3.1. The Standard Model of Cosmology

(Mamon and Bamba, 2018). The value of the jerk parameter from observations is given
by 2.7 ± 6.7 (John, 2005). The large error bars of such a measured value means that
any results inferred from it will be statistically weak. In order to minimise this error,
the value of j0 is usually derived within the framework of a cosmological model, like
ΛCDM (Capozziello et al., 2011). In this work, the order of magnitude will be mainly of
importance and thus we will set j0 = 1.

3.1.5 | The Accelerating Universe
The discovery that high-redshift SNIa can be used as standard candles was critical for
attempts to measure the deceleration parameter. SNIa had been used for accurate calcu-
lation of H0 but it was due to the work of two collaborations, the Supernova Cosmology
Project (Goobar and Perlmutter, 1995) and the High-z Supernova Search Team (Schmidt
et al., 1998), that SNIa at high red-shifts were used to probe the acceleration of the ex-
pansion. The distances to these supernovae are calculated by measuring the incoming
flux and then fitting empirical families of light curves to this flux (Branch and Tammann,
1992). The distance is then derived from the luminosity distance,

DL =

(
L

4πF

)1/2

, (3.34)

where L is the intrinsic luminosity of the supernova and F is the observed flux (Riess,
2000).

Riess et al. (1998) found that the distances to SNIa at 0.16 ≤ z ≤ 0.97 measured by
two methods, were around 14% greater than those expected in a flat universe with the
same amount of matter, but no cosmological constant. These results were confirmed by
Perlmutter et al. (1999) and can be seen in Fig. 3.3a. These two teams used this data
to constrain the values of Ωm and ΩΛ. Figure 3.3b, indicates that measurements fit an
accelerating universe containing a positive cosmological constant, with high statistical
significance.

The acceleration of the Universe has since been confirmed by independent stud-
ies using alternate probes to SNIa including the CMB and baryon acoustic oscillations
(Blake et al., 2011; Percival et al., 2010). Thus, rather than a positive value for the de-
celeration parameter, we expect to measure q0 < 0. Indeed, recent measurements give
q0 = −0.51± 0.024 (Riess et al., 2021). For a de Sitter universe, the deceleration parame-
ter is equal to −1 and since the Universe is asymptotically de Sitter, we expect the value
of q to tend towards −1.
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(a) Magnitude of SNIa against redshift. At
high redshifts, SNe appear fainter than
theoretical predictions in a universe with
ΩΛ = 0 indicating an accelerating uni-
verse. The best fit for a flat universe is
Ωm = 0.3 and ΩΛ = 0.7

(b) Joint confidence intervals for (Ωm, ΩΛ)
from SNIa. Regions representing different
cosmological scenarios are labelled.

Figure 3.3: Graphs showing the magnitude of SNIa against redshift and constraints on
the matter and dark energy density parameters. Figures taken from Riess (2000) which
combine data from Riess et al. (1998) and Perlmutter et al. (1999). The data strongly
indicates a non-zero cosmological constant and an accelerating universe.

3.1.6 | Challenges for the Standard Model

The standard cosmological model described in the last few sections explains observa-
tions consistently in a simple framework. However, some problems with it remain.

Two of such major problems in cosmology are the flatness and horizon problems.
The flatness problem deals with the fact that the geometry of the Universe cannot change
over time. Current observations constrain the Universe to be flat, however a small de-
viation from flatness early on in the Universe would be amplified and thus this poses
a fine-tuning problem. The horizon problem deals with the fact that the CMB has a
near-uniform temperature, however, there exist points in the sky which are not causally
connected and so should not have had enough time to settle into thermal equilibrium.
In 1981, Alan Guth proposed inflation as the solution to the above problems (Guth,
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1981). In simple terms, this is a period of accelerated expansion in the early history
of the Universe. Although successful in explaining away these problems, the physics
behind inflation is still not understood completely. Moreover, inflation itself requires
specific initial conditions to work and so it poses another fine-tuning problem (Penrose,
1989).

One of the biggest problems in cosmology is what is known as the cosmological
constant problem. Quantum Field Theory predicts that vacuum has an energy originat-
ing from quantum fluctuations which should correspond to the cosmological constant.
However, the theoretical value of Λ is at least a factor of 10120 larger than what the ob-
servations constrain it to be (Weinberg, 1989), which is an inadmissible disagreement
between theory and observation. The tension in the value of the Hubble parameter dis-
cussed in Sec. 3.1.1 casts further doubt over the completeness of the ΛCDM model. Fur-
thermore, although predictions of this model on large scales have been successful so far,
it has faced problems on the sub-galaxy scale, including the “cusp-core problem" (Gen-
tile et al., 2004) and the “missing satellites problem" (Klypin et al., 1999) which arise
from discrepancies between CDM simulations and observations. Such problems have
been coined the small-scale controversies (Weinberg et al., 2015). A rather philosophi-
cal problem with ΛCDM is known as the cosmic coincidence problem. This deals with
the fact that the observed value of Λ is the exact one needed for the transition from
matter domination to dark-energy domination to have happened very recently, as cal-
culated in Sec. 3.1.4 and highlighted in Fig. 3.2. It would be much more likely for us
to exist during a period of dark energy domination and there is no apparent reason as
to why we are living at a special period of the cosmic history (Bahamonde et al., 2018;
Velten et al., 2014).

Such problems motivate the need to look for modified cosmological models beyond
ΛCDM arising from modifications to GR as discussed in Secs. 2.1.5 and 2.2.4. The main
motivation behind this work is to look for such modified cosmologies which could ex-
plain the late-time acceleration of the Universe by modifying the gravitational theory
itself and thus eliminating the need to introduce a cosmological constant.

3.2 | f (T, TG) Cosmology
The Friedmann equations which govern the dynamics of the Universe are the specific
form of Einstein’s field equations using an FLRW metric. Since the field equations are
derived from the Einstein-Hilbert action, modifying this action will accordingly give
different Friedmann equations and as a consequence the dynamics of the Universe will
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differ from those described in Sec. 3.1. Since this work focuses on analysing the different
cosmological scenarios that can result from the f (T, TG) modification given in Eq. (2.57),
it will be necessary to explicitly describe the dynamics of a universe governed by this
gravitational theory. In order to do this, many of the same assumptions taken in Sec. 3.1
in the context of ΛCDM will still hold. In particular, the energy-momentum tensor of
a perfect isotropic fluid as given in Eq. (3.17) will again be considered, and the EoS for
matter, radiation and dark energy will take on the same form as in Eq. (3.23). The cos-
mological parameters defined in Sec. 3.1.4 will also be useful in studying the properties
of f (T, TG) cosmology and, as shall be shown, the energy content of the Universe will
still satisfy the fluid equation in Eq. (3.22).

The modelled universe is still required to be homogeneous and isotropic and so the
FLRW metric will again be used. Since in the teleparallel formulation of gravity, it is
the tetrad that is the fundamental dynamical variable, we can use Eq. (2.37) to find the
tetrad corresponding to the FLRW metric in Eq. (3.9). This is found to be,

eA
µ = diag(1, a(t), a(t), a(t)) , (3.35)

while the dual tetrad field is given by,

E µ
A = diag(1, a−1(t), a−1(t), a−1(t)) . (3.36)

Calculating the determinant of eA
µ gives e = a3(t).

Using Eqs. (2.51) and (2.55), and the tetrad field defined above, allows us to express
the invariants T and TG in terms of H,

T = 6H2 , (3.37)

TG = 24H2(Ḣ + H2) . (3.38)

From these expressions it is easy to recognise that T is of first order in the derivative of
the scale factor, and thus the tetrad field, while TG is of second order.

In order to obtain a realistic cosmological model, we consider a matter action, SM,
in addition to the one defined in Eq. (2.57). As previously indicated, this corresponds
to an energy momentum tensor Θµν representing a perfect fluid of energy density ρm

and pressure pm. Variation of the total action S + SM gives the Friedmann equations for
f (T, TG) cosmology,

f − 12H2 fT − TG fTG + 24H3 ˙fTG = 2κ2ρm , (3.39)

f − 4(3H2 + Ḣ) fT − 4H ḟT − TG fTG +
2

3H
TG ˙fTG + 8H2 ¨fTG = −2κ2 pm , (3.40)
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where fT and fTG denote differentiation of the function f (T, TG) wrt T and TG, respec-
tively. The derivation of these Friedmann equations can be found in (Kofinas and Sari-
dakis, 2014).

Making the reasonable assumption that the only two components of the Universe
which have a significant effect on its late-time dynamics are matter and dark energy,
we can rewrite the Friedmann equations in Eqs. (3.39) and (3.40) in the simpler form
(Kofinas et al., 2014),

H2 =
κ2

3
(ρm + ρDE) (3.41)

Ḣ = −κ2

2
(ρm + pm + ρDE + pDE) , (3.42)

where ρDE and pDE are the effective density and pressure of dark energy given by,

ρDE =
1

2κ2 (6H2 − f + 12H2 fT + TG fTG − 24H3 ˙fTG) , (3.43)

pDE =
1

2κ2 [−2(2Ḣ + 3H2) + f − 4(Ḣ + 3H2) fT − 4H ḟT − TG fTG +
2

3H
TG ˙fTG + 8H2 ¨fTG ] .

(3.44)

From this it follows that both the matter and dark energy sectors individually satisfy
the fluid equation in Eq. (3.22) meaning that,

ρ̇m + 3H(ρm + pm) = 0 , (3.45)

ρ̇DE + 3H(ρDE + pDE) = 0 . (3.46)

The EoS parameter of dark energy can be defined in the usual way as wDE = pDE/ρDE.
Notice that for f (T, TG) = −T − 2Λ, the same Friedmann equations as in Eqs. (3.41) and
(3.42) are recovered. This is in line with the dynamical equivalence of GR and TEGR and
shows that the f (T, TG) modification has a ΛCDM limit.

In order to analyse the dynamics which can result from the f (T, TG) modification,
the specific form of the function needs to be defined. There will be four specific mod-
els analysed in this study all in the form f (T, TG) = −T + F(T, TG). This is so as to
parametrise the deviation of the models from GR. In this way the modification is en-
tirely contained in the function F (Kofinas and Saridakis, 2014). The motivation for
these models comes from those considered in the literature for the f (T) and f (T, B)
TEGR modifications, namely as discussed in (Briffa et al., 2021), (Escamilla-Rivera and
Said, 2020) and (Caruana et al., 2020).

The first is the power-law model given by,

f1(T, TG) = −T + α1TP1
G . (3.47)
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In the f (T) modification, a similar model has been observed to produce late-times ac-
celeration of the Universe (Bengochea and Ferraro, 2009) and thus it will be interesting
to study whether even more complex dynamics can be obtained through the inclusion
of the TG invariant.

The second model is given by,

f2(T, TG) = −T + α2e−P2
√

TG/TG0 , (3.48)

where TG0 is the value of TG at the present time. This model has been inspired by the
Linder model (Linder, 2010) which was also derived to explain the late-times accelera-
tion of the universe in the f (T) modification.

The model given by,

f (T, TG) = −T + α3
√

T2 + P3TG , (3.49)

is the only f (T, TG) model whose dynamical behaviour has been previously studied in
detail in the literature (Kofinas et al., 2014). The motivation for the form of this specific
model is that since TG contains quartic torsion terms, it is of the same order of T2. Since
T and

√
T2 + P3TG are of the same order, both terms should be considered. In order to

extend on the study that has already been done, we will generalise this model to,

f3(T, TG) = −T + α3(T2 + P3TG)
β3 . (3.50)

The specific case where β3 = 1/2 would then correspond to the model studied in Kofi-
nas et al. (2014).

The fourth model is a logarithmic model given by,

f4(T, TG) = −T + α4 ln
(

P4TG

T

)
. (3.51)

This is motivated by the logarithmic f (T) model investigated in Bamba et al. (2011)
which showed consistency with observational data and so, again, it will be interesting
to see the effect of incorporating TG into the model.

The αi’s and Pi’s in each model are dimensionless real numbers; varying them results
in different dynamics. Indeed, the specific case in which the αi’s are equal to zero give
f (T, TG) = −T which corresponds to the TEGR action and thus produces the same
dynamics as GR. Moreover, the ΛCDM model dynamics are achieved when,

f (T, TG) = −T + 6H2
0(1 − Ωm0 − Ωr0) . (3.52)

Thus, for the first two models in Eqs. (3.47) and (3.48), the ΛCDM limit is achieved
by setting Pi = 0 and αi = 6H2

0(1 − Ωm0 − Ωr0). Similarly for f3 we can set β3 = 0
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and α3 = 6H2
0(1 − Ωm0 − Ωr0), however, for a fixed value of β3, such as in Eq. (3.49),

there is no ΛCDM limit. This is also the case for the logarithmic model. These last two
models without a ΛCDM limit are of particular interest as the theory cannot feature
confirmation bias with the standard model (Briffa et al., 2021).

Although superficially it may seem that the models contain two free variables, αi

and Pi, these parameters can be related through the first Friedmann equation as given
in Eq. (3.39), evaluated at the present time t0. We can thus obtain αi = αi(Pi), leaving
one free parameter in each model. As an example, for the first model in Eq. (3.47), the
relation between the two variables is given by,

α1 =
3H2

0(Ωm0 + Ωr0 − 1)
1
2 (1 − P1)T

P1
G0

+ 12P1(P1 − 1)H3
0 T(P1−2)

G0
ṪG|t=t0

. (3.53)

Although useful when analysing whether these models can fit current observations,
the scope of this work is to study the overall dynamics that each of the models has the
potential of producing. Moreover, the jerk parameter is involved in this relation in order
to calculate the value of ṪG|t=t0 and, as previously discussed, an accurate observational
value of j0, without specifying a cosmological model, is very hard to obtain. Thus, in
order to avoid these complications and focus on the dynamics of the models, both αi

and Pi will be treated as free parameters.

3.3 | Dynamical Systems Applied to Cosmology
The equations that govern the dynamics of the Universe, in the context of both ΛCDM
and f (T, TG) cosmology, take the form of ordinary differential equations. Thus, in or-
der to get a qualitative understanding of the overall dynamics of the models given in
Eqs. (3.47) - (3.51) we will utilise the techniques used to study dynamical systems. These
techniques have been used extensively in the literature (Coley, 2003; Wainwright and
Ellis, 1997) to analyse alternative cosmological models as they provide a way in which
models can be ruled out on purely theoretical grounds when the overall dynamics do
not agree with observations. On the other hand models whose dynamics look promis-
ing can be identified so that further in-depth analysis about the resulting cosmology can
be carried out and a qualitative comparison to observational data can be made (Baha-
monde et al., 2018).
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3.3.1 | Introduction to Dynamical Systems
A dynamical system in n-dimensions is defined as a system consisting of a phase space
X ⊂ R and a mathematical rule describing the evolution of any point in that space
(Böhmer and Chan, 2016). In order to analyse a system, such as the Universe, one must
identify specific quantities that describe it. The phase space consists of every possi-
ble value that these quantities can take. Note that different quantities can be used to
describe the same system, and choosing different variables on which to perform the
dynamical analysis, might result in different dynamics of the system being exposed.

Let x ∈ X be a point in the phase space. Then an autonomous dynamical system is
in general given by (Wiggins, 2003),

ẋ = f(x) (3.54)

where the function f : X 7→ X and dot denotes differentiation wrt a suitable time pa-
rameter. Note that the function f does not have a time dependence as this would result
in a nonautonomous system which will not be of importance in this work. The function
f is in general smooth almost everywhere, although it might contain some singulari-
ties. In this case, the techniques that will be discussed, can be applied away from these
singularities, where the function is continuous (Bahamonde et al., 2018). A particular
solution of Eq. (3.54) is called a trajectory or orbit in phase space and is denoted by ψ(t).

From Eq. (3.54) one can see that at points x0 in the phase space such that f(x0) = 0,
the evolution stops, since ẋ|x=x0 = 0. Such a point x0 is called a critical point or a
fixed point of the system. In principle, the system could remain in such states indef-
initely. However, one needs to investigate whether such a state is actually attainable
and whether the state is stable wrt small perturbations (Bahamonde et al., 2018). This
motivates the following definition of a stable fixed point (Wiggins, 2003),

Definition 3.3.1 (Stable fixed point) A fixed point x0 of the system given in Eq. (3.54) is said
to be stable if ∀ ϵ > 0 ∃ δ such that for any solution ψ(t) of Eq. (3.54) satisfying |ψ(t0)− x0| <
δ, then |ψ(t)− x0| < ϵ for any t ≥ t0.

Conceptually this means that any trajectory that starts close to a stable fixed point will
remain nearby. We can further make the following definition of an asymptotically stable
fixed point.

Definition 3.3.2 (Asymptotically stable fixed point) A fixed point x0 of the system given
in Eq. (3.54) is said to be asymptotically stable if it is stable and ∃ δ > 0 such that if a solution
ψ satisfies |ψ(t0)− x0| < δ, then limt→∞ ψ(t) = x0.

40



Chapter 3. Cosmology & Dynamical Systems 3.3. Dynamical Systems Applied to Cosmology

The difference between these two definitions is that any solutions near an asymp-
totically stable fixed point will eventually tend to this fixed point while those near a
stable fixed point could, for example, circle around it. In cosmology, most of the stable
fixed points are asymptotically stable and so we will refer to asymptotically stable fixed
points simply as stable. We can also define an unstable fixed point as simply a stable fixed
point with the time direction reversed, i.e. solutions tend away from the fixed point
rather than towards it. Studying the stability of fixed points allows us to make conclu-
sions about the qualitative time evolution of the system without having to specify any
initial conditions (Bahamonde et al., 2018).

3.3.2 | Linear Stability Theory
There are multiple techniques that can be employed in order to study the stability of
fixed points of a system. Some of these include linear stability theory (LST), Lyapunov’s
method (Hirsch et al., 2013) and centre manifold theory (Lynch, 2017). The first tech-
nique is the simplest and is applicable to so called hyperbolic fixed points. While the
other two methods allow for the study of the stability of non-hyperbolic fixed points, in
this work, such fixed points will not be encountered and thus LST will be sufficient, as
it is in most other applications of dynamical systems in cosmology.

The main idea behind LST is to linearise the system described by Eq. (3.54) near
a fixed point x0. Since we are considering functions that are mostly smooth, we can
expand each component of f about x0 using a Taylor series to obtain (Bahamonde et al.,
2018),

fi(x) = fi(x0) +
n

∑
j=1

∂ fi

∂xj
(x0)yj +

1
2!

n

∑
j,k=1

∂2 fi

∂xj∂xk
(x0)yjyk + ... , (3.55)

where the vector y is defined as y = x − x0. In LST, the non-linear terms of this expan-
sion are ignored and so the Jacobian matrix J, defined as,

J =
∂ fi

∂xj
=


∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

. . . ∂ fn
∂xn

 , (3.56)

will be of importance. This matrix is also referred to as the stability matrix since the
stability behaviour around a fixed point will depend on its eigenvalues.

The orbit structure around the fixed point x0 of the original, non-linear system, is
essentially the same as that of the linear one, given that x0 is hyperbolic. This means
that the eigenvalues of J evaluated at x0 all have non-zero real part (Wiggins, 2003). If
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this condition is satisfied, then we can determine the stability of the fixed point based
on these eigenvalues of J|x=x0 (Bahamonde et al., 2018).

■ If all the eigenvalues have a positive real part, then x0 is an unstable point or a
repellor,

■ if all the eigenvalues have a negative real part, then x0 is a stable point or an attrac-
tor,

■ otherwise, x0 is said to be a saddle. In this case the fixed point attracts trajectories
from certain directions while it repels them in others.

In the case of complex conjugate eigenvalues of J, when all the eigenvalues have a neg-
ative real part, the fixed point is called a stable focus. When all the eigenvalues have a
positive real part, it is called an unstable focus. These foci are characterised by the spi-
ralling behaviour of trajectories in the neighbourhood of the fixed point (Lynch, 2017).

An example which highlights the applicability of LST in cosmology, by analysing
the ΛCDM model is presented in (Bahamonde et al., 2018). The dynamical variables are
identified as the matter and radiation density parameters,

x = Ωm =
κ2ρm

3H2 , y = Ωr =
κ2ρr

3H2 , (3.57)

The physical phase space is then represented by 1 = x + y+ΩΛ such that x, y ≥ 0, since
matter and radiation density are positive. Differentiating wrt η = ln a, and using the
fluid and the Friedmann equations, one obtains the following dynamical system,

x′ = x(3x + 4y − 3) , (3.58)

y′ = y(3x + 4y − 4) , (3.59)

where prime denotes differentiation wrt η. Solving x′ = y′ = 0 gives three critical
points of the system, whose equation of state parameter we f f , eigenvalues of the stability
matrix, and stability are summarised in Table 3.1. From the values of Ωm, Ωr and we f f ,
we can identify O, R and M with universes containing only Λ, radiation and matter
respectively. The phase plot of this system can be seen in Fig. 3.4.

The line RM in Fig. 3.4 represents a universe containing radiation and matter only.
Since the observed value of Λ is very small, the trajectory representing our Universe
starts infinitesimally close to RM. From the phase portrait we can see that it is repelled
from R towards the saddle point M, resulting in a matter-dominated era, and is finally
attracted towards the stable fixed point O giving a dark-energy dominated universe.
Apart from those on the boundary of the phase space, all the trajectories eventually
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Point x y we f f Eigenvalues Stability
O 0 0 −1 {−4,−3} Stable point
R 0 1 1/3 {1, 4} Unstable point
M 1 0 0 {−1, 3} Saddle point

Table 3.1: Fixed points of the system defined in Eqs. (3.58) & (3.59) reproduced from
Bahamonde et al. (2018).

Figure 3.4: Phase space portrait for the system defined in Eqs. (3.58) & (3.59). The
yellow-shaded region represents the region in which we f f < −1/3, i.e. in this region
the Universe is accelerating.

tend towards this point O which represents a de-Sitter universe, thus transitioning from
a decelerating universe to an accelerating one (Bahamonde et al., 2018). These critical
points are in precise agreement with the standard cosmological model of the history of
the Universe from the observational perspective which have been highlighted in Fig. 3.2.

This is the type of qualitative phase space analysis that will be done in Chapter 4
for the models in Eqs. (3.47) - (3.51), although we will see that it will not always be
possible to define a dynamical system as simple as in this example in order to analyse
these f (T, TG) models.
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3.3.3 | Behaviour at Infinity
Since we will be dealing with non-compact dynamical systems in which one or more
of the dynamical variables is unbounded, it is necessary to perform an analysis of the
behaviour at infinity as there could be non-trivial dynamical features in this regime (Ba-
hamonde et al., 2018). To do so we will employ the method used by Kofinas et al. (2014)
and Xu et al. (2012) which is based on the Poincarè projection method. The essence of
this method is that a 2D-phase plane is mapped onto a sphere, transforming the points
at infinity into points on the equator of the sphere (Lynch, 2017) . This method can then
be extended to a system with three variables.

Consider a dynamical system with two variables, x and y. Then we can transform
to the Poincarè plane (R, Θ) using the transformations (Kofinas et al., 2014),

x =
R

1 − R
cos Θ (3.60)

y =
R

1 − R
sin Θ , (3.61)

where R ∈ [0, 1) and Θ ∈ [0, π
2 ]. Thus, we can see that the limit r2 = x2 + y2 → ∞

corresponds to R → 1−. We can then use the equations for x′ and y′ to obtain the
dynamical system,

R′ = f (R, Θ) (3.62)

Θ′ = g(R, Θ) . (3.63)

The fixed points at infinity are then found by finding the leading terms of Eqs. (3.62)
and (3.63) as R → 1−, setting Θ′ = 0 and solving for Θ.

We can also study the stability of a fixed point at Θ = Θ̃. This is done by first
studying the stability of the angular coordinate, and then from the sign of R′, deducing
the stability along the radial coordinate (Lynch, 2017). A stable fixed point is one such
that,

dΘ′

dΘ
|Θ=Θ̃ < 0 , R′|Θ=Θ̃ > 0 , (3.64)

an unstable fixed point satisfies the conditions,

dΘ′

dΘ
|Θ=Θ̃ > 0 , R′|Θ=Θ̃ < 0 , (3.65)

while otherwise, the fixed point is a saddle.

The above procedure will be generalised to systems of three dynamical variables, x,
y and z, as follows. We will transform the system into the Poincarè coordinates (R, Θ, Φ)
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through the following transformation,

x =
R

1 − R
cos Θ sin Φ (3.66)

y =
R

1 − R
sin Θ sin Φ (3.67)

z =
R

1 − R
cos Φ . (3.68)

We can then obtain expressions for R′, Θ′ and Φ′, thus obtaining a new dynamical sys-
tem, and then solve for the fixed points at infinity by setting Θ′ = Φ′ = 0 in the leading
order terms. Note that we are only solving for the values of Θ and Φ at the fixed points,
as at infinity, the R coordinate is fixed as one. A fixed point (1, Θ̃, Φ̃) is said to be stable
if,

dΘ′

dΘ
|(Θ,Φ)=(Θ̃,Φ̃) < 0 ,

dΦ′

dΦ
|(Θ,Φ)=(Θ̃,Φ̃) < 0 , R′|(Θ,Φ)=(Θ̃,Φ̃) > 0 . (3.69)

Similarly, it is said to be unstable if,

dΘ′

dΘ
|(Θ,Φ)=(Θ̃,Φ̃) > 0 ,

dΦ′

dΦ
|(Θ,Φ)=(Θ̃,Φ̃) > 0 , R′|(Θ,Φ)=(Θ̃,Φ̃) < 0 . (3.70)

Otherwise, the fixed point is a saddle. We will see that in the case of f (T, TG) models,
these fixed points at infinity will correspond to future singularities such as a Big Rip,
in which the distances between particles become infinite and the size of the observable
universe is zero (Caldwell et al., 2003; Kofinas et al., 2014), or to past singularities such
as the Big Bang.

3.3.4 | Dynamical Systems to Probe Novel Cosmologies
The simplicity of the dynamical systems approach along with its practicality in investi-
gating the overall dynamics of a cosmological model, makes it perfectly suited to inves-
tigate novel cosmologies such as f (T, TG). As previously discussed, this method pro-
vides a way to identify potentially viable models for further investigation. Dynamical
systems techniques have been used extensively for theories like f (R̊) gravity (Amen-
dola et al., 2007; de Souza and Faraoni, 2007), f (T) gravity (Myrzakulov, 2011) and
other higher-order theories like f (T, B) (Paliathanasis and Leon, 2021).

However, apart from in (Kofinas et al., 2014), no other attempts have been made to
study other viable f (T, TG) models using dynamical systems. Thus, the main motiva-
tion for carrying out this work is to analyse a number of f (T, TG) models that differ from
the one found in the existing literature, using dynamical systems, in order to understand
whether this modification has the potential to explain the observed cosmological evolu-
tion.
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4

Dynamical Analysis of the f (T, TG)
Modification

The dynamical systems approach when applied to cosmological models has been ex-
tremely successful in uncovering interesting dynamics of modified theories of grav-
ity (Bahamonde et al., 2018; Wainwright and Ellis, 1997; Xu et al., 2012). In (Kofinas
et al., 2014), this technique is specifically applied to the f (T, TG) teleparallel modifica-
tion. The promising results obtained in this paper for one form of f (T, TG) give con-
fidence that this modification can lead to an accurate description of Nature. Thus, in
this chapter we will be using the dynamical systems techniques introduced in Sec. 3.3 to
study the general late-time behaviour of more f (T, TG) models, in particular those in-
troduced in Eqs. (3.47) - (3.51). This will be done to reveal further potential cosmological
solutions that the f (T, TG) modification can lead to and will be achieved by incorporat-
ing the dynamics of the models, determined by the Friedmann and fluid equations, into
a dynamical system. Using this method, we can immediately distinguish those models
which have the potential of describing the physical Universe, from those which do not
lead to physical solutions, before constraining these models to fit observational data.

It is important to note that what will be analysed in this section is the late-time be-
haviour of the models rather than the dynamics over the full history of the modelled
universes. This is because of the various assumptions that have been made. For ex-
ample, the density parameter of radiation has been, and will continue to be, taken to
be equal to zero. This is a valid assumption for modelling the late-time behaviour,
since the contribution of radiation to the energy content of the Universe at present
times is negligible. In fact, the measured temperature of the CMB, corresponds to
Ωr0 = 2.47 × 10−5h−2 (Lahav and Liddle, 2019), where h is the dimensionless Hub-
ble constant defined by H0 = 100h km/s/Mpc (Liddle, 2003). However, radiation was
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the dominant component of the Universe in early times, as can be seen in Fig. 3.2, and
so to accurately give a theoretical description of this early period of the Universe, one
needs to consider Ωr as another dynamical variable. Moreover, additional fields might
be required to explain the inflationary period of the Universe. This is indeed something
that needs to be added even to the ΛCDM model to accurately describe the inflationary
era (Guth and Pi, 1985). These two further terms could be added to any model which
shows potential in accurately describing the late-time behaviour in future works, to look
for f (T, TG) models which explain the full history of the Universe.

In the analysis that follows, the software Mathematica 13.0 (Wolfram Research, Inc.)
was used to aid in numerical manipulation and to generate the phase portraits of the
dynamical systems. 1

4.1 | Model 1: f1(T, TG) = −T + α1TP1
G

The first model that will be analysed is the power law model as given in Eq. (3.47).
Power law models are used in many areas of physics and act as approximations to more
complex theoretical models. Thus, this model is the logical choice for an initial analysis
before investigating more complex models.

For this model, the Friedmann equations which govern the dynamics of the universe
are those given in Eqs. (3.41) and (3.42), with the specific form of the effective fluid
density and pressure, ρDE and pDE given by,

κ2ρDE =
24P1 α1(P1 − 1)

2(H2 + Ḣ)2
(H2 + H2Ḣ)P1 [H4 + 2(1 − 2P1)H2Ḣ + (1 − 2P1)Ḣ2 − P1HḦ]

(4.1)

κ2 pDE =
24P1 α1(P1 − 1)(H4 + H2Ḣ)P1−1

6(H2 + Ḣ)2
× {−3H8 + (8P1 − 9)H6Ḣ + 2P1(2P1 − 1)Ḣ4

+ 6P1H5Ḧ + 2P1(4P1 − 1)H3ḢḦ + 4P2
1 HḢ2Ḧ + H4[(16P2

1 − 9)Ḣ2 + P1
...
H]

+ H2[(2P1 − 1)(3 + 8P1)Ḣ3 + P1(P1 − 2)Ḧ2 + P1Ḣ
...
H]} .

(4.2)

To perform the dynamical analysis, the unitless auxiliary variables,

x =

(
1 +

Ḣ
H2

)P1/2

(4.3)

Ωm =
κ2ρm

3H2 , (4.4)

1The code used for the first model can be accessed on the following link: https://github.com/
s-buttigieg/dynamical_systems. The code for the other models follows the same pattern.
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are introduced. These variables were chosen in order to expose the dynamical features
of the model through an autonomous dynamical system, as defined in Eq. (3.54), with
fixed points that are hyperbolic. In particular, Ωm is the matter density parameter in-
troduced in Sec. 3.1.4 and its value will directly show whether the modelled universe is
matter-dominated, dark-energy-dominated, or a mixture of the two. x does not have a
specific physical significance but was rather chosen based on the terms in Eqs. (4.1) and
(4.2) with the aim of simplifying the obtained dynamical system. Because of this, x will
vary for different models, while Ωm will always be taken as one of the dynamical vari-
ables, as shall be seen in the following sections. Note that choosing different dynamical
variables for the same model, might uncover different dynamics and so the dynamics
that are presented in this section do not exhaust the full list of different dynamical be-
haviour that the model can result in.

The dynamical system will be obtained wrt the time variable η = ln a. Prime will
denote differentiation wrt η while dot will denote differentiation wrt t. For a general
function f , the relation between the two is given by,

f ′ =
1
H

ḟ , (4.5)

after a simple application of the chain rule.
The evolution of Ωm wrt η is obtained as follows,

Ω′
m =

1
H

Ω̇m

=
κ2

3H

(
˙ρm

H2 − 2ρmḢ
H3

)
.

(4.6)

Now, using Eq. (3.45), it follows that,

Ω′
m =

κ2

3H4 (−3H2(ρm + pm)− 2ρmḢ) . (4.7)

In this step, the fluid equation is being incorporated into the dynamical system. Using
the definition of x in Eq. (4.3) allows us to write Ḣ in terms of H and x,

Ḣ = H2(x
2

P1 − 1) . (4.8)

Thus,

Ω′
m =

κ2ρm

3H2 (−3(1 + ωm)− 2(x
2

P1 − 1)) , (4.9)

where ωm = pm
ρm

is the equation of state parameter for matter, giving,

Ω′
m = −Ωm(1 + 3ωm + 2x

2
P1 ) . (4.10)
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We can obtain the evolution of x in a similar way,

x′ =
1
H

ẋ

=
P1

2H

(
1 +

Ḣ
H2

) P1
2 −1 ( Ḧ

H2 − 2Ḣ2

H3

)
=

P1x1− 2
P1

2H4 (ḦH − 2Ḣ2) . (4.11)

Our aim is to express the evolution of x purely in terms of x, H and Ωm and thus we
need to eliminate Ḧ and Ḣ. Using Eq. (4.1), we can obtain an expression for Ḧ,

P1HḦ = H4 + 2(1 − 2P1)H2Ḣ + (1 − 2P1)Ḣ2 − 2κ2ρDE(H2 + Ḣ)2

24P1 α1(P1 − 1)(H4 + H2Ḣ)P1
, (4.12)

where using the first Friedmann equation in Eq. (3.41),

ρDE =
3H2

κ2 − ρm

=
3H2

κ2 (1 − Ωm) . (4.13)

Using Eqs. (4.8), (4.12) and (4.13), Eq. (4.11) becomes,

x′ =
x
2

[
4P1 + x

2
P1

(
1 − 4P1 +

6H2−4P1(Ωm − 1)
24P1 x2α1(P1 − 1)

)]
. (4.14)

Notice how the first Friedmann equation for the f (T, TG) modification is being directly
incorporated into the expression for the evolution of x.

The final equation needed is that governing the evolution of H which is simply given
by,

H′ = H(x
2

P1 − 1) . (4.15)

In this way, the dynamics of the model are contained in the dynamical system given by
Eqs. (4.14), (4.15) and (4.10). This dynamical system is defined on the phase space,

S = {(x, H, Ωm)|x ∈ (0, ∞), H ∈ [0, ∞), Ωm ∈ [0, ∞)} , (4.16)

however, the range of H needs to be restricted to (0, ∞) for P1 > 1
2 . Notice that in

Eq. (4.14), H can be completely eliminated from the dynamical system for P1 = 1
2 , re-

ducing the 3D system to a 2D one. This specific case requires a different analysis that
will be done in Sec. 4.1.4 so in the remainder of this section, P1 ̸= 1

2 will be assumed.
We can obtain expressions for observable parameters in terms of the dynamical vari-

ables. In particular the deceleration parameter q ≡ −1 − Ḣ
H2 is given by,

q = −x
2

P1 . (4.17)
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The dark energy density parameter is simply given by,

ΩDE = 1 − Ωm , (4.18)

while the dark energy equation of state can be found using the relation,

2q = 1 + 3(ωmΩm + ωDEΩDE) (4.19)

giving,

ωDE =
−2x

2
P1 − 1 − 3ωmΩm

3(Ωm − 1)
. (4.20)

These expressions will be used to calculate these cosmological parameters at fixed
points of interest, to then infer the cosmological implications of the dynamical system.
In the rest of the work, dust matter will be assumed, i.e. ωm = 0 without loss of gen-
erality. This is because matter in the Universe can be approximated in this way and an
extension to the analysis with a non-zero value of ωm is straightforward.

4.1.1 | Finite Phase Space Analysis
The finite phase space analysis is performed by first finding the real fixed points of
the autonomous system defined in Eqs. (4.10), (4.14) and (4.15). We will then use tech-
niques from LST described in Sec. 3.3 to study the stability of these fixed points. The
deceleration and dark energy equation of state parameters at the fixed point will also be
computed in order to investigate the cosmological implications of the dynamics of the
model.

The first fixed point of the system is at C1 = (1, H1, 0) where H1 =
(

24P1 α1(P1−1)
6

) 1
2−4P1 .

The existence of this fixed point is not guaranteed but rather depends on the values of
α1 and P1. The existence conditions are complex, however, the existence of C1 will be
guaranteed if one of the following conditions is satisfied;

■ P1 = 2n−1
4n for n ∈ N,

■ α1 > 0 and P1 > 1,

■ α1 < 0 and P1 < 1.

The other fixed point, is at C2 = (x2, 0, 0) where x2 =
(

4P1
4P1−1

) P1
2

. A sufficient condition

for the existence of C2 is that P1 < 0 or 1
4 < P1 < 1

2 .
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The stability of these fixed points will be studied using the stability matrix J, which
was defined in Eq. (3.56) for a general dynamical system. The specific form of J for a
dynamical system in terms of x, H and Ωm becomes,

J =


∂x′
∂x

∂x′
∂H

∂x′
∂Ωm

∂H′

∂x
∂H′

∂H
∂H′

∂Ωm
∂Ω′

m
∂x

∂Ω′
m

∂H
∂Ω′

m
∂Ωm

 . (4.21)

This form of J will also be valid for all the other models that will be analysed in the
subsequent sections. J will be evaluated, and the stability of the fixed points will be
analysed, for specific values of α1 and P1. This is because the expressions in Eq. (4.21)
for general values of these parameters would make the investigation complex, and thus
specifying these values makes it possible to study the stability effectively.

Notice that the value of q at the fixed points will always be equal to −1. This follows
from the fact that H′ = 0, which directly implies that Ḣ = 0, and q = −1 − Ḣ

H2 . It
then also follows from Eq. (4.19) that at fixed points with a non-zero value of H, ωDE =

−1. So any such fixed point, will represent a de Sitter universe in which the expansion
is exponential, as described in Eq. (3.24). In particular, this is the case for C1 for this
f1(T, TG) model. The exception to this is at fixed points with H = 0 at which q and ωDE

are undefined.

As can be seen in Eq. (4.17), q < 0 in all of the phase space for this model, meaning
that the expansion of the modeled universe is always accelerating. Although we know
that throughout the history of the Universe there were periods of matter domination in
which the expansion was decelerating, in this work these models are being studied for
the predicted late-time behaviour, as previously mentioned, and so this does not reflect
a deficiency of the model itself. Since we cannot have a positive value of q, points with
H = 0 are disconnected from the boundary conditions as they can never be realised
by a physical universe, i.e. although certain trajectories do approach such fixed points,
these are isolated trajectories, which do not correspond to the initial conditions of our
Universe. These points are rather mathematical artefacts of the dynamical analysis, and
do not have a direct physical interpretation. This is also reflected in the fact that at these
fixed points, q and ωDE are undefined.

4.1.2 | Analysis at Infinity
Apart from the fixed points in the finite phase space, the dynamical system might also
have fixed points at infinity. At these points one or more of the dynamical variables x,
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H and Ωm are infinite. These fixed points could represent future singularities and thus
warrant an extensive investigation.

In order to study this dynamical behaviour at infinity, we transform to the (R, Θ, Φ)

co-ordinates defined in Eqs. (3.66)-(3.68). For this specific dynamical system we take,

x =
R

1 − R
cos Θ sin Φ (4.22)

H =
R

1 − R
sin Θ sin Φ (4.23)

Ωm =
R

1 − R
cos Φ . (4.24)

The region of the (R, Θ, Φ) plane which corresponds to S defined in Eq. (4.16), is given
by,

{(R, Θ, Φ) : 0 ≤ R ≤ 1
2

, 0 ≤ Θ ≤ π

2
, 0 ≤ Φ ≤ π

2
} ∪{

(R, Θ, Φ) :
1
2
< R < 1, 0 ≤ Θ ≤ π

2
, 0 ≤ Φ ≤ arccos

(
1 − R

R

)}
,

(4.25)

where Θ = 0 is not in the phase space for P1 > 1
2 . Differentiating Eqs. (4.22)-(4.24) wrt η

we find that,

R′ = (1 − R)2[Ω′
m cos Φ + sin Φ(x′ cos Θ + H′ sin Θ)] (4.26)

Θ′ =
R − 1

R sin Φ
[
x′ sin Θ − H′ cos Θ

]
(4.27)

Φ′ =
R − 1

R
[
Ω′

m sin Φ − cos Φ(x′ cos Θ + H′ sin Θ)
]

. (4.28)

Substituting in the expressions for x′,H′ and Ω′
m from Eqs. (4.14), (4.15) and (4.10) re-

spectively, and again using the substitutions in Eqs. (4.22)-(4.24), we obtain the dynam-
ical system in the (R, Θ, Φ) space,

R′ = (1 − R)

{
− R cos2 Φ

[
1 + 2

(
R cos Θ sin Φ

1 − R

) 2
P1

]

+
1
2

R sin2 Φ

[
2 sin2 Θ

(
−1 +

(
R cos Θ sin Φ

1 − R

) 2
P1

)

+ cos2 Θ

[
4P1 +

(
R cos Θ sin Φ

1 − R

) 2
P1
(

1 − 4P1 +
6
(

R cos Φ
1−R − 1

)
tan2 Θ

24P1 α1(P1 − 1)
(

R sin Θ sin Φ
1−R

)4P1

)]]}

(4.29)

Θ′ = −1
2

cos Θ sin Θ

{
2 + 4P1 − 2

(
R cos Θ sin Φ

1 − R

) 2
P1
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+

(
R cos Θ sin Φ

1 − R

) 2
P1

[
1 − 4P1 +

6
(

R cos Φ
1−R − 1

)
tan2 Θ

24P1 α1(P1 − 1)
(

R sin Θ sin Φ
1−R

)4P1

]}
(4.30)

Φ′ = −1
2

cos Φ sin Φ

{
− 2 − 4

(
R cos Θ sin Φ

1 − R

) 2
P1

− 2 sin2 Θ

[(
R cos Θ sin Φ

1 − R

) 2
P1 − 1

]

− cos2 Θ

[
4P1 +

(
R cos Θ sin Φ

1 − R

) 2
P1

1 − 4P1 +
6
(

R cos Φ
1−R − 1

)
tan2 Θ

24P1 α1(P1 − 1)
(

R sin Θ sin Φ
1−R

)4P1

]} .

(4.31)

We can also obtain expressions for q, ΩDE and ωDE in the (R, Θ, Φ) coordinate sys-
tem, by substituting Eqs. (4.22)-(4.24) into Eqs. (4.17), (4.18) and (4.20) respectively,

q = −
(

R cos Θ sin Φ
1 − R

) 2
P1

(4.32)

ΩDE =
1 − R(1 + cos Φ)

1 − R
(4.33)

ωDE =

(R − 1)
(

1 + 2
(R cos Θ sin Φ

1−R

) 2
P1

)
3(R(cos Φ + 1)− 1)

. (4.34)

These expressions will allow us to interpret the cosmological implications of these infi-
nite fixed points.

The behaviour at infinity occurs as R → 1−, as discussed in Sec. 3.3.3. Thus, in order
to find the fixed points at infinity, only the leading terms of Eqs. (4.29)-(4.31), in the limit
as R → 1−, are required. These leading terms depend on the value of P1. As an example,
the analysis for 0 < P1 < 2 is given below. In this case the leading terms are,

R′ → cos Θ sin Φ

(
cos Θ sin Φ

1 − R

) 2
P1
−1[

− 2 cos2 Φ +
1
2

cos2 Θ sin2 Φ(1 − 4P1)

+ sin2 Θ sin2 Φ
]

(4.35)

Θ′ → sin Θ cos Θ
(

cos Θ sin Φ
1 − R

) 2
P1
(

1
2
+ 2P1

)
(4.36)

Φ′ →
(

cos Θ sin Φ
1 − R

) 2
P1

cos Φ sin Φ
(

2 +
cos2 Θ

2
(1 − 4P1) + sin2 Θ

)
. (4.37)

The fixed points at infinity occur when Θ′ = Φ′ = 0 and thus we can find these critical
points by setting Eqs. (4.36) and (4.37) equal to zero. The critical points at infinity along
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with their existence and stability conditions are presented in Table 4.1. The values of q,
ωDE, ΩDE and H at these fixed points are then presented in Table 4.2.

Critical Point Θ Φ Existence Stability

Q1 0 π
2 Always

Unstable if P1 > 5
4 .

Saddle otherwise.

Q2
π
2 [0, π

2 ] P1 > 0 Inconclusive since dΘ′

dΘ = dΦ′

dΦ = 0.

Q3 [0, π
2 ] 0 P1 > 0 Inconclusive since dΘ′

dΘ = dΦ′

dΦ = 0.

Table 4.1: The critical points at infinity alongside their existence and stability conditions
for f1(T, TG). Note that Q2 and Q3 are lines of fixed points. The stability of these last two
sets of critical points cannot be studied analytically and thus they can only be classified
by investigation of the phase portrait.

The stability of point Q1 was inferred from the signs of dΘ′

dΘ and dΦ′

dΦ calculated from
Eqs. (4.36) and (4.37), as discussed in Sec. 3.3.3. Evaluated at Q1, these are,

dΘ′

dΘ
=

1
2

(
1

1 − R

) 2
P1
(1 + 4P1) (4.38)

dΦ′

dΦ
=

1
4

(
1

1 − R

) 2
P1
(8P1 − 10) , (4.39)

while,

R′ =
1
2

(
1

1 − R

) 2
P1
−1

(1 − 4P1) . (4.40)

The values of P1 satisfying the stability conditions in Eqs. (3.69) and (3.70) are as given
in Table 4.1.

Notice how since Q1 and Q3 correspond to a zero value of H, the values of q and ωDE

at these points are undefined, and, in line with the discussion in Sec. 4.1.1, these fixed
points do not have a direct physical interpretation. The cosmology that fixed points
along the line Q2 can represent varies depending on the exact coordinates and so, this
interpretation will be done for particular values of α1 and P1 where fixed points of in-
terest are identified.

4.1.3 | Cosmological Implications
We now investigate the cosmological implications of the dynamical system analysed
above. This will be done by fixing specific values of the parameters α1 and P1 and inves-
tigating the phase portraits of the resulting models. The choice of parameters was done
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Cr. Point Θ Φ ΩDE q ωDE H

Q1 0 π
2 1 Undefined Undefined 0

Q2
π
2 [0, π

2 ]
1 if Φ = π

2

∞ otherwise
See note

in caption
See note

in caption
0 when Φ = 0
∞ otherwise

Q3 [0, π
2 ] 0 ∞ Undefined Undefined 0

Table 4.2: Values of the dark energy density parameter, deceleration parameter and dark
energy equation-of-state parameter at the infinite fixed points of f1(T, TG). Note that the
values of q and ωDE at the line of fixed points Q2 depend on both the value of P1 and
Φ and are too complex to list in this table. Instead, they will be explicitly evaluated for
cases of interest, if any, in Sec. 4.1.3.

based on the stability criteria that were discussed in Secs. 4.1.1 and 4.1.2. However, in
certain cases the stability of fixed points could not be studied before fixing the values of
α1 and P1. In this case, different values of the parameters were tried out and the resulting
phase portraits were used to study the type of dynamics that they produce. Different
combinations of positive and negative values, and integers and fractional values, were
tested. This trial-and-error method was also employed for the other models, as will be
seen in the following sections. For f1(T, TG), three different parameter choices, which
lead to qualitatively different dynamics, are presented.

4.1.3.1 | Case 1: α1 = −1 & P1 = 1
3

We start the analysis for the parameter choice α1 = −1 and P1 = 1
3 by computing the

stability matrix J given in Eq. (4.21), which, as discussed in Sec. 3.3.2, allows for the
study of the stability of the fixed points,

J =


1

12 (8 − 14x6 + 45(3H)
2
3 x4(Ωm − 1)) 3

2
3 x5(Ωm−1)

2H
1
3

3
4 (3H)

2
3 x5

6Hx5 x6 − 1 0
−12x5Ωm 0 −1 − 2x6

 . (4.41)

The set of eigenvalues of J evaluated at the fixed point C1 is found to be {−3,−2,−1}.
Thus, the point C1 is a stable fixed point. This behaviour is indeed observed in the
3D phase portrait which can be seen in Fig. 4.1a and is more evident in the trajectories
contained within the Ωm = 0 plane shown in Fig. 4.1b. Notice that for this choice of
parameters, the other fixed point C2 results in the second entry of the first row of J be-
ing infinite. Hence, the stability of this fixed points cannot be investigated analytically.
However, from the phase portraits, it is easy to see that C2 is a saddle, as trajectories are
first attracted towards it and then are repelled away.
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(a) Full 3D phase portrait. (b) 2D phase portrait in the plane Ωm = 0.

Figure 4.1: Trajectories in the phase space for the f1(T, TG) cosmological scenario de-
fined by Eqs. (4.14)-(4.10) with parameters α1 = −1, P1 = 1

3 . The fixed points C2 is a
saddle while C1 is an attractor.

The dynamics of the finite phase space are clearly reflected in the global phase por-
trait in the (R, Θ, Φ) coordinate system, as can be seen in Fig. 4.2. The fixed points along
the line Q2 seem to be behaving like unstable fixed points, while the point (1, π

2 , π
2 ) is

behaving like a saddle. Note that from Eqs. (4.32) and (4.34), at (1, π
2 , π

2 ), q = 0 and
ωDE = 1

3 . However, since at this point H = ∞, the values of these observable parame-
ters do not seem to be consistent and thus this point would require further investigation.
As mentioned previously, there is no way to analytically study the stability of these fixed
points since dΘ′

dΘ = dΦ′

dΦ = 0. The point Q1 should be behaving like a saddle, however, be-
cause of numerical instability, the trajectories at R = 1 are not being plotted accurately,
making it impossible to confirm the stability of this fixed point. Likewise, the stability
of the points along Q3 is not clear.

From the two phase portraits in Figs. 4.1 and 4.2, we can get an idea of the type of
cosmology that this model with this choice of parameters can represent. The value of
Ωm is decreasing from one to zero for all the trajectories, meaning that the universe is
going from matter domination to dark-energy domination. Moreover, all the trajectories
are eventually tending towards C1 which has q = ωDE = −1. This means that the
future dynamics of the modeled universe are like those of a de Sitter universe with a
cosmological constant. Although the value of H ≈ 0.2 towards which the modeled
universe is tending towards is not in line with the expected value of H in S.I. units, what
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Figure 4.2: Global phase portrait for f1(T, TG) with parameters α1 = −1, P1 = 1
3 in

the (R, Θ, Φ) coordinates. The gray shaded region represents the volume of the space
which results in Ωm > 1 and the universe may result in future singularities. This region
will be similarly shaded in all the following global phase portraits and will have the
same physical significance. Notice that the trajectories around the plane R = 1, i.e. at
infinity, are not being plotted accurately because of numerical instability arising from
the software used. This makes it hard to verify the stability of the fixed point Q1 which
is expected to be a saddle.

is of importance in this analysis is that the model results in a non-zero, positive value
of H. This analysis gives an indication that the model can produce physical dynamics
which describe the observable universe. The model would then need to be constrained
with data such as from type Ia Supernovae and the CMB in order to tune α1 and P1 in
order to fit parameters such as the value of H0 to observations before it can be considered
as a correct description of our Universe. This will also be true for the other three f (T, TG)

models.

It is important to note that although from the global phase portrait in Fig. 4.2, the
trajectories all seem to originate from a past singularity, this singularity might be simply
an algebraic one rather than a physical one, like for example the Big Bang. This, once
again, comes down to the fact that in this work it is the late-time Universe that is being
modeled, and different assumptions, such as considering the radiation component, need
to be taken in order to study the early Universe. If, in future works, these assumptions
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(a) Full 3D phase portrait. (b) 2D phase portrait in the plane Ωm = 0.

Figure 4.3: Trajectories in the phase space for the f1(T, TG) cosmological scenario de-
fined by Eqs. (4.14)-(4.10) with parameters α1 = −1, P1 = 1

8 . The fixed point C1 is an
attractor of the system.

are taken into consideration and the past singularity is still a dynamical feature of the
model, this could then be interpreted with certainty as a physical past singularity.

4.1.3.2 | Case 2: α1 = −1 & P1 = 1
8

Similar dynamics to those seen in the previous section can be obtained by setting α1 =

−1 and P1 = 1
8 , however, in this case, the critical point C3 does not exist. The stability

matrix is given by,

J =
1
4 +

17x16

4 + 60
7 (2

5
8 )(3

7
8 )H

3
2 x14(Ωm − 1) 6

7 (2
5
8 )(3

7
8 )
√

Hx15(Ωm − 1) 4
7 (2

5
8 )(3

7
8 )H

3
2 x15

16Hx15 x16 − 1 0
−32x15Ωm 0 −1 − 2x16

 .

(4.42)

At C1, the set of eigenvalues of J are {−1.5 ± 3.12i,−3}, meaning that this point is a
stable focus. This is indeed reflected in the phase portraits as can be seen in Fig 4.3.
Notice the spiral formed around the critical point which is a result of J having a complex
conjugate pair of eigenvalues (see Sec. 3.3.2).

The global dynamics of the model, as can be seen in the global phase portrait in
Fig. 4.4, are very similar to those resulting from the parameters considered in Sec. 4.1.3.1
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Figure 4.4: Global phase portrait for f1(T, TG) with parameters α1 = −1, P1 = 1
8 in

the (R, Θ, Φ) coordinates. The numerical instability as R = 1 is approached is very
evident in this case which once again makes it hard to study the stability of fixed points
at infinity.

and thus the cosmological implications are as discussed there. In particular, the universe
is evolving towards a de Sitter one.

4.1.3.3 | Case 3: α1 = 1
2 & P1 = 2

It is also interesting to study the case for which the critical point C1 is not a stable fixed
point. This can be achieved by setting α1 = 1

2 and P1 = 2. The stability matrix in this
case is,

J =

4 − 7x Ωm−1
16H7

1
96H6

H x − 1 0
−2Ωm 0 −1 − 2x

 . (4.43)

At C1, the only fixed point of the system, the eigenvalues of J are {−3.8,−3, 0.8} and
so this point is now a saddle. The behaviour in the finite phase space can be seen in
Fig. 4.5 while the global dynamics can be seen in Fig. 4.6. From this global phase portrait,
the fixed points at infinity of particular interest are Q1 which is acting like a saddle as
expected, and the point (1, π

2 , π
2 ) which is acting like a stable fixed point, although the
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(a) Full 3D phase portrait. (b) 2D phase portrait in the plane Ωm = 0.

Figure 4.5: Trajectories in the phase space for the f1(T, TG) cosmological scenario de-
fined by Eqs. (4.14)-(4.10) with parameters α1 = 1

2 , P1 = 2. C1 is a saddle in this case.

stability of the latter cannot be confirmed analytically. Moreover, trajectories seem to be
originating from the line of fixed points Q2.

At the stable fixed point at infinity we find that ΩDE = 1 and H = ∞. This implies
that the expansion of the universe becomes infinite, and thus this point could represent
something similar to a Big Rip. However, from Eqs. (4.32) and (4.34), q = 0 and ωDE = 1

3 .
Hence, further analysis would be needed to confirm what type of future cosmology this
point represents. Since Q1 represents a point with H = 0, this fixed point is inaccessible
to the system from the allowed initial conditions. As in the other cases, at the finite
fixed point C1, q = ωDE = −1. Thus this model represents a universe which first tends
towards a de Sitter universe and then could evolve into a future singularity.

4.1.4 | Model 1 Variation
As previously indicated, for P1 = 1

2 , H is eliminated from Eq. (4.14) and so the dy-
namical system reduces to a 2D one, in terms of x and Ωm only. In this case the model
becomes f (T, TG) = −T + α1

√
TG and the dynamical system containing its dynamics is

now,

x′ =
x
2

[
2 − x4

(
1 +

√
6(Ωm − 1)

x2α1

)]
(4.44)
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(a) (b)

Figure 4.6: Global phase portrait for f1(T, TG) with parameters α1 = 1
2 , P1 = 2 in the

(R, Θ, Φ) coordinates. Q1 is behaving as a saddle as expected while there is a stable fixed
point at infinity at (1, π

2 , π
2 ). Fig. 4.6b shows an enlarged section around the fixed point

Q1. Notice how although most trajectories seem to be originating from Q1, trajectories
in the Θ = 0 plane show the saddle nature of this fixed point.

Ω′
m = −Ωm(1 + 3ωm + 2x4) , (4.45)

where,

x =

(
1 +

Ḣ
H2

) 1
4

, (4.46)

and Ωm is as defined in Eq. (4.4). This system is defined on the phase space,

S = {(x, Ωm)|x ∈ [0, ∞), Ωm ∈ [0, ∞)} . (4.47)

The critical points of the system are at C1 = (0, 0) and C2 = (x2, 0), where

x2 =


√√

3+
√

3+4α2
1√

2α1
if α1 > 0√√

3−
√

3+4α2
1√

2α1
if α1 < 0 .

(4.48)

The stability matrix is given by,

J =

1 − 5x4

2 − 3
√

3
2 x2(Ωm−1)

α1
−
√

3
2 x3

α1

−8x3Ωm −1 − 2x4

 . (4.49)
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At C1, the eigenvalues of this matrix are always ±1 meaning that the origin is always a
saddle. The eigenvalues of J at C2 are,−

3 + 4α2
1 +

√
3(3 + 4α2

1)

α2
1

,−
6 + 5α2

1 + 2
√

3(3 + 4α2
1)

α2
1

 , (4.50)

when α1 > 0, and,−3 − 4α2
1 +

√
3(3 + 4α2

1)

α2
1

,
−6 − 5α2

1 + 2
√

3(3 + 4α2
1)

α2
1

 , (4.51)

when α1 < 0. In both cases, both eigenvalues are negative for any value of α1 and thus
C2 is always a stable fixed point.

The deceleration and dark-energy equation-of-state parameters are given by,

q = −x4 (4.52)

ωDE =
2x4 + 1

3(Ωm − 1)
. (4.53)

At C1, q = 0 and ωDE = − 1
3 for any value of α1, while at C2,

q = −

(√
3 ±

√
3 + 4α2

1

)2

2α2
1

(4.54)

ωDE = −1
3

1 +

(√
3 ±

√
3 + 4α2

1

)2

α2
1

 , (4.55)

where the + sign in Eqs. (4.54) and (4.55) corresponds to α1 > 0 and the − sign corre-
sponds to α1 < 0. Notice that at C2, q < 0 for any value of α1 implying that this fixed
point represents an accelerating universe in all cases. At C2, ωDE < −1 for α1 > 0 or
α1 < −

√
6, i.e. this fixed point represents a universe with phantom dark energy for

these ranges of α1. For α1 = −
√

6, the fixed point represents a de Sitter universe, while
the remaining values of α1 give a fixed point with quintessence-like dark energy.

We can also investigate the behaviour at infinity by transforming to the (R, Θ) coor-
dinates via,

x =
R

1 − R
cos Θ (4.56)

Ωm =
R

1 − R
sin Θ . (4.57)

63



Chapter 4. Dynamical Analysis 4.1. Model 1: Power Law Model

This gives the dynamical system,

R′ =
R

2α1(R − 1)3 [−2α2(r − 1)4 cos2 Θ + R4α1 cos6 Θ + 2α1(R − 1)4 sin2 Θ

−R2 cos4 Θ(
√

6(R − 1)2 +
√

6R(R − 1) sin Θ − 4R2α2 sin2 Θ)]

(4.58)

Θ′ = − cos Θ sin Θ
2α2(R − 1)4 [4α1(R − 1)4 + 3R4α1 cos4 Θ

+
√

6R2(R − 1) cos2 Θ(R + R sin Θ − 1)] .
(4.59)

The parameters q, ΩDE and ωDE in this coordinate system are given by,

q = −
(

R cos4 Θ
1 − R

)4

(4.60)

ΩDE =
1 − R(1 + sin Θ)

1 − R
(4.61)

ωDE =
(R − 1)4 + 2R4 cos4 Θ

3(R − 1)3(R + R sin Θ − 1)
. (4.62)

In order to investigate the fixed points at infinity, we consider the leading terms in
Eqs. (4.58) and (4.59) as R → 1−,

R′ → α1 cos6 Θ + 4α1 cos4 Θ sin2 Θ
2α1(R − 1)3 (4.63)

Θ′ → −3 cos5 Θ sin Θ
2(R − 1)4 . (4.64)

Solving for Θ′ = 0, gives the fixed point Q1 = (1, π
2 ). At this point q = 0 = ωDE, while

ΩDE = −∞. The infinite value of Ωm = 1 − ΩDE, implies that this point represents a
past singularity, however, the nature of this singularity is not clear from this analysis.
dΘ′

dΘ = 0 at Q1 and thus the stability of this point can only be investigated through the
phase portrait for specific values of α1.

Since the dynamics are expected to be the same for any value of α1, a representa-
tive case which leads to a phantom-like solution, with α1 = −3 is presented here. The
phase portrait in the (x, Ωm) coordinates can be seen in Fig. 4.7a, while its projection
on the Poincaré plane (R, Θ) can be seen in Fig. 4.7b. All trajectories are originating
from a past singularity at Q1 and are then tending towards the global attractor C2. Since
for this value of α1, C2 represents a phantom-like solution, we can conclude that this
cosmological model represents an accelerating universe that is evolving from matter-
dominated to dark-energy-dominated with phantom-like behaviour. The model cannot
result in a future singularity since there are no stable fixed points at infinity. This model
is an example of how a simple modification to the teleparallel action can lead to a uni-
verse in which the effective dark energy produces dynamics like those of a cosmological
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(a) Phase space portrait in the (x, Ωm)
plane.

(b) Projection of the phase space onto the
Poincaré plane, (R, Θ). The region above
the dashed line represents a past singular-
ity.

Figure 4.7: Trajectories in the phase space for the f1(T, TG) cosmological scenario de-
fined by Eqs. (4.44)-(4.45) with α1 = −

√
6. The finite fixed point C1 acts like a saddle

while C2 acts like a global attractor. The fixed point Q1 at infinity is unstable.

constant or a phantom/quintessence scalar field, without having to implicitly add such
terms to the theory.

4.2 | Model 2: f2(T, TG) = −T + α2e
−P2

√
TG

TG0

The next model to be analysed is the one inspired by the Linder model as given in
Eq. (3.48). This adds some more complexity to the power law model analysed in the
previous section. Here TG0 is the present day value of the TG invariant. TG0 can be cal-
culated using Eq. (3.38) by substituting the values of H0 and Ḣ|t=t0 . The latter can be
calculated using the value of the deceleration parameter at the present time q0. In order
to obtain an estimate of TG0 we can take H0 = 73.3km/s/Mpc and q0 = −0.51. These
values were taken from Riess et al. (2021) and give TG0 ≈ 350 × 106km4/s4/Mpc4. Al-
though the initial dynamical analysis will be performed without fixing the value of TG0 ,
when investigating the cosmological implications of this model, TG0 will be set equal to
one. This is because, since it is the dynamics of the model that are being investigated, we
can scale this constant to simplify calculations and avoid numerical instability while not
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affecting the resulting dynamics. To constrain the model to fit observations, the value of
TG0 calculated above would then need to be used.

Once again, the dynamics of the model are governed by the Friedmann equations as
given in Eqs. (3.41) and (3.42), with the dark-energy effective fluid density and pressure
given by,

κ2ρDE =
α2e−2

√
6P2D H2

4T2
G0

D3

{
2
√

6P2H6 + 2TG0 ḢD + 8P2H4Ḣ(
√

6 + 6P2D)

+ 2H2[TG0 D + 2P2Ḣ2(
√

6 + 6P2D)] + P2H3(
√

6 + 12P2D)Ḧ
}

(4.65)

κ2 pDE =
e−2

√
6P2Dα2

24T2
G0

κ2(H2 + Ḣ)2D

{
12T2

G0
H4D + 24T2

G0
H2ḢD + 192TG0 P2

2 H6ḢD

+ 12T2
G0

Ḣ2D + 192TG0 P2
2 H4Ḣ2D + 144TG0 P2

2 H2Ḣ3D + 144TG0 P2
2 H5ḦD

+ 48TG0 P2
2 H3ḢḦD + 48TG0 P2

2 HḢ2ḦD − 36TG0 P2
2 H2Ḧ2D

− 24
√

6P3
2 H2(H2 + Ḣ)[2Ḣ(2H2 + Ḣ) + HḦ]2 + 24TG0 P2

2 H4 ...
HD

+ 24TG0 P2
2 H2Ḣ

...
HD +

√
6TG0 P2H[12H7 + 52H5Ḣ + 12H4Ḧ + 4H2ḢḦ + 4Ḣ2Ḧ

+ 2H3(26Ḣ2 +
...
H) + H(24Ḣ3 − 3Ḧ2 + 2Ḣ

...
H)
}

, (4.66)

where we are defining D =

√
H2(H2+Ḣ)

TG0
.

To perform the dynamical analysis, two auxiliary, unitless variables, are introduced,

x =
D
H2 =

√
1 + Ḣ

H2

TG0

(4.67)

Ωm =
κ2ρm

3H2 . (4.68)

Notice that although the same dynamical variable x is used, this is defined differently
than how it was in Sec. 4.1 for the first model. The evolution of these two variables
will be obtained, as before, wrt η. Notice that Ωm is defined in the same way as it was
defined for f1(T, TG). This will also be the case for the remaining two models. Thus, in
order to obtain the evolution of Ωm, we can start from Eq. (4.7). To substitute for Ḣ in
this equation, we can use the definition of x in Eq. (4.67) to get,

Ḣ = H2(TG0 x2 − 1) . (4.69)

Substituting and simplifying gives,

Ω′
m = −Ωm(1 + 3ωm + 2TG0 x2) . (4.70)
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The evolution of x is obtained using a similar method to that used in Sec. 4.1,

x′ =
1
H

ẋ (4.71)

=
1

2TG0 xH2 (ḦH − 2Ḣ2) . (4.72)

We can use the expression for the effective fluid density in Eq. (4.65) to obtain an expres-
sion for Ḧ,

Ḧ =
1

P2H3(
√

6 + 12P2D)

{
4T2

G0
D3κ2ρDE

α2H2e−2
√

6α2D
− 2

√
6P2H6 − 2TG0 ḢD

− 8P2H4Ḣ(
√

6 + 6P2D)− 2H2[TG0 D + 2P2Ḣ2(
√

6 + 6P2D)]

}
. (4.73)

Using D = H2x alongside Eqs. (4.69) and the first Friedmann equation, (4.13), the ex-
pression for x′ simplifies to,

x′ =
x

Hα2P2(
√

6 + 12H2xP2)

{
− α2[TG0 x +

√
6H2(3TG0 x2 − 2)P2

+ 24H4x(TG0 x2 − 1)P2
2 ] + 6e2

√
6H2xP2 H2TG0 x(Ωm − 1)

}
. (4.74)

Finally, the equation,
H′ = H(TG0 x2 − 1) , (4.75)

completes the dynamical system given by Eqs. (4.74), (4.70) and (4.75) which incorpo-
rates the dynamics of the model through the fluid and Friedmann equations. This sys-
tem is defined on the phase space given by,

S = {(x, H, Ωm)|x ∈ [0, ∞), H ∈ (0, ∞), Ωm ∈ [0, ∞)} . (4.76)

We can, once again, obtain expressions for the observable parameters q, ΩDE and
ωDE in order to obtain comparisons between the theoretical predictions and observa-
tions,

q = −TG0 x2 (4.77)

ωDE =
1 + 2TG0 x2 + 3ωmΩm

3(Ωm − 1)
(4.78)

ΩDE = 1 − Ωm . (4.79)

Notice how for this model, the expressions for these observational parameters are inde-
pendent of the parameters α2 and P2 which is in contrast with the equivalent expressions
for the first model which had a dependency on P1. In the case of f2(T, TG), the depen-
dency on these parameters will be introduced when solving for the fixed points of the
system. As before, dust matter with ωm = 0 will be assumed for the dynamical analysis.

67



Chapter 4. Dynamical Analysis 4.2. Model 2: Exponential Model

4.2.1 | Finite Phase Space Analysis
As was done in Sec. 4.1.1, the first step in the analysis of the dynamics of f2(T, TG) is to
find the fixed points in the finite phase space. In this case, finding these fixed points is
not as straightforward as for f1(T, TG) and thus the method is discussed in more detail
here. Firstly, it follows directly from Eq. (4.70) that Ω′

m = 0 ⇐⇒ Ωm = 0. Moreover,
using Eq. (4.75) we see that H′ = 0 ⇐⇒ H = 0 or x =

√
1

TG0
. However, H = 0

would result in an undefined equation for x′ and thus this value is not allowed. Finally,
substituting for x =

√
1

TG0
in the equation for x′ and setting x′ = 0, one obtains the

following transcendental equation,

6e
2
√

6
TG0

H2P2
H2 + α2 +

√
6

TG0

H2α2P2 = 0 . (4.80)

This equation has no analytical solution and thus the only way to find the coordinates of
the fixed point of the system is to solve Eq. (4.80) using numerical methods after specify-
ing the values of α2 and P2. This was done using the FindRoot method in Mathematica
with an appropriate starting point (Wolfram Research, 2003).

In summary, the system has one fixed point at C1 =
(√

1
TG0

, H1, 0
)

where the value
of H1 will be explicitly given in the relevant sections. This real fixed point exists for
any value of α2 and P2. Notice that the stability of this fixed point using the stability
matrix cannot be investigated at this stage because of this transcendental equation but
will rather be studied for specific values of α2 and P2. Nonetheless, it is useful to give
the general form of the stability matrix J,

J =


J11 J12

6e2
√

6H2xP−2 Hx2
√

6α2P2+12H2xα2P2
2

2Hx x2 − 1 0
−4xΩm 0 −1 − 2x2 ,

 (4.81)

where,

J11 =
1

Hα2P2(
√

6 + 12H2xP2)2

{
− 2α2

{
− 6H2P2 + x

[√
6 + 3H2P2

(
11x

+ 4
√

6H2(7x2 − 1)P2 + 48H4x(3x2 − 1)P2
2
)]}

+ 12e2
√

6H2xP2 H2x(
√

6

+ 12H2xP2(1 +
√

6H2xP2))(Ωm − 1)
}

(4.82)

J12 =
x

H2α2P2(
√

6 + 12H2xP2)2

{
α2
{

12H2P2 + x
[√

6 + 6H2P2
(
3x

+ 2
√

6H2(4 − 3x2)P2 − 48H4x(x2 − 1)P2
2
)]}

+ 6e2
√

6H2xP2 H2x
[√

6
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+ 12H2xP2(1 + 4
√

6H2xP2)
]
(1 − Ωm)

}
. (4.83)

J is being defined in this general way since fixing the numerical values of α2 and P2 does
not significantly simplify the expressions in the matrix as was the case for f1(T, TG). The
eigenvalues of J evaluated at the fixed point C1 will then be computed for the specific
cases investigated in Sec. 4.2.3.

Reiterating, the values of q and ωDE at any fixed point, and specifically at C1, are
equal to −1. It is also important to note that, as in the case of the first model, for this
second model, q < 0 in all of the physical phase space, i.e. the modeled universe is
always accelerating. At C1, ΩDE = 1 − Ωm = 1. Thus, this fixed point represents a
dark-energy dominated, de Sitter universe. To conclude whether such a universe is
theoretically possible we will have to investigate the dynamics for specific values of the
parameters, as will be done in Sec. 4.2.3.

4.2.2 | Analysis at Infinity
For a complete analysis of the phase space, we need to find fixed points at infinity as
was done for the previous model by compactifying the phase space. Once again, this
is achieved by using the transformations given in Eqs. (4.22) - (4.24). The region corre-
sponding to the physical phase space is given by,

{(R, Θ, Φ) : 0 ≤ R ≤ 1
2

, 0 < Θ ≤ π

2
, 0 ≤ Φ ≤ π

2
} ∪{

(R, Θ, Φ) :
1
2
< R < 1, 0 < Θ ≤ π

2
, 0 ≤ Φ ≤ arccos

(
1 − R

R

)}
.

(4.84)

The dynamical system defined by Eqs. (4.74), (4.75) and (4.70) becomes,

R′ = (1 − R)2

{
−

R cos Φ
(
1 + 2R2 cos2 Θ sin2 Φ

(1−R)2

)
1 − R

+ sin Φ

[
R sin2 Θ sin Φ

(
− 1 + R2 cos2 Θ sin2 Φ

(1−R)2

)
1 − R

+
cos Θ cot Θ

α2P2
(√

6 + 12R3P2 cos Θ sin2 Θ sin3 Φ
(1−R)3

)
(

1
(1 − R)3 6e

2
√

6R3P2 cos Θ sin2 Θ sin3 Φ
(1−R)3 R3 cos Θ

(
− 1 +

R cos Φ
1 − R

)
sin2 Θ sin3 Φ

− α2

{
R cos Θ sin Φ

1 − R
+

24R5P5
2 cos Θ sin4 Θ sin5 Φ

(
− 1 + R2 cos2 Θ sin2 Φ

(1−R)2

)
(1 − R)5

+

√
6R2P2 sin2 Θ sin2 Φ

(
− 2 + 3R2 cos2 Θ sin2 Φ

(1−R)2

)
(1 − R)2

})]}
(4.85)
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Θ′ =
R − 1

R sin Φ

{
−

R cos Θ sin Θ sin Φ
(

R2 cos2 Θ sin2 Φ
(1−R)2 − 1

)
1 − R

+
cos Θ

α2P2

(√
6 + 12R3P2 cos Θ sin2 Θ sin3 Φ

(1−R)3

)[ 1
(1 − R)3 6e

2
√

6R3P2 cos Θ sin2 Θ sin3 Φ
(1−R)3 R3 cos Θ

(
R cos Φ
1 − R

− 1
)

sin2 Θ sin3 Φ − α2

(
R cos Θ sin Φ

1 − R

+
24R5P2

2 cos Θ sin4 Θ sin5 Φ
(

R2 cos2 Θ sin2 Φ
(1−R)2

)
(1 − R)5

+

√
6R2P2 sin2 Θ sin2 Φ

(
3R2 cos2 Θ sin2 Φ

(1−R)2 − 2
)

(1 − R)2

)]}
(4.86)

Φ′ =
R − 1

R

{
−

R cos Φ sin Φ
(

1 + 2R2 cos2 Θ sin2 Φ
(1−R)2

)
1 − R

− cos Φ

[
R sin2 Θ sin Φ

(
R2 cos2 Θ sin2 Φ

(1−R)2 − 1
)

1 − R
+

cos Θ cot Θ

α2P2

(√
6 + 12R3P2 cos Θ sin2 Θ sin3 Φ

(1−R)3

)
(

1
(1 − R)3 6e

2
√

6R3P2 cos Θ sin2 Θ sin3 Φ
(1−R)3 R3 cos Θ

(
R cos Φ
1 − R

− 1
)

sin2 Θ sin3 Φ

− α2

{
R cos Θ sin Φ

1 − R
+

24R5P2
2 cos Θ sin4 Θ sin5 Φ

(
R2 cos2 Θ sin2 Φ

(1−R)2 − 1
)

(1 − R)5

+

√
6R2P2 sin2 Θ sin2 Φ

(
3R2 cos2 Θ sin2 Φ

(1−R)2 − 1
)

(1 − R)2

})]}
(4.87)

in the (R, Θ, Φ) coordinates.
We can also obtain expressions for q, ωDE and ΩDE in terms of R, Θ and Φ,

q = −TG0 R2 cos2 Θ sin2 Φ
(1 − R)2 (4.88)

ωDE = − (R − 1)2 + 2R2TG0 cos2 Θ sin2 Φ
3(R − 1)(R − 1 + R cos Φ)

(4.89)

ΩDE = 1 +
R cos Φ
R − 1

. (4.90)

Since the behaviour at infinity occurs at R → 1−, the leading terms of Eqs. (4.85)-
(4.87) are required. For P2 > 0 these are,

R′ → 6e
2
√

6P2 cos Θ sin2 Θ sin3 Φ
(1−R)3 cos3 Θ cos Φ sin Θ sin4 Φ

(1 − R)2α2P2

(√
6 + 12P2 cos Θ sin2 Θ sin3 Φ

(1−R)3

) (4.91)
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Θ′ → −6e
2
√

6P2 cos Θ sin2 Θ sin3 Φ
(1−R)3 cos2 Θ cos Φ sin2 Θ sin2 Φ

(1 − R)3α2P2

(√
6 + 12P2 cos Θ sin2 Θ sin3 Φ

(1−R)3

) (4.92)

Φ′ → −6e
2
√

6P2 cos Θ sin2 Θ sin3 Φ
(1−R)3 cos3 Θ cos2 Φ sin Θ sin3 Φ

(1 − R)2α2P2

(√
6 + 12P2 cos Θ sin2 Θ sin3 Φ

(1−R)3

) . (4.93)

Thus, for this range of values of P2, there are four lines of fixed points at infinity; Q1

at Θ = 0, Q2 at Φ = 0, Q3 at Θ = π
2 and Q4 at Φ = π

2 , which were found by set-
ting Θ′ = 0 = Φ′. Evaluating dΘ′

dΘ and dΦ′

dΦ at these fixed points always results in both
derivatives being equal to zero. This means that the stability of the fixed points at in-
finity cannot be studied using the method introduced in Sec. 3.3.3. Instead, the stability
will be investigated directly using the phase portraits for specific values of α2 and P2

in Sec. 4.2.3. The values of q, ωDE and ΩDE will also be calculated in Sec. 4.2.3 for any
particular fixed points at infinity of interest.

If, on the other hand P2 < 0, the exponential term does not dominate but rather the
leading terms of Eqs. (4.85)-(4.87) become,

R′ → 24P2 cos5 Θ sin3 Θ sin8 Φ
(R − 1)2(

√
6(R − 1)3 − 6P2 sin Θ sin(2Θ) sin3 Φ)

(4.94)

Θ′ → 24P2 cos4 Θ sin4 Θ sin6 Φ
(R − 1)3(

√
6(R − 1)3 − 6P2 sin Θ sin(2Θ) sin3 Φ)

(4.95)

Φ′ → − 24P2 cos5 Θ cos Φ sin3 Θ sin7 Φ
(R − 1)3(

√
6(R − 1)3 − 6P2 sin Θ sin(2Θ) sin3 Φ)

. (4.96)

In this case, the fixed points at infinity occur at the lines Θ = 0, Φ = π
2 and Θ = π

2 which
will be labelled Q1, Q2 and Q3, respectively. Once again, at these lines of fixed points dΘ′

dΘ

and dΦ′

dΦ are equal to zero and so their stability can only be inferred from investigation
of the global phase portrait.

4.2.3 | Cosmological Implications
The cosmological implications of this dynamical analysis will be investigated in the
same way as was done in Sec. 4.1.3, namely, the phase portraits of two specific sets of
parameter values will be studied, and their cosmological implications interpreted. The
choice of values for α2 and P2 was done in a way which produced different qualitative
dynamics. In what follows the value of TG0 was set to one in all cases as previously
mentioned.
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(a) Full 3D phase portrait. (b) 2D phase portrait in the plane Ωm = 0.

Figure 4.8: Trajectories in the phase space for the f2(T, TG) cosmological scenario de-
fined by Eqs. (4.74), (4.75) and (4.70) with parameters α2 = −1, P2 = 1. The point
C1 = (1, H1, 0) is a saddle while the origin at C2 seems to be behaving like a stable fixed
point.

4.2.3.1 | Case 1: α2 = −1 & P2 = 1

We begin the analysis for the case α2 = −1 and P2 = 1 by numerically computing the
value of H1 at the fixed point C1. This is found to be H1 = 0.346196, although it is the
existence of a fixed point with a non-zero value of H which is important rather than the
exact numerical value of H1. Next, by plugging in the values of α2 and P2 in the stability
matrix given in Eq. (4.81), we can compute its eigenvalues at C1. These are found to be
{−3,−2.86, 1.83}. Since this set of eigenvalues consists of both positive and negative
values, C1 is a saddle, attracting trajectories along particular directions and repelling
them along others. As discussed in the general analysis, at C1, q = ωDE = −1 and
ΩDE = 1 and so this point represents a de Sitter universe.

The phase portrait can be seen in Fig. 4.8 and the saddle nature of C1 can indeed
be confirmed. Note that from these phase portraits, it is evident that the point (0, 0, 0),
labelled as C2 in the figures, is behaving like a stable fixed point even though this lies
outside of the phase space S, as defined in Eq. (4.76), and leads to an undefined ex-
pression for x′ (Eq. (4.74)). Thus, we will ignore the trajectories tending towards C2 and
focus our attention on the trajectories above the fixed point C1 which seem to be tending
towards infinity. Consequently, in order for the phase space analysis to be complete, we
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need to also investigate the behaviour at infinity to check whether there are any stable
fixed points.

The global phase portrait in the (R, Θ, Φ) coordinates can be seen in Fig. 4.9. The
dynamics of the finite phase portrait in Fig. 4.8 are clearly reflected in this coordinate
system, with C1 acting like a saddle and C2, which is now mapped to the plane R =

0, acting like a stable fixed point. The infinite fixed point (1, 0, 0) is behaving like an
unstable fixed point while (1, 0, π

2 ) seems to be a saddle, as can be seen in Fig. 4.9b,
although this cannot be confirmed analytically. Since these points both correspond to
H = 0, q and ωDE are undefined. The global dynamics of the model can now be inferred;
since C2 is the only point behaving like an attractor, any trajectory falls into one of the
following scenarios;

■ The trajectory eventually tends towards the point C2 which has H = 0 and so lies
outside of the phase space of the dynamical system. Moreover, the value H = 0
is disconnected from the allowed boundary conditions, as has been previously
discussed.

■ The trajectory oscillates between the saddles C1 and the infinite fixed point (1, 0, π
2 ).

This means that the value of the Hubble parameter does not tend towards a fixed
value, but rather keeps oscillating.

The latter scenario should be confirmed in future studies by employing analytical tech-
niques to ensure that there are indeed trajectories that do not eventually tend towards
the origin. However, from this preliminary investigation it is evident from Fig. 4.9 that
most trajectories do tend towards H = 0, and so although this choice of parameters
can describe the current Universe, it does not have a lot of potential at explaining its
asymptotic behaviour.

4.2.3.2 | Case 2: α2 = −1 & P2 = − 1
10

A desired modeled universe resulting from these cosmological models is one which
is asymptotically de Sitter, as this matches the prediction from ΛCDM. This scenario
can be achieved using this second model by setting α2 = −1 and P2 = − 1

10 as will be
investigated in this section.

Numerically solving Eq. (4.80) for this choice of parameters, gives a value of H1 =

0.42 at the fixed point C1. Evaluating the eigenvalues of the stability matrix in Eq. (4.81)
at this fixed point C1 gives {−0.63 ± 6.24i,−2}. Thus C1 is a stable focus as can be
observed in Fig. 4.10. At this point, q = ωDE = −1 and ΩDE = 1, and so, as before, this
point represents a de Sitter universe. In this case, all trajectories are eventually tending
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(a) (b)

Figure 4.9: Global phase portrait for f2(T, TG) with parameters α1 = −1, P2 = 1 in the
(R, Θ, Φ) coordinates. The four lines of fixed points at infinity as defined in Sec. 4.2.2
are labelled. Fig.4.9b shows the trajectories around (1, 0, π

2 ) in more detail.

towards this cosmology irrespective of the initial conditions. For this reason, it is not
expected for there to be any stable fixed points at infinity. This is confirmed by the
global phase portrait in Fig. 4.11.

All trajectories seem to be originating from the line Q3 of fixed points at infinity.
Apart from the endpoints, q = ωDE = −∞, while the values of x, H and Ωm are infinite
along this line. This shows that trajectories are originating from a past singularity. An-
other fixed point at infinity of particular importance is (1, 0, π

2 ) which seems to be acting
like a saddle. H = 0, while q and ωDE are undefined at this point, and thus this point
can never be realised by our physical Universe.

In conclusion, this choice of parameters warrants a more in-detail analysis due to its
potential to explain an asymptotically de Sitter universe.

4.3 | Model 3: f3(T, TG) = −T + α3(T2 + P3TG)β3

The third model to be analysed is the generalisation to the model analysed in Kofinas
et al. (2014). As was previously discussed in Sec. 3.2, setting β3 = 1

2 would give the
exact model which was studied in that work. Since this is the only f (T, TG) model that
has been studied in detail using dynamical systems, it will be interesting to see whether
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(a) Full 3D phase portrait in the (x, H, Ωm)
space.

(b) 2D phase portrait in the plane Ωm = 0.

Figure 4.10: Trajectories in the phase space for the f2(T, TG) cosmological scenario de-
fined by Eqs. (4.74), (4.75) and (4.70) with parameters α2 = −1, P2 = − 1

10 . The fixed
point C1 = (1, H1, 0) is a stable focus.

Figure 4.11: Global phase portrait for f2(T, TG) with parameters α2 = −1, P2 = − 1
10

in the (R, Θ, Φ) coordinates. The three lines of fixed points at infinity as defined in
Sec. 4.2.2 are labelled.
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different, and potentially more interesting, dynamics arise from different values of β3,
or whether the specific case which was already analysed gives the best results.

As for the other models, the dynamics of the modeled universe are given by the
Friedmann equations in Eqs. (3.41) and (3.42), with the dark-energy effective fluid den-
sity and pressure taking on the following form,

κ2ρDE =
α3

2
(
12H2D

)β3

{
− 1 +

2β3

D2

[
(6 + P3)(3 + 2P3)H4

+ P3(27 + P3(12 − 8β3)− 12β3)H2Ḣ + 2P2
3 (3 − 2β3)Ḣ2 − 2P2

3 (β3 − 1)HḦ
]}
(4.97)

κ2 pDE =
α3

6
(
12H2D

)β3

{
3 +

2β3

H2D3

[
− 3(6 + P3)(3 + 2P3)

2H8 + (3 + P3)
(
18 − 93P3

− 34P2
3 + 8(P3 − 3)(3 + 2P3)β3

)
H6Ḣ + 8P3

3 (β3 − 1)(2β3 − 1)Ḣ4

+ 12P2
3 (3 + 2P3)(β3 − 1)H5Ḧ + 8P2

3 (β3 − 1)(−6 − P3 + 6β3 + 4P3β3)H3ḢḦ

+ 16P3
3 (β3 − 1)β3HḢ2Ḧ + 2P3H4[2(−9(−3 + P3 + P2

3 )− (3 + 2P3)(39 + 8P3)β3

+ 4(3 + 2P3)
2β2

3)Ḣ2 + P3(3 + 2P3)(β3 − 1)
...
H] + 4P2

3 H2[(3 − P3 − 9(5 + 2P3)β3

+ 8(3 + 2P3)β2
3)Ḣ3 + P3(β3 − 2)(β3 − 1)Ḧ2 + P3(β3 − 1)Ḣ

...
H]
]}

, (4.98)

where we are defining D = 3H2 + 2P3(Ḣ + H2). Notice that in this case, these equations
are significantly more complex than those describing ρDE and pDE for the previous two
models. This was to be expected since by adding a third parameter β3, an extra degree
of freedom is introduced.

Alongside Ωm as defined for the previous two models, see for example Eq. (4.68),
we define the following unitless variable to perform the dynamical analysis,

x =

(
D

3H2

)β3

=

[
1 +

2P3

3

(
1 +

Ḣ
H2

)]β3

. (4.99)

Rearranging Eq. (4.99) gives an equation for Ḣ in terms of x which will be useful when
deriving the dynamical system,

Ḣ = H2
[

3
2P3

(
x

1
β3 − 1

)
− 1
]

. (4.100)
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Substituting Eq. (4.100) into Eq. (4.7), gives the evolution of Ωm in accordance with the
fluid equation,

Ω′
m = Ωm

[
−1 − 3ωm − 3

P3

(
x

1
β3 − 1

)]
. (4.101)

The evolution of x is obtained using the usual method. First differentiating Eq. (4.99),

x′ =
2P3β3

3H4

(
D

3H2

)β3−1 (
HḦ − 2Ḣ2) . (4.102)

Rearranging Eq. (4.97) to obtain an equation for Ḧ gives,

HḦ =
1

−2P2
3 (β3 − 1)

{
D2

2β3

[
2κ2ρDE

α3(12DH2)β3
+ 1
]
− (6 + P3)(3 + 2P3)H4

− P3(27 + P3(12 − 8β3)− 12β3)H2Ḣ − 2P2
3 (3 − 2β3)Ḣ2

}
. (4.103)

Substituting this into Eq. (4.102) and performing the usual simplifications gives,

x′ =
1

2P3

{
x
[

x
1

β3 (3 − 12β3) +

(
12 + 8P3 +

9
β3 − 1

)
β3

]
+

18H2−4β3 x
1

β3 (Ωm − 1)
36β3 α3(β3 − 1)

}
,

(4.104)
in which the first Friedmann equation is incorporated. The equation which completes
the dynamical system is that for H′ which follows directly from Eq. (4.100),

H′ = H
[

3
2P3

(
x

1
β3 − 1

)
− 1
]

. (4.105)

Notice how for the specific case of β3 = 1
2 , H is completely eliminated from Eq. (4.104)

and thus the dynamical system can be reduced to a 2D one with Eq. (4.105) not being
needed. Since the dynamical system for this particular value of β3 is different, it will be
discussed separately in Sec. 4.3.4.

We will limit our investigation to the phase space,

S = {(x, H, Ωm)|x ∈ [0, ∞), H ∈ [0, ∞), Ωm ∈ [0, ∞)} . (4.106)

Notice that however, H needs to be restricted to the range (0, ∞) for values of β3 > 1
2 .

The observables q and ωDE are given by,

q = − 3
2P3

(
x

1
β3 − 1

)
(4.107)

ωDE =
3 − 3x

1
β3 − P3 − 3P3ωmΩm

3P3(1 − Ωm)
. (4.108)
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Notice that when P3 and β3 are both negative or both positive, q < 0 for x > 1, whereas
when P3 and β3 have different signs, q < 0 for x < 1. This means that the model can
describe a universe transitioning from a deceleration phase to an acceleration phase,
which has so far not been possible with the other theoretical models, and as will be seen
in Sec. 4.4, will not be possible for f4(T, TG) either. Dust matter with ωm = 0 will be
assumed for the remainder of the analysis.

4.3.1 | Finite Phase Space Analysis
We start the analysis by investigating the finite fixed points of the system. By setting
Eqs. (4.104), (4.105) and (4.101) equal to 0, we find that there are three fixed points of the
system for β3 < 1

2 at C1 = (0, 0, 0), C2 = (x2, 0, 0) and C3 = (x3, H3, 0) where,

x2 =


(

12 + 8P3 +
9

β3−1

)
β3

12β3 − 3

β3

(4.109)

H3 =

{
α3(β3 − 1)

61−2β3(3 + 2P3)

[(
1 +

2P3

3

)β3
(
(3 + 2P3)(1 − 4β3)

+

(
12 + 8P3 +

9
β3 − 1

)
β3

)]} 1
2−4β3

(4.110)

x3 =

[
2P3

3
+ 1
]β3

. (4.111)

In the case that β3 > 1
2 , only the point C3 is in the phase space of the system. Notice that

these fixed points do not exist for all values of α3, β3 and P3. It is straightforward to see
that C2 does not exist for β3 = 1

4 . The existence conditions of x2 depend on the value
of β3, for example, for β3 = 1

2n where n ∈ N, one must ensure that the term enclosed
in the square bracket in Eq. (4.109) is positive to give a real value of x2. This happens
for P3 > 3−6n

−8+4n . The existence of C3 also depends on the values of the parameters in a
similar way however it is not straightforward to give the general existence conditions
in this case. Since C3 is the only fixed point of the system with a non-zero value of H
in line with the allowed boundary conditions, for any combination of the parameters, it
was first ensured that C3 does indeed exist, i.e. that the x and H coordinates at this fixed
point are real.

One can calculate the stability matrix J at this stage, evaluate it at the fixed points,
find the eigenvalues and deduce the stability conditions. However, this would lead to
complicated expressions since the system has three free parameters. Thus, this process
will be done explicitly for the different parameter values investigated in Sec. 4.3.3.
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Since at C1 and C2, H = 0, q and ωDE are undefined. At the point C3, q = ωDE = −1
while ΩDE = 1 meaning that this fixed point represents a de Sitter solution.

4.3.2 | Analysis at Infinity
We perform the analysis at infinity using the usual coordinate transformation defined
in Eqs. (4.22) - (4.24). We find that the dynamical system in the (R, Θ, Φ) coordinates
becomes,

R′ =
(R − 1)R sin2 Θ sin2 Φ

(
3 + 2P3 − 4

(
R cos Θ sin Φ

1−R

) 1
β3

)
2P3

+

(R − 1)R cos2 Φ
(
−3 + P3 + 3

(
R cos Θ sin Φ

1−R

) 1
β3

)
P3

+
(R − 1)2 cos Θ sin Φ

2P3{
18
(

R cos Φ
1−R − 1

) (
R cos Θ sin Φ

1−R

) 1
β3
(

R sin Θ sin Φ
1−R

)2−4β3

36β3 α3(β3 − 1)

+
R cos Θ sin Φ

1 − R

[(
12 + 8P3 +

9
β3 − 1

)
β3 + (3 − 12β3)

(
R cos Θ sin Φ

1 − R

) 1
β3

]}
(4.112)

Θ′ =
R − 1

R sin Φ

{R cos Θ sin Θ sin Φ
(
−3 − 2P3 + 3

(
R cos Θ sin Φ

1−R

) 1
β3

)
2P3(R − 1)

+
sin Θ
2P3

[
18
(

R cos Φ
1−R − 1

) (
R cos Θ sin Φ

1−R

) 1
β3
(

R sin Θ sin Φ
1−R

)2−4β3

36β3 α3(β3 − 1)

+
R cos Θ sin Φ

1 − R

{(
12 + 8P3 +

9
β3 − 1

)
β3 + (3 − 12β3)

(
R cos Θ sin Φ

1 − R

) 1
β3

}]}
(4.113)

Φ′ =
R − 1

R

{R cos Φ sin Φ
(
−3 + P3 + 3

(
R cos Θ sin Φ

1−R

) 1
β3

)
P3(R − 1)

− cos Φ

[R sin2 Θ sin Φ
(

3 + 2P3 − 3
(

R cos Θ sin Φ
1−R

) 1
β3

)
2P3(R − 1)

+
cos Θ
2P3

{
18
(

R cos Φ
1−R − 1

) (
R cos Θ sin Φ

1−R

) 1
β3
(

R sin Θ sin Φ
1−R

)2−4β3

36β3 α3(β3 − 1)

+
R cos Θ sin Φ

1 − R

[(
12 + 8P3 +

9
β3 − 1

)
β3 + (3 − 12β3)

(
R cos Θ sin Φ

1 − R

) 1
β3

]}]}
(4.114)

The leading terms of these expressions depend explicitly on the value of β3 and thus,
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in order to simplify matters, they will be given in Sec. 4.3.3 for specific parameter values
of α3, β3 and P3. This means that the fixed points at infinity will also have to be evaluated
at this later stage.

In this coordinate system, the deceleration and equation-of-state parameters are
given by,

q = − 3
2P3

[
−1 +

(
R cos Θ sin Φ

1 − R

) 1
β3

]
(4.115)

ωDE = − P3

3(R − 1)
[−1 + R(1 + cos Φ)]

[
−3 + P3 + 3

(
R cos Θ sin Φ

1 − R

) 1
β3

]
, (4.116)

while ΩDE is as given in Eq. (4.90). These expressions will be used to calculate the values
of these observable parameters at any interesting fixed points at infinity.

4.3.3 | Cosmological Implications
We now investigate two different cosmological scenarios that can result from f3(T, TG)

by fixing specific values of the free parameters in the model. The two parameter choices
given here will both result in an asymptotically de Sitter universe in line with obser-
vations. The model can also produce cosmologies with less meaningful cosmological
interpretations, for example trajectories tending towards the origin, however these spe-
cific cases were omitted here.

4.3.3.1 | Case 1: α3 = −1, P3 = 1 & β3 = 1
3

We can obtain an asymptotically de Sitter universe transitioning from a deceleration
phase to an acceleration phase by setting α3 = −1, P3 = 1 and β3 = 1

3 . The stability
matrix in this case becomes,

J =


−3x4+x( 13

6 −x3)+ 27(3H2)
1
3 x3(Ωm−1)

2
2
3

2x
3

4
3 x3(Ωm−1)

(4H)
1
3

3
7
3 H

2
3 x3

2
5
4

9Hx2

2 −1 + 3
2 (x3 − 1) 0

−9x2Ωm 0 2 − 3x2 .

 (4.117)

Notice that the matrix is not well-defined at the fixed points C1 and C2 since H = 0, and
thus the stability of these fixed points cannot be studied analytically. From the phase
portraits in Fig. 4.12, we can infer that these points behave like saddles. Evaluating the
eigenvalues of J at C3 gives the set {−3,−2.5,−0.5}, meaning that C3 is a stable fixed
point.
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(a) Full 3D phase portrait. (b) 2D phase portrait in the plane Ωm = 0.

Figure 4.12: Trajectories in the phase space for the f3(T, TG) cosmological scenario de-
fined by Eqs. (4.104), (4.105) and (4.101) with parameters α3 = −1, P3 = 1, β3 = 1

3 . The
fixed point C3 = (x3, H3, 0) is an attractor of the system and represents a de Sitter uni-
verse while C1 and C2 are saddles. The shaded region represents the section of the phase
space in which q < 0, i.e. the universe is accelerating.

From Fig. 4.12 we can see that most trajectories start from an accelerating universe,
enter a deceleration phase, then tend towards C3 which represents an accelerating de
Sitter solution. Notice also how for all trajectories, Ωm is decreasing from one to zero,
in agreement with observations. For certain trajectories this is not happening monoton-
ically, meaning that the density of matter in the universe is fluctuating before tending
towards zero.

At this stage, having fixed the values of the parameters, it is possible to calculate the
leading terms of Eqs. (4.112) - (4.114) as,

R′ → 3
7
3 cos4 Θ cos Φ sin4 Θ(sin Θ sin Φ)

2
3

2
5
3 (1 − R)

8
3

(4.118)

Θ′ → −3
7
3 cos3 Θ cos Φ sin Θ sin2 Φ(sin Θ sin Φ)

2
3

2
5
3 (1 − R)

11
3

(4.119)

Φ′ → 3
7
3 cos4 Θ cos2 Φ sin3 Φ(sin Θ sin Φ)

2
3

2
5
3 (1 − R)

11
3

. (4.120)

Thus, there are four lines of fixed points at infinity; Q1 at Θ = 0, Q2 at Φ = 0, Q3 at
Θ = π

2 and Q4 at Φ = π
2 . Notice that at these lines of fixed points dΘ′

dΘ = dΦ′

dΦ = 0 and so
the stability of these fixed points cannot be studied analytically.
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(a) (b)

Figure 4.13: Global phase portrait for f3(T, TG) with parameters α3 = −1, P3 = 1, β3 = 1
3

in the (R, Θ, Φ) coordinates. There are four lines of fixed points at infinity, shown by Q1
- Q4. Fig. 4.13b shows the saddle nature of (1, π

2 , π
2 ) in more detail.

The global phase portrait in the (R, Θ, Φ) coordinates can be seen in Fig. 4.13. Tra-
jectories all seem to be originating from a past singularity, i.e. from the shaded region,
before tending towards C3. At infinity, there are two fixed points of particular impor-
tance, at (1, 0, 0) and at (1, π

2 , π
2 ). Both of these are behaving as saddles. At the first fixed

point, q and ωDE are undefined since H = 0. At the second fixed point, q = 3
2 , ωDE = 2

3

and ΩDE = 1. These parameters indicate a decelerating universe, although at (1, π
2 , π

2 ),
H = ∞, which makes the interpretation unclear. Since (1, 0, 0) and (1, π

2 , π
2 ) are saddles,

they do not influence the type of cosmology that this model represents; a universe going
from a deceleration phase to an acceleration phase, which is asymptotically de Sitter.

4.3.3.2 | Case 2: α3 = 1, P3 = 2 & β3 = 2
3

The second case that will be briefly studied will be for the parameter choice α3 = 1,
P3 = 2 and β3 = 2

3 . According to the analysis in Sec. 4.3.1, the only finite fixed point of
the system is at the point C3. Evaluating the stability matrix,

J =


− 15

2 x
5
2 +x

(
2
3−5x

3
2

)
− 3

8
3 x

3
2 (Ωm−1)

2
4
3 H

2
3

4x
3

2
3 x

3
2 (Ωm−1)

2
4
3 H

5
3

− 3
5
3 x

3
2

2
7
3 H

2
3

9H
√

x
8 −1 + 3

4 (x
3
2 − 1) 0

9
√

xΩm
4 0 1

2

(
1 − 3x

3
2

)

 , (4.121)
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(a) Full 3D phase portrait in the (x, H, Ωm)
space.

(b) 2D phase portrait in the plane Ωm = 0.

Figure 4.14: Trajectories in the phase space for the f3(T, TG) cosmological scenario de-
fined by Eqs. (4.104), (4.105) and (4.101) with parameters α3 = 1, P3 = 2, β3 = 2

3 . The
fixed point C3 = (x3, H3, 0) is a stable focus and represents a de Sitter universe. Notice
how for all trajectories Ωm is decreasing from 1 to 0, in agreement with observations.
The shaded region represents the section of the phase space in which q < 0, i.e. the uni-
verse is accelerating.

at this fixed point and finding the eigenvalues, gives the set {−3,−1.5 + 1.6i,−1.5 −
1.6i} meaning that this fixed point is a stable focus. This behaviour is indeed observed
in the phase portrait as can be seen in Fig. 4.14. From these figures we can see that certain
trajectories are passing through the region x < 1, representing a decelerating universe,
before tending towards the stable fixed point, which represents an accelerating universe.

The leading terms of Eqs. (4.112), (4.113) and (4.114) for this choice of parameters
become,

R′ → cos Θ sin Φ

4(1 − R)
1
2

[
−2(cos Θ sin Φ)

5
2 + 3(cos Θ sin Φ)

1
2 (−2 cos2 Φ + sin2 Θ sin2 Φ)

]
(4.122)

Θ′ → sin Θ(cos Θ sin Φ)
5
2

4(1 − R)
3
2

(3 − 5 csc Φ) (4.123)

Φ′ → cos Φ sin Φ
8

(
cos Θ sin Φ

1 − R

) 3
2 (

−3(3 + cos 2Θ)− 10 cos2 Θ
)

. (4.124)

As a consequence, at infinity there is a line of fixed points Q1 = (1, π
2 , Φ), where Φ ∈

[0, π
2 ], alongside the fixed point Q2 = (1, 0, π

2 ). For the line of fixed points Q1, dΘ′

dΘ =
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dΦ′

dΦ = 0 meaning their stability cannot be found analytically. Using Eqs. (4.115) and
(4.116), we find that q = 3

4 and ωDE = −∞ for Φ ̸= π
2 . These values do not seem to be

consistent and thus this fixed point would require further investigation to understand
its cosmological implications. On the other hand, at Q2, R′ = − 5

4 , dΘ′

dΘ = − 1
2 and dΦ′

dΦ =
25
8 , so this point is a saddle. H = 0 at Q2 and so q and ωDE are undefined, with this point

being disconnected from the allowed initial conditions.

Although it was attempted, the global phase portrait for this choice of parameters
could not be generated using Mathematica. This could be due to numerical instability
and warrants a further investigation in future works. However, since C3 is a global
attractor, it is not expected that there will be any stable fixed points representing future
singularities at infinity and as for the case in Sec. 4.3.3.1, from the finite phase space
we can conclude that this choice of parameters can lead to an asymptotically de Sitter
universe, going from a deceleration to an acceleration phase.

4.3.4 | Model 3 Variation
For β3 = 1

2 , the dynamical system reduces to a two-dimensional one in terms of x and
Ωm only. In this case, the model becomes f3(T, TG) = −T + α3

√
T2 + P3TG which is the

exact model that was investigated using dynamical systems in Kofinas et al. (2014). The
dynamical system in this case reduces to,

x′ = −
x
[
3α3x2 − 6(1 − Ωm)x + α3(3 − 4P3)

]
2α3P3

(4.125)

Ω′
m = −Ωm(3x2 + P3 + 3P3ωm − 3)

P3
. (4.126)

These equations were obtained by setting β3 = 1
2 in Eqs. (4.104) and (4.101) respectively.

The analysis in Kofinas et al. (2014) was repeated and all the results were in agree-
ment with those in this paper. It was noted that this model can produce various cos-
mological scenarios, specifically ones in which the universe results in a dark-energy
dominated universe which is accelerating. The equation of state parameter can also lie
within the quintessence regime, be equal to the cosmological constant value −1, or lie in
the phantom regime. This model can also result in a dark energy - dark matter scaling
solution, something not seen in the other models. Future singularities, such as the Big
Rip, can also be theoretically predicted by this model.
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4.4 | Model 4: f4(T, TG) = −T + α4 ln P4TG
T

As was the case for the f3(T, TG) modification studied in Sec. 4.3.4, the model that will
be investigated in this section has no ΛCDM limit. Thus, it is of particular interest
as it avoids confirmation bias with the standard cosmological model. Furthermore, if
dynamics which agree with observations can arise from this model, it is an indication
that a gravitational theory significantly different from GR could indeed be the correct
description of Nature.

Notice that special care is required when fixing the value of P4 in order for the model
to be well-defined. If the range of P4 is restricted to the positive real line, then it will
always be the case that P4TG

T > 0 as will be explicitly shown further on. Thus, for the
remainder of this section, a positive value of P4 will be assumed.

As usual, the dynamics of this model are governed by the Friedmann equations in
Eqs. (3.41) and (3.42), with the effective fluid density and pressure of dark energy given
by,

κ2ρDE = − α4

2(H2 + Ḣ)2

{
H4(1 + D) + 2H2Ḣ(D − 1) + Ḣ2(D − 1)− HḦ

}
(4.127)

κ2 pDE =
α4

6(H2 + Ḣ)3

{
3H6(1 + D) + H4Ḣ(9D − 1) + Ḣ3(3D − 1)− 6H3Ḧ

+ 2HḢḦ + 2Ḧ2 + H2((3 + 9D)Ḣ2 −
...
H)− Ḣ

...
H
}

, (4.128)

where we are defining,

D = ln [4P4(H2 + Ḣ)] . (4.129)

For this model, we introduce the auxiliary dynamical variables given by,

x = D − 2 ln H

= ln
[

4P4

(
1 +

Ḣ
H2

)]
(4.130)

Ωm =
κ2ρm

3H2 . (4.131)

As for the previous models, the dynamics of the model are obtained wrt η. In order to
derive the dynamical system we first obtain an expression for Ḣ in terms of H and x by
rearranging Eq. (4.130),

Ḣ = H2
(

ex

4P4
− 1
)

. (4.132)
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Note that using this equation and the expressions for T and TG in Eqs. (3.37) and (3.38),
we can see that,

TG

T
= 4(Ḣ + H2)

=
H2ex

P4
> 0 , (4.133)

for P4 > 0, thus justifying the restriction of P4 to positive values only.
Substituting Eq. (4.132) into Eq. (4.7) and simplifying gives the evolution of Ωm wrt

η,

Ω′
m = −Ωm

(
1 + 3ωm +

ex

2P4

)
, (4.134)

which incorporates the dynamics dictated by the Friedmann equation. Next we obtain
an expression for the evolution of x,

x′ =
1
H

ẋ

=
1

H4 + H2Ḣ
(ḦH − 2Ḣ2) . (4.135)

Rearranging Eq. (4.127) to obtain an expression for Ḧ gives,

HḦ =
2κ2ρDE(H2 + Ḣ)2

α4
+ H4(1 + D) + 2H2Ḣ(D − 1) + Ḣ2(D − 1) . (4.136)

Substituting Eq. (4.136) into Eq. (4.135), and using D = x + 2 ln H, ρDE = 3H2

κ2 (1 − Ωm),
and Eq. (4.132), gives,

x′ = 4 +
ex [α4(x − 3)− 6H2(Ωm − 1) + 2α4 ln H

]
4α4P4

. (4.137)

The final equation which completes the dynamical system is that for the evolution of H
wrt η,

H′ = H
(

ex

4P4
− 1
)

. (4.138)

The dynamical system defined in Eqs. (4.137), (4.138) and (4.134) is defined on the
phase space S, given by,

S = {(x, H, Ωm)|x ∈ (−∞, ∞), H ∈ (0, ∞), Ωm ∈ [0, ∞)} . (4.139)

Notice how in this case, the range of x is not limited to the positive real line, however
since x is an arbitrary variable simply used for the dynamical analysis, this does not
have any physical implications related to it. In this section we will limit our investiga-
tion to x ∈ [0, ∞). This is because if we consider the full real line as the domain of x,
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the usual transformation to the (R, Θ, Φ) space will no longer be adequate to study the
behaviour at infinity. Since as mentioned, negative values of x have no special physical
significance, introducing another method for studying this behaviour at infinity can be
justifiably avoided.

Finally, the specific form of the important observable parameters is,

q = − ex

4P4
(4.140)

ωDE =
ex + 2P4 + 6P4ωmΩm

6P4(Ωm − 1)
. (4.141)

These were obtained using the same method as described in detail for f1(T, TG) in
Sec. 4.1. As for the other cases, from this point onward, dust matter will be assumed
and thus, ωm will be set to zero.

4.4.1 | Finite Phase Space Analysis
We will initiate the analysis for this model by first finding the finite fixed points of
the system and studying their stability using the linear stability method. Starting with
H′ = 0, this immediately implies that at the fixed points, x = ln(4P4) since H = 0 is not
allowed. Substituting this value of x into Eq. (4.134) and setting Ω′

m = 0 gives Ωm = 0.
Finally, substituting x = ln(4P4) and Ωm = 0 into Eq. (4.137) and setting x′ = 0 results
in the following transcendental equation,

2α4 ln H − 6H2 = −α4(1 + ln 4P4) (4.142)

This case is similar to the transcendental equation in Eq. (4.80) encountered for the
f2(T, TG) model. As in this previous case the system only has one fixed point within
the phase space at C1 = (ln(4P4), H1, 0) which exists for any value of P4 > 0. The value
of H1 can only be found by solving Eq. (4.142) numerically after fixing the values of
the parameters α4 and P4. Note that the x-coordinate of this fixed point is negative for
values of P4 within the range 0 < P4 < 1

4 so values of P4 within this range will not be
considered.

The values of q and ωDE at the fixed point C1 are both equal to −1 meaning that this
point will always represent a de Sitter universe regardless of the values of the parame-
ters. Moreover, q < 0 in all of the phase space so the model represents an accelerating
universe at all points.
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The general form of the stability matrix is,

J =


ex[(x−2)α4−6H2(Ωm−1)+2α4 ln H]

4α4P4

ex[α4−6H2(Ωm−1)]
2Hα4P4

− 3ex H2

2α4P4
ex H
4P4

ex

4P4
− 1 0

− exΩm
2P4

0 −1 − ex

2P4

 (4.143)

Notice that, even in this general form, the stability matrix for this model is significantly
simpler than the corresponding matrices for the previous models with two free param-
eters; see for example Eq. (4.81). This is a result of the simple expressions in the dynam-
ical system given by Eqs. (4.137), (4.138) and (4.134). This is an advantage of f4(T, TG)

over the previous models, provided that the dynamics it produces are in-line with ob-
servations, since simpler models are always preferred over more complicated ones if the
results are comparable to each other. Nevertheless, it might be the case that choosing
different dynamical variables for the previous models would have resulted in simpler
dynamical systems and so further investigation would be required to conclude that this
model is indeed more elegant than the others.

The eigenvalues of the matrix J at the fixed point C1 will be computed in the follow-
ing sections for fixed values of α4 and P4. This is due to the fact that a general expression
for H1 cannot be obtained at this point.

4.4.2 | Analysis at Infinity
Analysis at infinity by transformation to the (R, Θ, Φ) coordinates through Eqs. (4.22)
- (4.24) was also performed for this model. Obtaining the equations for R′, Θ′ and Φ′

using the same method as for the previous models gives,

R′ = (1 − R)2

{
−

R
(

1 + exp
(

R cos Θ sin Φ
2P4

))
cos2 Φ

1 − R

+ sin Φ

[R
(

exp ( R cos Θ sin Φ
1−R )

4P4
− 1
)

sin2 Θ sin Φ

1 − R
+

cos Θ
4P4

(
16P4 + exp

(
R cos Θ sin Φ

1 − R

)
[

2 ln
[

R sin Θ sin Φ
1 − R

]
− 3
]
+

exp
(

R cos Θ sin Φ
1−R

)
R sin Φ

α4(R − 1)3

{
− α4(R − 1)2 cos Θ

+ 6R(−1 + R(1 + cos Φ)) sin2 Θ sin Φ
})]}

(4.144)

Θ′ =
R − 1

R sin Φ

{
−

R
(

exp( R cos Θ sin Φ
1−R )

4P4

)
cos Θ sin Θ sin Φ

1 − R
+

sin Θ
4P4

[
16P4
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+ exp
(

R cos Θ sin Φ
1 − R

)(
2 ln

[
R sin Θ sin Φ

1 − R

]
− 3
)
+

exp
(

R cos Θ sin Φ
1−R

)
R sin Φ

α4(R − 1)3

(
− (R − 1)2α4 cos Θ + 6R(−1 + R(1 + cos Φ)) sin2 Θ sin Φ

)]}
(4.145)

Φ′ =
R − 1

R

{
−

R
(

1 +
exp( R cos Θ sin Φ

1−R )
2P4

)
cos Φ sin Φ

1 − R

− cos Φ

[R
(

exp( R cos Θ sin Φ
1−R )

4P4
− 1
)

sin2 Θ sin Φ

1 − R
+

cos Θ
4P4

(
16P4 + exp

(
R cos Θ sin Φ

1 − R

)
(

2 ln
[

R sin Θ sin Φ
1 − R

]
− 3
)
+

exp
(

R cos Θ sin Φ
1−R

)
R sin Φ

(R − 1)3α4

[
− (R − 1)2α4 cos Θ

+ 6R(−1 + R(1 + cos Φ)) sin2 Θ sin Φ
])]}

. (4.146)

The expressions for q, ωDE and ΩDE in this coordinate system become,

q = −
exp

(R cos Θ sin Φ
1−R

)
4P4

(4.147)

ωDE = −
(
exp

(R cos Θ sin Φ
1−R

)
+ 2P4

)
(R − 1)

6P4(−1 + R(1 + cos Φ))
(4.148)

ΩDE = 1 +
R cos Φ
R − 1

. (4.149)

In order to find the fixed points at infinity and analyse their stability, the leading
terms in Eqs. (4.144) - (4.146) are required. These are the exponential terms multiplied
by the largest power of (1 − R) in the denominator, i.e.,

R′ →
3 exp

( cos Θ sin Φ
1−R

)
cos Θ cos Φ sin2 Θ sin3 Φ

2(R − 1)α4P4
(4.150)

Θ′ →
exp

( cos Θ sin Φ
1−R

)
sin Θ

(
α4 cos Θ + 3 cos Φ sin2 Θ sin Φ

)
2(R − 1)2α4P4

(4.151)

Φ′ → −
3 exp

( cos Θ sin Φ
1−R

)
cos Θ cos2 Φ sin2 Θ sin2 Φ

2(R − 1)2α4P4
. (4.152)

Setting Θ′ = 0 = Φ′ to find the fixed points at infinity shows that the line Θ = 0 is a line
of fixed points which will be labelled as Q1. The other fixed points at infinity are located
at Q2 =

(
1, π

2 , 0
)

and Q3 =
(
1, π

2 , π
2

)
. Calculating dΘ′

dΘ and dΦ′

dΦ , and evaluating at these
fixed points separately using Mathematica shows that at every infinite fixed point, these
derivatives are equal to zero. This means that, as in most previous cases, the stability
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of such infinite fixed points cannot be studied analytically but can only be investigated
using the phase portraits in each specific case. Likewise, the values of q, ωDE and ΩDE

using Eqs. (4.147) - (4.149) will be calculated for specific fixed points of interest in the
following sections.

4.4.3 | Cosmological Implications
A range of different cosmological scenarios can be achieved using this theoretical model.
This includes cases in which the modelled universe is tending towards a de Sitter uni-
verse, in agreement with observations. This is of significant importance as the model
does not have a ΛCDM limit but can still theoretically represent physical solutions. In
this section, two cases arising from different parameter values will be investigated in
detail.

4.4.3.1 | Case 1: α4 = −1 & P4 = 10

We start the analysis with α4 = −1 and P4 = 10 since these parameter values lead to a
modelled universe tending towards a de Sitter solution. Solving Eq. (4.142) numerically
for these parameter values gives a value of H1 at the fixed point of 0.854. The set of
eigenvalues of the stability matrix J in Eq. (4.143) evaluated at the fixed point C1 is
{−3,−1.5 ± 2.12i}. Since all eigenvalues have a negative real part, this means that C1 is
a stable focus. Indeed, this behaviour can be seen in the phase portrait in Fig. 4.15. Since
at this point q = ωDE = −1, C1 represents a de Sitter solution.

C1 seems to be a global attractor (with the exception of a small number of trajectories
which seem to be tending towards the origin), and thus, no stable fixed points at infin-
ity are to be expected. This is confirmed by the global phase portrait in the (R, Θ, Φ)

coordinate system as can be seen in Fig. 4.16. From this phase portrait we can see that
as opposed to all previous cases that have been investigated, not all the trajectories are
originating from a singularity. Moreover, the only fixed point at infinity which seems to
be of particular importance is Q3 which is behaving like a saddle. At this point, which
corresponds to an infinite H, we find that q = − 1

40 , ωDE = − 7
20 and ΩDE = 1. These are

interesting results as from the value of ωDE we could conclude that this point represents
a universe with quintessence-like dark energy, however, the infinite value of H hints
that this point could represent some form of singularity. This means that for certain ini-
tial conditions, this model could describe a universe which tends towards a singularity
and then evolves towards a de Sitter universe. Further investigation using techniques
beyond dynamical systems would be required to understand the exact cosmological
scenario that Q3 represents.
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(a) Full 3D phase portrait in the (x, H, Ωm)
space.

(b) 2D phase portrait in the plane Ωm = 0.

Figure 4.15: Trajectories in the phase space for the f4(T, TG) cosmological scenario de-
fined by Eqs. (4.137), (4.138) and (4.134) with parameters α4 = −1, P4 = 10. The fixed
point C1 = (1, H1, 0) is an attractor of the system and represents a de Sitter universe.
Notice how for all trajectories Ωm is decreasing from one to zero, in agreement with
observations. There seems to be another fixed point behaving like a saddle at roughly
(3.5, 0, 0). This fixed point was not seen from the analytical analysis since, H = 0 is not
within the physical phase space of the system.

Figure 4.16: Global phase portrait for f4(T, TG) with parameters α4 = −1, P4 = 10 in the
(R, Θ, Φ) coordinates.
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(a) Full 3D phase portrait in the (x, H, Ωm)
space.

(b) 2D phase portrait in the plane Ωm = 0.

Figure 4.17: Trajectories in the phase space for the f4(T, TG) cosmological scenario de-
fined by Eqs. (4.137), (4.138) and (4.134) with parameters α4 = 2, P4 = 1

2 . The fixed point
C1 = (1, H1, 0), which represents a de Sitter universe, is a saddle. Notice how for all
trajectories Ωm is decreasing from 1 to 0, in agreement with observations.

4.4.3.2 | Case 2: α4 = 2 & P4 = 1
2

Although other values of α4 and P4 also lead to a stable fixed point representing a de
Sitter universe, we present here a different dynamical scenario by setting α4 = 2 and
P4 = 1

2 . The numerical value of H at the fixed point C1 was found to be 0.355. The set
of eigenvalues of J evaluated at this point is {−3.74,−3., 0.74} and so the fixed point C1

is a saddle. This behaviour can be clearly seen in the phase portrait in Fig. 4.17. The
values of q and ωDE are both −1 at C1 meaning that this point represents a dark-energy-
dominated de Sitter universe.

Since there are no stable fixed points in the finite phase space, studying the global
phase portrait in the (R, Θ, Φ) coordinates is especially important in this case. This can
be seen in Fig. 4.18. The global phase portrait shows that the fixed point at infinity
(1, 0, 0) is a source. At this point x = H = 0 while Ωm = ∞. Further analysis would
need to be done to determine whether this could represent a physical singularity or
whether this point is simply an algebraic singularity. For this model, the end-points of
the trajectories depends on the initial conditions since there is no stable fixed point in
all of the global phase space. Notice for example, how some trajectories lead to a future
singularity while others do not.

In summary, this parameter choice leads to a universe potentially originating from
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Figure 4.18: Global phase portrait for f4(T, TG) with parameters α4 = 2, P4 = 1
2 in the

(R, Θ, Φ) coordinates. The only significant fixed point at infinity is at (1, 0, 0) and is a
source.

a past singularity and then tending towards a de Sitter universe before moving away
from it. The model needs to be constrained with initial conditions for the future of the
modelled universe to be studied.

4.5 | Summary
In this chapter, the dynamical behaviour of four f (T, TG) models was analysed in a qual-
itative way. This was done through the use of a dynamical systems approach which ex-
posed the dynamics of this modification on purely theoretical grounds. It was seen that
all the models can result in an asymptotically de Sitter universe in which dark energy
dominates, without the need to introduce a cosmological constant. That is, these models
have the potential of explaining late-times acceleration by modifying the gravitational
theory underpinning the dynamics of the Universe, rather than modifying the energy
content, as is done in the ΛCDM model.

Apart from the asymptotically de Sitter universe, the models were found to have
the potential at describing other interesting cosmologies, with each model having cer-
tain unique features which were not seen in the other models. f1(T, TG) resulted in an
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asymptotically de Sitter universe for various parameter choices. Moreover, when study-
ing its behaviour at infinity, it was seen that the model can also potentially result in a
future singularity, in particular a Big Rip, where the rate of expansion of the universe be-
comes infinite. The dynamical system was reduced to a two-dimensional one for P1 = 1

2 ,
and in this case a dark-energy dominated universe with phantom-like or quintessence-
like behaviour could also be modelled. f2(T, TG) showed the same potential in mod-
elling an asymptotically de Sitter universe. Through the analysis at infinity, this model
also showed the potential of producing a universe which does not tend towards having
a fixed value of H, although further analysis would need to be done to confirm this. The
defining feature of f3(T, TG) is its ability to model a universe transitioning between a de-
celerating and an accelerating one. This was not observed with the other models where
in these cases, all trajectories represented an accelerating universe in all of the phase
space. A modification of f3(T, TG) can simplify the dynamical system needed to study
this model, which allows for solutions such as a phantom or quintessence dark energy
dominated universe. This was also the case for f1(T, TG). Finally, f4(T, TG) showed that
even models without a ΛCDM limit could lead to dynamics which are like those of a
universe with a cosmological constant, indicating that a significant deviation from the
standard ΛCDM model might be needed in order to theoretically explain the features
of the observed Universe.

The dynamical analysis done in this chapter shows that the f (T, TG) modification
does indeed have the potential of being the correct description of gravity on cosmolog-
ical scales. Since all of the models analysed exhibit dynamics in line with those of the
observed Universe, none of them can be ruled out at this stage. This means that further
investigations, as will be discussed in Chapter 5, are needed to identify which f (T, TG)

modification fits observations best.
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Conclusions

In this work the dynamical behaviour of the f (T, TG) modification of TEGR was studied
in the context of a flat FLRW Universe. This modification is based on the torsion scalar
T which is the Lagrangian of the TEGR action, as well as the TG invariant which is
quartic in the torsion tensor. This class of modifications is analogous to the f (R̊, G̊)

modification of GR, however, since the equations of motion are intrinsically different,
these two theories lead to different dynamics. The f (T, TG) modification is an extension
of the f (T) modification, with the introduction of the TG invariant making it possible to
produce different dynamics from the latter lower order theory.

In particular, four f (T, TG) models, which had not yet been studied in the literature,
were analysed. These were inspired by different modifications of TEGR including the
f (T) and f (T, B) modifications. The study was done by incorporating the Friedmann
equations, dictating the dynamics of a universe governed by this theory of gravity, and
the fluid equation, into a set of differential equations. The general behaviour of these
dynamical systems was then studied using techniques from LST which uncovered the
behaviour in the finite phase space of the systems without having to impose any initial
conditions. Moreover, the behaviour in the infinite regime was studied using a change
of variables which compactified the phase space. Using this method, behaviour which is
hidden in the finite phase space, such as past/future singularities, could be uncovered.

This work was motivated by the discovery of the accelerating Universe and the
growing tension between values of H0 using early-time and late-time measurements,
among other problems with the ΛCDM model. The aim of the work was to explain
this acceleration via a modification of the theory of gravity itself, which dictates the
evolution of the Universe. This is opposed to modifying the energy content of the Uni-
verse which is what is done in the ΛCDM model based on GR, in which a cosmological
constant is used to represent dark energy.
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All four f (T, TG) models that were analysed were found to describe an asymptot-
ically de Sitter universe for specific values of the free parameters, i.e. the models can
describe a universe with a cosmological-constant-like behaviour, without the need to in-
troduce such a cosmological constant. The models investigated also show the potential
to lead to cosmologies with a behaviour which varies significantly from that predicted
by ΛCDM. Through the analysis at infinity, the models were observed to lead to past,
future and intermediate singularities. However, the physical interpretation of past sin-
gularities was done with caution since the assumptions made are those appropriate to
study the late-time behaviour of the Universe and not the early-time behaviour.

The analysis that was done in this work contributes to the ever-growing literature in-
vestigating the cosmological implications of TEGR and its modifications, with the hope
that some cosmological tensions could be resolved using such theories. The f (T, TG)

modification had not yet been studied in great detail so far, and the dynamical analysis
of only one such model can be found in the literature. This work shows that similar
dynamics as were observed in the previously published work can be produced using
a different specific form of the function f (T, TG). This could indicate that certain dy-
namics, such as a de Sitter solution, are a general feature of the f (T, TG) modification.
Nevertheless, the specific features of certain unique models, such as future singular-
ities, show that the specific form of the function used as the Lagrangian can indeed
affect other certain types of dynamics that can be achieved.

It was noted that only the variation of the first model, as seen in Sec. 4.1.4, alongside
the model analysed in Kofinas et al. (2014), can result in a universe dominated by dark
energy with values of q and ωDE different from −1. The reason why the other models
could not lead to these different cosmological solutions was because of the introduction
of H as a dynamical variable. This forces the value of H at the fixed points to be constant
and limits the different type of behaviour that can be uncovered. It is important to em-
phasize that this does not reflect an intrinsic limitation of the models themselves and if
different dynamical variables were chosen, more dynamics might have been uncovered.
This is why any future work should focus on choosing different dynamical variables to
analyse the models.

From this initial dynamical systems approach, no new behaviour of the f (T, TG)

modification was uncovered. This does not mean that models which produce similar
solutions are redundant. On the contrary, a good selection of models which are all
viable at this early stage is preferred so as to improve the chances of finding a model
which fits the constraints imposed on it from cosmological data in the work that would
follow.

Although using simple, fundamental aspects from dynamical systems theory, the
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method used gave a clear overall picture of the dynamics of these models. However, the
method was not without its limitations. One of the main drawbacks of the method was
the inability to obtain the stability conditions of the fixed points for general values of the
free parameters αi and Pi (alongside β3 for the third model). This then forced the choice
of such free parameters to be made using a method of trial and error, potentially missing
some interesting cosmological scenarios. Ideally, this choice would have been made
based on knowledge of the stability using analytical techniques. If a similar further
work is done investigating the dynamical behaviour of these models using different
dynamical variables, this should be something that is kept in mind.

Another limitation that was observed deals with the analysis of the behaviour at in-
finity. Although the coordinate transformation used allowed for the identification of the
fixed points at infinity, the method for analytically studying the stability of these fixed
points was inconclusive in most cases. This forced the stability of such fixed points to
be inferred qualitatively from the phase portraits, however, due to numerical instability,
these plots were not always generated very precisely, making the study of stability quite
hard. Whilst this method made it possible to identify points which could represent past
or future singularities, it was seen that in some cases the values of q, ωDE and H were
not consistent with each other. Thus, the type of singularity that these fixed points could
represent could not be inferred with certainty. Different methods might need to be used
to understand the behaviour in this infinite regime better in future works.

As was previously mentioned, one way to further this study is to use different dy-
namical variables on the same models so as to expose different dynamics. The analysis
with the specific dynamical variables considered in this work can also be developed
further. For example, the free parameters of the models can be tuned so as to obtain
a more realistic value of H at the fixed points. This is something which was not done
in this work so as to facilitate the exposition of the different dynamics that each model
can lead to, but is an important next step to ensure that the models can indeed describe
our physical universe. Once the dynamical analysis of the models has been exhausted,
the next step would then be to constrain the models using cosmological data. One way
to do this is to obtain a relationship between the free parameters of the models, as was
done in Eq. (3.53), and study the dynamical behaviour under this constraint.

Another way to further the study is to apply the same dynamical systems techniques
to more f (T, TG) models. Rather than adapting functions from other modifications to
the f (T, TG) case, some form of reconstruction techniques could be used. In particu-
lar, a general function would first be considered, and then constrained through certain
demands of either the theory or observations. The method used for analysing the dy-
namics of these models could also be generalised. For example, the dynamical variables
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are defined as functions of f and the analysis is done in a general way until it is neces-
sary to define the specific form of the function. This would speed up this initial analysis
so that viable functions can be identified quickly.

In order to generalise the analysis further, the modification can be considered in the
context of the theory of cosmological perturbations (Malik and Wands, 2009). In this
case, perturbations of the flat FLRW metric are considered. These perturbations have
shown promise in explaining CMB fluctuations and the formation of large-scale struc-
ture while also, in the limit, achieving the homogeneity and isotropy of the Universe.
Thus it would be interesting to see how the f (T, TG) modification would perform in
such a setting.

It would also be worth comparing the f (T, TG) modification to the f (T) one. Specif-
ically, to check whether the f (T, TG) theory has any significant advantages over f (T)
which is of a lower order. This comparison should also be done with respect to other
modified teleparallel gravity theories to place f (T, TG) in context with modifications
that have been studied in more detail.

In summary, through this preliminary study, it was seen that the f (T, TG) modifica-
tion of TEGR has the potential of being the correct theory of gravity which explains the
late-time behaviour of the Universe. More generally, it also shows that the standard cos-
mological model could, in the future, be replaced with another model that explains the
acceleration of the Universe in a more elegant way, while in the meantime eliminating
the tensions that are growing within this model.

98



References

Abbott, B. P., Abbott, R., Abbott, T., Abernathy, M., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari,
R. X., Adya, V., Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O., Aiello, L., Ain, A., Ajith, P., and
Zweizig, J. Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116, 02 2016.
doi: 10.1103/PhysRevLett.116.061102.

Abbott, B. P., Abbott, R., Abbott, T. D., et al. A gravitational-wave standard siren measurement of the Hubble constant.
Nature, 551(7678):85–88, November 2017. doi: 10.1038/nature24471.

Ade, P. A. R., Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela, F., Aumont, J., Bacci-
galupi, C., Banday, A. J., and et al. Planck2013 results. xvi. cosmological parameters. Astronomy & Astrophysics, 571:
A16, Oct 2014. ISSN 1432-0746. doi: 10.1051/0004-6361/201321591.

Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B.,
Bartlett, J. G., and et al. Planck2015 results. Astronomy & Astrophysics, 594:A13, Sep 2016. ISSN 1432-0746. doi:
10.1051/0004-6361/201525830.

Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo,
N., and et al. Planck 2018 results. Astronomy & Astrophysics, 641:A6, Sep 2020. ISSN 1432-0746. doi: 10.1051/
0004-6361/201833910.

Akiyama, K., Alberdi, A., Alef, W., Asada, K., Azulay, R., Baczko, A.-K., Ball, D., Balokovic, M., Barrett, J., Bintley, D.,
Blackburn, L., Boland, W., Bouman, K., Bower, G., Bremer, M., Brinkerink, C., Brissenden, R., Britzen, S., Broderick,
A., and Ziurys, L. First M87 event horizon telescope results. i. the shadow of the supermassive black hole. The
Astrophysical Journal Letters, 875, 04 2019.

Alpher, R. A., Bethe, H., and Gamow, G. The origin of chemical elements. Phys. Rev., 73:803–804, Apr 1948. doi:
10.1103/PhysRev.73.803.

Amendola, L., Gannouji, R., Polarski, D., and Tsujikawa, S. Conditions for the cosmological viability of f (R) dark energy
models. Physical Review D, 75(8), Apr 2007. ISSN 1550-2368. doi: 10.1103/physrevd.75.083504.

Arkani-Hamed, N., Finkbeiner, D. P., Slatyer, T. R., and Weiner, N. A theory of dark matter. Phys. Rev. D, 79:015014, Jan
2009. doi: 10.1103/PhysRevD.79.015014.

Arun, K., Gudennavar, S., and Sivaram, C. Dark matter, dark energy, and alternate models: A review. Advances in Space
Research, 60(1):166–186, 2017. ISSN 0273-1177. doi: https://doi.org/10.1016/j.asr.2017.03.043.

Bahamonde, S., Böhmer, C. G., Carloni, S., Copeland, E. J., Fang, W., and Tamanini, N. Dynamical systems applied
to cosmology: Dark energy and modified gravity. Physics Reports, 775-777:1–122, Nov 2018. ISSN 0370-1573. doi:
10.1016/j.physrep.2018.09.001.

99



References

Bahamonde, S., Dialektopoulos, K. F., Escamilla-Rivera, C., Farrugia, G., Gakis, V., Hendry, M., Hohmann, M., Said, J. L.,
Mifsud, J., and Valentino, E. D. Teleparallel gravity: From theory to cosmology, 2021.

Bamba, K., Geng, C.-Q., Lee, C.-C., and Luo, L.-W. Equation of state for dark energy in f (T) gravity. Journal of Cosmology
and Astroparticle Physics, 2011(01):021–021, Jan 2011. ISSN 1475-7516. doi: 10.1088/1475-7516/2011/01/021.

Bean, R. and Melchiorri, A. Current constraints on the dark energy equation of state. Phys. Rev. D, 65:041302, Jan 2002.
doi: 10.1103/PhysRevD.65.041302.

Bengochea, G. R. and Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D, 79:124019, Jun 2009. doi: 10.1103/
PhysRevD.79.124019.

Bernal, J. L., Verde, L., and Riess, A. G. The trouble with H0. Journal of Cosmology and Astroparticle Physics, 2016(10):
019–019, oct 2016. doi: 10.1088/1475-7516/2016/10/019.

Bernardeau, F., Colombi, S., Gaztañaga, E., and Scoccimarro, R. Large-scale structure of the universe and cosmological
perturbation theory. Physics Reports, 367(1-3):1–248, sep 2002. doi: 10.1016/s0370-1573(02)00135-7.
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