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Abstract

In the context of finding a renormalisable theory of gravity, Poincaré Gauge Theory (PGT)
of gravity offers a promising avenue. Recent works have shown that subsets of this theory
linearised in the vicinity of Minkowski spacetime are power-counting renormalisable and have
a healthy particle spectrum, free of ghosts and tachyons. If such theories were to describe our
physical universe, their particle spectrum should also be healthy during periods of accelerated
expansion such as during inflation and dark-energy domination. This work discusses the method
used to analyse the propagator structure of PGT and advances the analysis to allow for the
study of the particle spectrum of these theories around de Sitter spacetime. The results for
Einstein–Cartan Theory and General Relativity are reviewed in detail while the particle spectrum
of the Teleparallel Equivalent of General Relativity is studied for the first time using this method.
A novel generalised Mathematica implementation of the method around both Minkowski and de
Sitter spacetime is discussed.

1 Introduction

Einstein’s theory of General Relativity (GR) has proven to be one of the most successful theories
to date [1], with the detection of gravitational waves from a binary black hole merger being the
latest prediction to be confirmed by observations [2]. Although its validity at intermediate length
scales has been confirmed by experimental and observational tests [3], there is no direct evidence
that GR is the correct theory of gravity on cosmological scales. Assuming Einstein’s GR to be the
correct description of gravity, the standard cosmological model, the ΛCDM model, demands that
over 96% of the Universe’s energy budget is ‘dark’ so as to explain astrophysical and cosmological
observations. Cold dark matter (CDM) must be invoked to explain gravitational phenomena such as
galaxy rotation curves [4] and gravitational lensing [5], whilst dark energy, mathematically expressed
as a cosmological constant Λ, is what drives the acceleration of the Universe [6]. This leads to some
conceptual problems, namely;

The dark energy and dark matter puzzles. Although the required properties for dark matter to
explain observations are known, we have so far not been able to detect any particles that fit these
criteria [7]. Moreover, the nature of dark energy is still an open area of research [8].

The cosmological constant problem. Quantum Field Theory (QFT) predicts a form of vacuum
energy sourced by virtual particles, which is our best theoretical description of dark energy. However,
the density of this energy is around fifty orders of magnitude larger than the value of Λ measured
from observations [9].

The coincidence problem. The transition between a matter-dominated universe and a dark-
energy-dominated universe happened at redshift 0.55 [10]. Is it a coincidence that the energy density
of matter and dark energy are of the same order of magnitude at the present epoch [11]?
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On top of these conceptual problems, the ΛCDM model is facing some growing tensions between
early-time and late-time values of some key cosmological parameters. The most prominent of
these tensions is the Hubble tension [12, 13]. A numerical value of the Hubble constant H0, which
measures the current rate of expansion of the Universe, can be obtained using two main methods.
The first uses distance measurements from the local universe obtained from astronomical objects
such as Cepheid stars and supernovae type Ia [14]. Together with spectroscopic measurements of
redshift, this gives a model-independent value of H0 = 73.04± 1.04km s−1Mpc−1 [15]. The second
way to get a value of H0 uses measurements from the power spectrum of the cosmic microwave
background (CMB) whose peaks are sensitive to joint constraints of density parameters and H0.
By making assumptions based on ΛCDM, this degeneracy can be broken to obtain an early-time
measurement of H0 = 67.4± 0.5km s−1Mpc−1 [16]. The tension between these two measurements
has now reached the statistically significant level of 5σ [15]. Future measurements of H0 from
gravitational waves [17] have the potential to determine whether this tension arises from systematic
errors, or whether it is an indication towards new physics, potentially in the gravitational sector of
the cosmological model [18].

Another tension is detected in the structure growth parameter S8 = σ8
√

Ωm/0.3, which gives a
joint constraint on the matter density parameter Ωm, and the amplitude of matter perturbations
σ8 [19]. Measurements of S8 from late-time universe surveys such as the Kilo-Degree Survey are
8.3± 2.6% lower than Planck [20, 21]. Physically this means that matter in the low-redshift universe
favours a smoother distribution than that predicted from CMB measurements. The tension currently
lies at a 2.3 – 2.7σ level [22].

From a theoretical perspective, GR poses issues for the search of a consistent theory of quantum
gravity. This is essential to fully describe regions of spacetime like the centre of black holes,
where both gravity and quantum effects are expected to play a crucial role [23]. For a QFT to
be predictive and give experimentally testable results it must be renormalisable, meaning that
measurable quantities can be redefined to remove infinities. GR is perturbatively non-renormalisable;
in order to remove the divergences that arise in the theory, an infinite number of parametrised
counter-terms are needed [24, 25, 26]. A useful first step towards checking whether a theory is
renormalisable is the power-counting renormalisability (PCR) criterion. This is the condition that
the coupling constants within the theory do not have a negative mass dimension [27]. GR violates
this condition and thus is not a PCR theory since the mass scale, Newton’s constant, has the
dimension of a negative power of mass [28]. It has been long known that adding higher derivative
terms, such as quadratic products of the curvature tensor, to the Einstein–Hilbert action can lead
to the theory becoming PCR [29]. These higher derivative terms have also shown potential in
avoiding the formation of singularities, which in standard GR are unavoidable as a result of the
Hawking–Penrose singularity theorem [30, 31].

Together with the challenges that ΛCDM is currently facing, the inability to express GR as a
consistent QFT has motivated the investigation of modified theories of gravity in which the action
that gives rise to the equations of motion is modified [32]. There are multiple ways in which this
can be done, including f(R) theories [33] and infinite derivative gravity [34]. The class of modified
gravity theories relevant to this project is that of Poincaré gauge theories (PGT) which arises
from the gauging of the Poincaré group and allows gravity to be described by both torsion and
curvature [35, 36, 37] as will be fully discussed in Sec. 2.

Although GR is not renormalisable, its propagator, the graviton, is a healthy quantum particle.
The theory predicts the graviton to be a spin-2 particle with two polarisations, as has indeed been
observed through the two polarisations of gravitational waves [17, 38]. When modifying the theory of
gravity we might be changing this particle spectrum by introducing new particles to the space-time
and as a consequence, potentially introducing instabilities in the theory. To avoid this, the particle
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Figure 1: On-shell decay of vacuum into a ghost-pair and a photon-pair mediated by a graviton,
highlighting the interaction of a ghost field with other fields via gravity. Figure by Cline, Jeon, and
Moore [44].

spectrum of a healthy unitary theory should not contain ghosts, i.e. particles with negative energy,
or tachyons, i.e. particles with imaginary mass [39, 40].

It is important to note that the ghosts that haunt modified theories of gravity are distinct
from Faddeev–Popov ghosts which only represent internal lines in Feynman diagrams and thus
cannot represent a physical degree of freedom in a theory [41]. Instead, the ghosts we are concerned
with can be represented by an external line in Feynman diagrams and are thus physical particles
themselves [42]. The propagator of a ghost can have one of two forms

−i

p2 −m2 + iϵ
or

−i

p2 −m2 − iϵ
. (1.1)

In the first case, the optical theorem will be violated making the theory a non-unitary one [43].
In the second case, particles with negative energy propagate forwards in time. These particles
couple with matter fields and through scattering processes dump their energy onto this conventional
sector of the theory. The consequence is that ghost-non-ghost pairs are created in the vacuum
at a divergent rate. Although one might think that a solution to this is to decouple ghost fields
from matter fields, this is impossible to do as the ghost field can still couple to other fields through
gravity, an interaction which cannot be completely eliminated [44]. This is illustrated in Fig. 1.

The type of instability caused by tachyonic fields in a theory is best understood using the analogy
of a one-dimensional lattice of pendulums in which each pendulum is connected to its neighbour by
a spring. The system has two equilibrium points, one at θ = 0, in which all pendulums are pointing
down, and one at θ = π, where all the pendulums are pointing up. The first equilibrium point is
stable and any perturbation is described by the usual Klein–Gordon equation for particles with real
mass [45]. The second equilibrium point is described by the Klein–Gordon equation for imaginary
mass particles. This θ = π position is unstable, a perturbation in any one of the pendulums will
set off an exponentially growing wave through the spring. In the limit of an infinite number of
such pendulums that are infinitely close to each other this describes a tachyonic field [46]. It can
be shown that the group velocity of such a tachyonic field is superluminal however, this is not
equivalent to the physical speed of propagation [47]. Regardless of the fact that tachyonic fields do
not violate causality, they introduce unwanted instabilities in the theory and so a healthy unitary
theory should not contain any tachyonic particles.

The existence of these particles for a theory of gravity can be uncovered or excluded by
investigating the propagator structure of such theories. There has been a significant effort in
investigating the propagator structure of subsets of PGT in flat Minkowski spacetime [48, 49, 50].
Recently Lin, Hobson, and Lasenby [51] used a systematic approach to study the propagator of
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PGT and identified a total of 58 theories which are free of ghosts and tachyons, and which are
power counting renormalisable (PCR). Note that although finding a PCR theory is an improvement
upon GR, it is still not a guarantee that the theory is renormalisable. Indeed PCR theories may
turn out to be non-renormalisable because of issues such as anomalies, and non-PCR theories could
potentially be renormalisable by non-perturbative means, for example by realising the asymptotic
safety conjecture [52, 53].

Analysing the propagator structure in Minkowski space is an obvious first step in checking the
validity of theories of gravity in weak gravitational fields. However, quantum field theory in curved
spacetime predicts that the particle spectrum of theories, or the interpretation of these spectra,
might change if we investigate the theories in backgrounds which deviate from Minkowski [54]. A
theory of gravity that describes Nature should posses a healthy particle spectrum in backgrounds
which we expect to encounter in our physical Universe, such as around black holes or in de Sitter
spacetime, not only in flat spacetime. The study of de Sitter spacetime, which is a maximally
symmetric Lorentzian manifold with constant positive curvature [55], is of particular importance
when considering the early and late universe. In its early stages, the Universe is expected to have
undergone a period of accelerated expansion described by a quasi-de Sitter metric. This period of
inflation is commonly assumed to find a resolution to the flatness and horizon problems [56, 57].
Presently, we are observing a period of accelerated expansion which is thought to be driven by dark
energy, the energy component that now dominates in the Universe [16, 6]. According to the ΛCDM
model, the Universe is thus evolving towards a de Sitter one in which the only energy component is
dark energy.

The potential that PGT has shown in describing the gravitational force whilst providing a
renormalisable theory of gravity, together with the relevance of de Sitter spacetime, has motivated
the key aim of this project; investigating the propagator structure of PGT in a de Sitter background.

The structure of the report is as follows. In Sec. 2 we describe the mathematical formulation of
PGT. In Sec. 3 we first introduce the method used to analyse the particle spectrum by applying it
to electromagnetism. We then describe the method used to analyse the propagator of PGT, in both
Minkowski and de Sitter spacetimes. The use of the xAct package in Mathematica to carry out
calculations is also discussed in this section. In Sec. 4 we discuss some interesting results in both
spacetime backgrounds before concluding in Sec. 5.

The signature used throughout this report is ηAB = (+,−,−,−).

2 Poincaré Gauge Theories of Gravity

PGTs are of specific interest as modified theories of gravity as they express gravity as a gauge
theory, just like the electromagnetic, weak and strong interactions. In a gauge theory, a global
symmetry of the Lagrangian can be transformed to a local symmetry, i.e. one that depends on
the spacetime coordinates, via the introduction of compensating gauge fields, an idea which was
extended to non-Abelian gauge groups, such as the Poincaré group, by Yang and Mills [58]. In the
absence of a gravitational field, we know that the Poincaré group gives rise to the symmetries of
fundamental interactions, namely under translations, rotations and boosts. To localise Poincaré
symmetry we thus have to introduce compensating fields h µ

A and AAB
µ which represent gravitational

interactions [59]. These fields are the tetrad and spin connection and correspond to translations
and Lorentz transformations, respectively. Here, and throughout the rest of this report, upper and
lower case Latin indices (A,B, ..., i, j, ...) refer to local Lorentz frames while Greek indices (α, β, ...)
refer to coordinate frames. Note that the spin connection AAB

µ is symmetric in AB.
The gauging of the Poincaré group leads to a generalisation of GR in which the connection
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Figure 2: Geometrical difference between the curvature and torsion tensors. Curvature quantifies
the rotation of a vector that is parallel transported along a closed curve on a manifold while torsion
quantifies the non-closure of a parallelogram formed when two vectors are transported along each
other. Figure taken from Ref. [60].

is no longer necessarily torsion-free. Geometrically, we are generalising the Riemann spacetime
V4 to Einstein–Cartan spacetime U4. The physical implications of this is that alongside energy
and momentum which source the gravitational field through curvature, spin can also source a
gravitational field through torsion [35]. The geometrical difference between curvature and torsion is
highlighted in Fig. 2. The field strengths associated to the gauge fields are indeed the curvature and
torsion of spacetime and are given by RAB

CD ≡ h µ
C h ν

D RAB
µν and T A

BC ≡ h µ
B h ν

C T A
µν where

RAB
µν ≡ 2

(
∂[µA

AB
ν] +AA

E[µA
EB

ν]

)
, (2.1a)

T A
µν ≡ 2

(
∂[µb

A
ν] +AA

E[µb
E
ν]

)
. (2.1b)

Here bAµ is the inverse tetrad field such that bAµh
µ

B ≡ δAB and bAµh
ν

A ≡ δνµ.
A direct generalisation of GR in U4 geometry gives rise to Einstein–Cartan Theory (ECT) [61]

and is given by the gravitational action

SECT ≡
∫

d4xbR , (2.2)

where b is the determinant of bAµ and R = h µ
A h ν

B RAB
µν is the Ricci scalar. The most general

form of the gravitational Lagrangian for parity-preserving Poincaré Gauge Theories (PGT+) that is
at most quadratic in the gravitational gauge fields can be written as

LG

b
≡ −λR+ (r4 + r5)RABRAB + (r4 − r5)RABRBA +

(r1
3

+
r2
6

)
RABCDRABCD

+

(
2r1
3

− 2r2
3

)
RABCDRACBD +

(r1
3

+
r2
6

− r3

)
RABCDRCDAB

+

(
λ

4
+

t1
3
+

t2
12

)
T ABCTABC +

(
−λ

2
− t1

3
+

t2
6

)
T ABCTBCA

+

(
−λ− t1

3
+

2t3
3

)
T AB
B T C

CA ,

(2.3)

where λ, ri and ti are arbitrary constants [62, 49]. Alongside ECT, whose action is given in Eq. (2.2),
there are other specific forms of the PGT+ Lagrangian that are of interest. Namely, GR itself is a
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special case of Eq. (2.3) with
LGR ≡ b

(
R− T 2

)
, (2.4)

where T 2 ≡ 1
4T

ABCTABC + 1
2T

ABCTBCA − T AB
B T C

CA . It is clear from the action in Eq. (2.4)
that GR sources gravity only through curvature, and the effects from torsion are subtracted off.
Another theory of interest is the teleparallel equivalent of GR (TEGR), whose Lagrangian is simply
given by

LTEGR ≡ bT 2. (2.5)

This theory was initially investigated by Einstein himself, and in the Weitzenböck gauge, leads
to the same dynamical equations as GR, as will be discussed in detail in Sec. 4.1. In this theory
the gravitational field is sourced fully by torsion instead of curvature [63]. It is important to
note that the terms quadratic in the curvature field-strength, denoted by R2 are essential for the
spin-connection to achieve a full dynamical content [35] as will be highlighted in Sec. 4.

3 Propagator Analysis

3.1 Propagator Structure Analysis for Electromagnetism

As an introduction to the method that will be used to investigate the nature of particles in PGT,
the particle spectrum of the electromagnetic (EM) field is analysed [64]. The analysis will follow
the same steps for PGT with the specific differences described in Sec. 3.2.

The Lagrangian of the EM field is given by

LEM ≡ −1

4
FµνF

µν , (3.1)

where
Fµν ≡ ∂µAν − ∂νAµ . (3.2)

By noting that adding total derivatives to the Lagrangian does not result in a change in the equations
of motion, we can write the Lagrangian as

LEM =
1

2
AµOµνAν , (3.3)

where the symmetric differential operator is given by

Oµν = 2ηµν − ∂µ∂ν . (3.4)

We now introduce a complete set of orthogonal spin projection operators {θ, ω} which decompose
the vector Aµ into its spin-0 and spin-1 components;

θµν ≡ ηµν −
∂µ∂ν
2

, ωµν ≡ ∂µ∂ν
2

. (3.5)

This is also possible for higher order tensors which are decomposed into their scalar, vector and
tensor components. Writing the operators in Eq. (3.5) in momentum space, it is easy to check that
kµθµν = 0, and kµωµν = kν , where kµ is the four-momentum of the electromagnetic wave. Hence, θ
and ω decompose Aµ into its transverse and longitudinal components, respectively.

Obtaining the field equations via the Euler–Lagrange equations yields

2θµνA
ν = 0 . (3.6)
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Writing this in momentum space, with E being the energy and k the spatial momentum, one can
see that this component is massless

k2θµνA
ν = 0 =⇒ k2 = 0 =⇒ E2 = |k|2 =⇒ m = 0 . (3.7)

Since the field equations give no information about the longitudinal component, only the massless
transverse component propagates.

For a Lagrangian written in terms of an operator O as in Eq. (3.3), we can define the propagator
as O−1. Writing O = aθ + bω, it follows that

O−1 =
1

a
θ +

1

b
ω . (3.8)

For the photon, in momentum space, O = k2θ, and so since b = 0, O is not invertible. This
singularity can be overcome by adding a gauge fixing term to the Lagrangian. Note that this is
also required to account for the extra degrees of freedom in the theory. In this way the propagator
O−1 consists of two parts; a gauge-dependant part which is non-physical (as physical laws should
not depend on the choice of gauge), and a gauge-independent part referred to as the saturated
propagator. This is defined as [39]

Π(k) ≡ j†(k).O−1.j(k) , (3.9)

with j being the conserved source current.
Notice that the gauge freedoms of the theory correspond to gauge constraints on the source

current j. In the case of EM, this constraint is the condition that the positive parity scalar part of j
must vanish. This is equivalent to the condition of a vanishing four-divergence of the source current,
i.e. charge conservation. This is in perfect agreement with Noether’s theorem which states that any
continuous symmetry of the action of a physical system corresponds to a conservation law [65, 45].

Finally, the unitarity conditions of the theory are as follows; the saturated propagator of the
Lagrangian should have only first order poles at k2 − m2 = 0, with real masses m to have no
tachyons, and non-negative residues to have no ghosts [66].

3.2 Propagator Analysis for PGT in a Minkowski background

In this section we will describe the method used to analyse the particle spectrum around flat
Minkowski spacetime for a general PGT. This is based on the analysis used in Ref. [39]. We will use
ECT throughout this section as a concrete example to show the method in action and in Sec. 4.1
the results of this analysis for GR, ECT and TEGR will be discussed. In order to obtain the
unitarity conditions, we need to express the Lagrangian in terms of coupling constants. Thus we
write LECT ≡ λbR.

The first step towards analysing the particle spectrum of PGT is to linearise the Lagrangian in
Eq. (2.3). If we choose to perturb around Minkowski background then we can write the tetrad field
as

h µ
A = δ µ

A + f µ
A , (3.10)

where f µ
A is the perturbation of the tetrad field. The inverse tetrad field is then

bAµ = δAµ − fA
µ +O(f2), (3.11)

with determinant
b = 1− f i

i +O(f2) . (3.12)
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The perturbation f can be decomposed into its symmetric and antisymmetric parts,

fAB = sAB + aAB, (3.13)

where s and a are treated as separate fields for the analysis. In a Minkowski background, the spin
connection is perturbative in nature as a consequence of a constant background tetrad field and is
considered to be O(f). Note that changing between Roman and Greek indices will be O(f2) and so
in the linearised theory we can exchange between these two freely. This will no longer be the case
for a de Sitter background as will be seen in Sec. 3.3.

Next we substitute Eqs. (3.10), (3.11) and (3.12) into the specific form of the PGT Lagrangian
in Eq. (2.3) under investigation and keep terms up to O(f2). For ECT the Lagrangian up to O(f2)
becomes

LECT = λ(AacbA
abc +Aab

aA
c
b c + 2fab∂bA

c
a c − 2∂bA

ab
a − 2fab∂cA

c
a b + 2fa

a∂cA
bc
b) . (3.14)

Note that the O(f) term, −2∂bA
ab

a, is simply a divergence term and thus confirms that the
Lagrangian satisfies the background field equations. This will be true for any general Lagrangian;
the terms which are of first order in the perturbation should satisfy the background field equations.
Making sure that these first order terms result in the field equations expected when applying the
Euler–Lagrange equations, especially for theories such as GR and ECT, is a useful validity check
for the linearising scheme being used. The second order terms then contain information about the
particle spectrum of the theory.

We can now express the linearised Lagrangian in terms of a differential operator in a similar
way as in Eq. (3.3) for the EM Lagrangian. However, in the PGT case there are now three fields at
play rather than the singular field in EM. These are the spin connection and the symmetric and
anti-symmetric part of the perturbation of the tetrad field. We can write the linearised Lagrangian
in compact notation as

L = LF + LI

=
1

2

∑
a,b

ξ
(a)
ά (x)O(ab)(∂)άβ́ξ

(b)

β́
(x)−

∑
a

ξ
(a)
ά (x)j(a)ά(x)

=
1

2
ξ̂T(x) · Ô(∂) · ξ̂(x)− ξ̂T(x) · ĵ(x) .

(3.15)

Here ξ
(1)
ά1

...ξ
(n)
άn

are the fields in the Lagrangian under investigation with corresponding source

currents j
(a)
α (x). The Greek indices with an acute accent, for example ά, represent the collection of

local Lorentz indices of the fields. To obtain Eq. (3.15), we are defining the generalised field vector

ξ̂ ≡
n∑

a=1

ξ
(a)
άa

ea , (3.16)

where ea is a coloumn vector with the ath element equal to one and zeros in the other entries, and
the generalised operator

Ô(∂) ≡ O(ab)(∂)άβ́eae
†
b . (3.17)

Thus we can write the free-field part of the Lagrangian in Fourier space as

LF =
1

2
ξ̂T(−k) · Ô(k) · ξ̂(k) . (3.18)
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Schematically in PGT this is equivalent to expressing the Lagrangian in the following form,

L = AabcIabcdefAdef + fabDabcdeAcde + fabSabcdfcd (3.19)

where I, D and S are differential operators like that in Eq. (3.3). For ECT, these operators in
Fourier space were found to be

Iabcdef = ηacηbdηef − ηafηbdηce, (3.20a)

Dabcde = −ikdηacηeb + ikcηadηeb + ikdηabηec − ikbηadηec − ikcηabηed + ikbηacηed , (3.20b)

Sabcd = 0. (3.20c)

S is the zero tensor since there are no terms which are quadratic in the tetrad perturbation f in
LECT.

As was the case for EM, the saturated propagator Π(k) as defined in Eq. (3.9) will include all
the required information about the particle spectrum of the theory. In order to calculate the inverse
of the operator Ô(k) so we can obtain Π(k), it is useful to use the spin projection operator (SPO)

formalism [67]. SPOs Pii(J
P , k) β́

ά are used to decompose a field into its separate spin J and parity
P components;

ξ(k)ά =
∑
J,P,i

ξi(J
P , k)ά with ξi(J

P , k)ά ≡ Pii(J
P , k) β́

ά ξ(k)β́ . (3.21)

In order to define a Hermitian, complete and orthonormal basis for parity-conserving operators

acting on ξά, we can introduce off-diagonal SPOs Pij(J
P , k) β́

ά where i ̸= j. For a theory which has

n distinct fields, the tensor quantities P
(ab)
ij (JP )άβ́ are elements of a matrix P (JP ). The indices

(a, b) label which n× n block the element lies in, while the (i, j) indices label the element within
this block. We then redefine Pij(J

P )άβ́ to refer to the (i, j)th element of the matrix P (JP ).

We can use these SPOs to decompose our operator Ô(k)

Ô(k) =
∑

i,j,J,P

aij(J
P , k)P̂ij(J

P , k) . (3.22)

Pre and post multiplying Eq. (3.22) by SPOs and using their orthonormality conditions we obtain

P̂ii(J
P )µ́ά · Ôάβ́ · P̂jj(J

P )β́ρ́ = aijP̂ij(J
P )µ́ρ́ , (3.23)

which we can use to solve for the coefficients aij . Here we are explicitly writing the Lorentz indices
for clarity. The derivation of Eq. (3.23) can be found in Appendix A.

As an example, consider the SPO matrix corresponding to the JP = 2+ sector which is given by

P (2+) =

( Aabc sab

A∗
ijk −2

3ΘcbΘkjΩia +ΘicΘkaΩjb +ΘiaΘkcΩjb

√
2k̃j(ΘiaΘkb − 1

3ΘabΘki)

s∗ij
√
2k̃b(ΘcjΘia − 1

3ΘcaΘij) −1
3ΘabΘij +ΘiaΘjb

)
(3.24)

where k̃a = ka/
√
k2, Ωab = kakb/k2 and Θab = ηab − kakb/k2. The elements of the matrix in

Eq. (3.24) are correctly symmetrised according to the symmetry properties of the A, a and s fields.
Then Eq. (3.23) defines a system of four equations;

P11(2
+)ijkabcIabcdefP11(2

+)deflmn − a11P11(2
+)ijklmn = 0 , (3.25a)

P11(2
+)ijkabcDabcdeP22(2

+)delm − a12P12(2
+)ijklm = 0 , (3.25b)

P22(2
+)ijabDabcdeP11(2

+)cdeklm − a21P21(2
+)ijklm = 0 , (3.25c)

P22(2
+)ijabSabcdP22(2

+)cdkl − a22P22(2
+)ijkl = 0 . (3.25d)
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Solving this system of equations for ECT using the operators in Eqs. (3.20a) - (3.20c) gives the a
matrix for the 2+ sector of the theory

a(2+) =

(
λ
2

−ikλ√
2

ikλ√
2

0

)
. (3.26)

The a matrices for the other spin parity components can be obtained in a similar way.
Because of the orthonormality properties of SPOs, we are now in a good position to obtain

Ô−1(k) as we simply need to invert the a matrices. However, some of these a matrices might be
singular. The singularities of these a matrices corresponds to gauge freedoms within the theory,
as was the case for EM. In particular if a(JP ) is an s × s matrix with rank r then it has (s − r)
null eigenvectors, i.e. eigenvectors which correspond to a zero eigenvalue. The equations of motion
Ô · ξ̂ = ĵ are invariant under a transformation of each of these (s− r) eigenvectors. We can thus use
these gauge freedoms to fix the gauge by setting the corresponding parts of the fields to zero, making
the a matrices non-singular. In previous works this was done by deleting rows/coloumns which
upon deletion do not change the rank of the matrix, until an r× r invertible matrix is obtained [39].
In this work, we obtain generalised inverse matrices b−1(JP ) using the Moore–Penrose method [68,
69, 70] which has a stronger mathematical foundation. This is highlighted in the following example
with y ∈ R

a(JP ) =

(
y 0
0 0

)
=⇒ b−1(JP ) =

( 1
y 0

0 0

)
. (3.27)

The (s− r) null eigenvectors also correspond to gauge constraints on the source current ĵ which can
then be interpreted as physical conservation laws in accordance with Noether’s theorem, as was
seen for the EM case. Each PGT will contain the source constraints which arise from the Poincaré
symmetry. Defining τAB as the source current corresponding to the graviton field fAB, and σABC

as the source current for the tordion field AABC , these are given by,

∂BτAB = 0 and τ[AB] − ∂CσABC = 0 . (3.28)

Note that the graviton is a quantum of curvature while the tordion is a quantum of torsion. The
first of the conditions in Eq. (3.28) is familiar from GR as it is a consequence of the diffeomorphism
invariance of the theory. τAB can be interpreted as the stress energy-momentum tensor and this
first expression is a set of four equations. A = 0 corresponds to the conservation of energy while the
spatial components of this expression reflect conservation of momentum [71]. The second expression
in Eq. (3.28) defines six extra source constraints which arise from the extra symmetries in PGT,
three rotational symmetries and three from symmetries under boosts. In a similar way as for τ ,
these correspond to the conservation of angular-momentum current [35]. Specific forms of PGT
might contain additional gauge freedoms corresponding to additional source constraints.

After we obtain the matrices b−1(JP ) we can then write the inverse of Ô(JP ) as

Ô−1(JP ) =
∑
i,j

b−1
ij (JP )P̂ij(J

P ), (3.29)

with the saturated propagator being

Π =
∑

a,b,J,P

b−1
ab (J

P )ĵ† · P̂ab(J
P ) · ĵ. (3.30)

Focusing on the poles which arise from taking the inverse of the bmatrices, these are a consequence
of the 1/det[b(JP )] factor. The determinant can be written as

det[b(JP )] = αk2q(k2 −m2
1)...(k

2 −m2
r) (3.31)
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where α and themis are functions of the Lagrangian parameters but independent of k by construction.
Thus the propagator will have poles at k2 = 0 and k2 = m2

i . The no ghost and no tachyon conditions
remain the same as for the EM case; the masses mi should be real for no tachyons, and the poles
should have non-negative residues for no ghosts.

Going back to ECT, we can calculate the inverse of the a(2+) matrix in Eq. (3.26) in the usual
way as this is not singular. We then find that

det[b(2+)] = − 2

k2λ2
(3.32)

which is indeed in the same form as in Eq. (2.3). This already tells us that there will be massless
modes with k2 = 0 propagating in the theory in the JP = 2+ sector. We find, as expected, that
there are no massive modes from the other spin-parity sectors and that the residues of the massless
poles are {

−9p2

λ
,−9p2

λ

}
. (3.33)

Notice that since we have massless modes, k2 = p2, where p is the momentum of the particle. The
unitarity condition for ECT is λ < 0, as a consequence of the requirement of non-negative residues.

A hidden power of this method is that it also allows for investigating whether a theory is PCR.
This is only possible for theories for which the mixing terms in the b matrices vanish. An example
of such a mixing term is the top right entry of Eq. (3.26) which mixes the s and the A field. If this
condition is satisfied then for a PCR theory, the propagator of the graviton, the particle associated
with the f field, should go as k−4 while that of the tordion, the particle associated with the A field,
should go as k−2. An example of how this analysis is applied will be given in Sec. 4.

3.3 Perturbing About dS Spacetime

As discussed in the introduction, a crucial step in advancing the propagator analysis of PGT is
to perform the same analaysis in a dS spacetime, which is important for cosmology. Linearising
around this background is significantly more complex than linearising around a trivial Minkowski
background. In this section the details of this process are described.

The metric in dS spacetime is given by

gµν = a2(τ)(dτ2 − dx2 − dy2 − dz2), (3.34)

where τ is conformal time and a is the scale factor [10]. When implementing this linearising scheme
using a Mathematica code, which will be described in detail in Sec. 3.4, we want to do so in a
coordinate free manner. Thus we express the dS metric in terms of the Minkowski one ηµν as

gµν = a2(τ)ηµν . The inverse metric is given by gµν = 1
a2(τ)

ηµν .

Using the relations between the tetrad field e µ
A , the inverse tetrad field EA

µ and the metric

gµν = ηABE
A
µE

B
ν , gµν = ηABe µ

A e ν
B , (3.35)

we can obtain an expression for the dS tetrad field and its inverse

e µ
A =

1

a
δ µ
A , EA

µ = aδAµ . (3.36)

Here we are using e µ
A and EA

µ to refer to the background tetrad and inverse tetrad field respectively.

This allows us to distinguish between the full tetrad field h µ
A and inverse tetrad field bAµ which

also include the perturbations of these fields.
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In the linearising process we will also need to introduce the timelike vector vµ which will be
used to define derivatives of a(τ). In (τ, x, y, z) coordinates this vector is given by vµ = (1/a, 0, 0, 0)
or equivalently vµ = (a, 0, 0, 0). This timelike vector is defined in this way so that the norm in the
dS metric is equal to one; gµνv

µvν = a2(τ)/a2(τ) = 1. Since the scale factor a(τ) is a function of
conformal time only, and using the definition of the Hubble parameter H = a′/a2, where prime
refers to differentiation wrt τ , the derivatives of a are

∂τa = a2H and ∂ia = 0, (3.37)

for i ∈ {1, 2, 3}. We can thus express any partial derivative of a as

∂µa = vµaH and ∂µa = vµa3H . (3.38)

Since the components of vµ are functions of a, we also need to consider the derivatives of this
timelike vector. Namely,

∂µvν = vµvνH, ∂µv
ν = −vµv

νH, ∂µvν = vµvνa
2H, ∂µvν = −vµvνa2H. (3.39)

Higher order derivatives will not be necessary in the calculation at this point.
We now want to perturb around a dS background by introducing a perturbation in both the

tetrad field and the spin connection. The full tetrad field will be defined as,

h µ
A = e µ

A + ϵf µ
A , (3.40)

with inverse,
bAµ = EA

µ − ϵfA
µ . (3.41)

The parameter ϵ is introduced to keep track of the order of the perturbations. e µ
A and EA

µ are as
defined in Eq. (3.36). Note that in full,

fA
µ = ηABgµνf

ν
B = a2ηABηµνf

ν
B . (3.42)

This is useful to keep in mind as in our Mathematica implementation we will define the metric to
be the Minkowski one, as will be discussed in Sec. 3.4, and thus keeping track of the a factors is
crucial. Note also that h µ

A bAν = δµν +O(ϵ2) and h µ
A bBµ = δ B

A +O(ϵ2) as required for the tetrad
and inverse tetrad fields.

In the dS case, the spin connection is no longer perturbative in nature as it was for the Minkowski
case discussed in Sec. 3.2 and we now need to explicitly calculate the background spin connection.
The full spin connection ωij

µ is given by

ωijµ = ∆ijµ + ϵAijµ (3.43)

with ∆, the Ricci rotation coefficients, defined as [35]

∆ijµ ≡ 1

2
(cijm − cmij + cjmi)e

m
µ (3.44)

and
ciµν ≡ ∂µe

i
ν − ∂νe

i
µ . (3.45)

Since the c tensor in Eqs. (3.44) and (3.45) appears with different indices, suitable contractions
with the relevant tetrad field and metric need to be done. Namely, cijm = e µ

j e ν
m ηikc

k
µν .

12



Next we define the curvature and torsion field-strength tensors as in Eqs. (2.1a) and (2.1b) but
using the full spin connection ωij

µ

RAB
µν = 2

(
∂[µω

AB
ν] + ωA

E[µω
EB

ν]

)
, (3.46a)

T A
µν = 2

(
∂[µb

A
ν] + ωA

E[µb
E
ν]

)
. (3.46b)

We then expand Eqs. (3.46a) and (3.46b) fully to obtain an expression in terms of a, H, vµ, f µ
A

and AAB
µ and the derivatives of the last two terms. We keep terms up to second order in the

perturbation, i.e. to O(ϵ2) to obtain the linearised field-strength tensors.
In order to obtain any PGT Lagrangian, we need to include the determinant of the inverse tetrad

field defined in Eq. (3.41). Using Jacobi’s formula for the identity matrix I and a square matrix M

det(I + ϵM) = 1 + ϵTr(M) +O(ϵ2), (3.47)

where Tr(M) denotes the trace. Since

bAµ = aδAµ − a2fA
µ = a(δAµ − afA

µ ), (3.48)

the determinant of the inverse tetrad field according to Eq. (3.47) is given by

det(b) = a4(1− af i
i ). (3.49)

Any linearised PGT Lagrangian is then obtained by substituting into Eq. (2.3) for the linearised
field-strength tensors in Eqs. (3.46a) and (3.46b), tetrad in Eq. (3.40), spin-connection in Eq. (3.43),
and inverse tetrad determinant in Eq. (3.49), and truncating again to O(ϵ2).

3.4 Implementation using the xAct package in Mathematica

Although in theory, the analysis discussed in Secs. 3.2 and 3.3 can be performed analytically using
pen and paper, for complex specific cases of the PGT Lagrangian in Eq. (2.3), the calculations
quickly become impractical. This is also the case for a de Sitter background. Thus, the use of
computer algebra is necessary to allow for the study of a large subset of PGT in an efficient way. The
previous Mathematica implementation which performs the propagator analysis for PGT, developed
by Lin, Hobson, and Lasenby [39], uses nested lists, making the code susceptible to errors. For this
reason a novel Mathematica code was developed using the xAct package [72] which allows for tensor
calculations in the Wolfram Language. This allows for a covariant representation of the tensor fields
and provides a more elegant implementation of the method as will be discussed in this section.

We first define the manifold and the tensors on this manifold. For example, the inverse tetrad
field in a Minkowski background is defined as follows;

DefManifold [M, 4 , IndexRange [ a , n ] ] ;
DefConstantSymbol [ ϵ ] ;
DefTensor [B[ a , −b ] , M] ; (* Inve r s e t e t rad *)
DefTensor [F [ a , −b ] , M] ; (*The per turbat i on o f the t e t rad f i e l d *)
ExpandB = With [{ l h s = B[ a , −b ] , rhs = de l t a [ a , −b ] − ϵ F[ a , −b ]} ,

MakeRule [{ lhs , rhs } , MetricOn −> All , ContractMetr ics −> True ] ]

In both Minkowski and de Sitter backgrounds, we set the metric on the manifold to be equal to
the Minkowski metric.

DefMetric [−1 , η[−a , −b ] , pd , {” , ” , ”∂” } , F latMetr ic −> True ]
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The reason for this is that in the xAct package it is difficult to define two seperate metrics which
act on different sets of indices. In this tetrad formulation, we know that the de Sitter metric should
be used to manipulate Greek indices while the Minkowski metric should be used to manipulate
Latin indices. However, it is difficult to make the distinction between different indices and so
everything is defined in terms of the Minkowski metric. Since for de Sitter space, the metric is
the Minkowski metric multiplied by the relevant factors of a, as defined in Sec. 3.3, we have to
ensure that these factors of a are dealt with independently of the metric. For example, in de Sitter
space, the perturbation of the inverse tetrad field is related to the perturbation of the tetrad field as
follows. We first define the background inverse tetrad field in terms of the Minkwoski tetrad and
the scale factor as [] as seen in Eq. (3.36);

DefTensor [ i nv t e t r ad [ a , −b ] , M, PrintAs −> ”E” ] (* the background de S i t t e r i nv e r s e
t e t rad f i e l d *)

AutomaticRules [ invte t rad , MakeRule [{ i nv t e t r ad [ a , −b ] , as [ ] d e l t a [ a , −b ]} ,
ContractMetr ics −> On, MetricOn −> Al l ] ]

We can then calculate the inverse of the tetrad perturbation;

AutomaticRules [ invte t rad , MakeRule [{ i nv t e t r ad [ a , −b ] , as [ ] d e l t a [ a , −b ]} ,
ContractMetr ics −> On, MetricOn −> Al l ] ]

DefTensor [F[−a , b ] , M] (*The per turbat i on o f the t e t rad *)
DefTensor [ Finv [ a , −b ] , M] (*Corresponding per turbat i on o f the i nv e r s e t e t rad *)
AutomaticRules [ Finv , MakeRule [{ Finv [ a , −b ] , i nv t e t r ad [ c , −b ] i nv t e t r ad [ a , −d ] F[−c ,

d ] } ] ]

This gives the full inverse tetrad to first order to be bAµ = aδAµ − a2fA
µ . Simply using F[−a,b] as the

perturbation of the inverse would not introduce the correct a2 factor multiplying fA
µ since xAct

would raise and lower indices only using the Minkowski metric which is the only metric defined in
the code.

In Sec. 3.3, a timelike unit vector vµ was introduced in order to correctly calculate derivatives
of a as in Eq. (3.38). Since tensors and vectors are defined in a coordinate independent way in
our xAct implementation, any properties must be defined as automatic rules at the start of the
notebook. This means that xAct will automatically apply the rule for the relevant tensor whenever
it encounters an instance of it in the code. For example, the inner product of the vector vµ and the
partial derivative of the scale factor a are set as follows in the script;

AutomaticRules [ v , MakeRule [{ v [ a ] v[−a ] , as [ ] ˆ 2 } , ContractMetr ics −> True , MetricOn
−> Al l ] ]

AutomaticRules [ as , MakeRule [{ pd[− i ] [ as [ ] ] , as [ ] v[− i ] H[ ] } , ContractMetr ics −> True ,
MetricOn −> Al l ] ] (* as [ ] i s the s c a l e f a c t o r *)

AutomaticRules [ v , MakeRule [{ pd[− j ] [ v[− i ] ] , v[− i ] v[− j ] H[ ] } , ContractMetr ics −>
False , MetricOn −> None ] ]

AutomaticRules [ v , MakeRule [{ pd [ j ] [ v[− i ] ] , v [ j ] v[− i ] as [ ] ˆ 2 H[ ] } , ContractMetr ics −>
False , MetricOn −> None ] ]

This means that any instance of vµvµ that will be encountered in later calculations will be replaced
by a2 and similarly ∂ia is replaced by viH etc. Notice that the inner product vµv

µ was defined to
be equal to one in Sec. 3.3. However, since contraction in xAct is done using ηab, an extra factor of
a2 needs to be added to the norm. Here a and H are being defined as scalar fields, denoted by the
square bracket. We can then set up rules which replace these scalar fields with constant symbols so
that they are no longer treated as tensors in xAct. For example a Replacea rule was defined that
does this for the scale factor.

In de Sitter space we also had to define the Ricci rotation coefficients as given in Eq. (3.44);
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DefTensor [ c t [ a , −b , −c ] , M, Antisymmetric [{−b , −c } ] , PrintAs −> ”c” ]
AutomaticRules [ ct , MakeRule [{ ct [ a , −b , −c ] , pd[−b ] [ i nv t e t r ad [ a , −c ] ] − pd[−c ] [

i nv t e t r ad [ a , −b ] ] } ] ]
DefTensor [ r r c [−a , −b , −c ] , M, Antisymmetric [{−a , −b } ] , PrintAs −> ”∆” ] ;
AutomaticRules [ r rc , MakeRule [{ r r c [− i , −j , −k ] , 1/2 ( t e t rad [− j , a ] t e t rad [−m, b ] η[− i

, − l ] − t e t rad [− i , a ] t e t rad [− j , b ] η[−m, − l ] + te t rad [−m, a ] t e t rad [− i , b ] η[− j ,
− l ] ) c t [ l ,−a , b ] i nv t e t r ad [m, −k ] } ] ]

and setup the spin-connection as defined in Eq. (3.43);

DefTensor [A[−a , −b , −c ] , M, Antisymmetric [{−a , −b } ] ] (* Spin connect ion per turbat i on *)
DefTensor [ω[−a , −b , −c ] , M, Antisymmetric [{−a , −b } ] ] (*The f u l l sp in connect ion *)
AutomaticRules [ω , MakeRule [{ω[−a , −b , −c ] , r r c [−a , −b , −c ] + ϵ A[−a , −b , −c ] } ] ]

The Riemann and torsion tensors are defined according to the definitions in Eqs. (2.1a) and
(2.1b).

DefTensor [ Ri [ a , b , −c , −d ] , M] ; (*Riemann tenso r *)
ExpandR = With [{ l h s = Ri [ a , b , −e , −f ] , rhs = 2 ( Antisymmetrize [ pd[−e ] [ ω [ a , b , −f

] ] , {−e , −f } ] + Antisymmetrize [ω [ a , −g , −e ] ω [ g , b , −f ] , {−e , −f } ] ) } , MakeRule [{
lhs , rhs } , MetricOn −> All , ContractMetr ics −> True ] ] ;

DefTensor [ Tor [ a , −b , −c ] , M, PrintAs −> ”T” ]
ExpandTor = With [{ l h s = Tor [ a , −b , −c ] , rhs = 2 Ht[−b , d ] Ht[−c , e ] (

Antisymmetrize [ pd[−d ] [ B[ a , −e ] ] , {−d , −e } ] + Antisymmetrize [ω [ a , −f , −d ] B[ f , −e
] , {−d , −e } ] ) } ,

MakeRule [{ lhs , rhs } , ContractMetr ics −> True , MetricOn −> Al l ] ] ;

Here Ht[−c,e] is the full tetrad defined in Eq. (3.40).
We obtain the linearised Riemann tensor by keeping terms to O(ϵ2)

ExpandLR = With [{ l h s = LR[ a , b , −c , −d ] , rhs = Co e f f i c i e n t L i s t [ Ri [ a , b , −c , −d ] / .
ExpandR , ϵ [ [ 1 ] ] + ϵ Co e f f i c i e n t L i s t [ Ri [ a , b , −c , −d ] / . ExpandR , ϵ ] [ [ 2 ] ] + ϵ
Co e f f i c i e n t L i s t [ Ri [ a , b , −c , −d ] / . ExpandR , ϵ ] [ [ 3 ] ] } ,

MakeRule [{ lhs , rhs } , MetricOn −> All , ContractMetr ics −> True ] ] ;

and similarly for the torsion tensor.
We can then setup any PGT Lagrangian using the relevant tensors and index contractions as

seen in Eq. (2.3), and multiplying by b. For example the Lagrangian for ECT in dS is setup as
follows;

detb = as [ ] ˆ 4 (1 − as [ ] d e l t a [ i , −j ] ϵ F[ j , − i ] )
R = ToCanonical [ S c r e enDo l l a r I nd i c e s [ Ht[−a , c ] Ht[−b , d ] LR[ a , b , −c , −d ] / . ExpandLR

] ]
LECT = ToCanonical [ detb R]
LinearECT = Col l e c tTensor s [ C o e f f i c i e n t L i s t [LECT, ϵ ] [ [ 1 ] ] + Co e f f i c i e n t L i s t [LECT, ϵ

] [ [ 2 ] ] + Co e f f i c i e n t L i s t [LECT, ϵ ] [ [ 3 ] ] / . Replacea ]

Notice the use of the Replacea rule so that we can then collect the tensors in the expression.
Linearisation in Minkowski background follows the exact same steps as presented here but was

significantly simpler than the linearisation in de Sitter spacetime. This can clearly be seen in the
increased complexity even when simply obtaining the perturbation of the inverse tetrad field. In
Minkowski, the introduction of the vector vµ was not necessary, no Ricci rotation coefficients needed
to be calculated, as these were known a priori to be equal to zero, and the background tetrad field
was simply δµA.

The next challenge was to obtain the I, D and S operators which together constitute the operator
Ô as defined in Eq. (3.19). The steps for obtaining these operators in a Minkowski background are

15



presented below. In order to do this, an ansatz needed to be used as it was not possible to solve for a
full tensor expression without specifying the form in xAct. The ansatz was obtained by considering
a simple theory, such as ECT, and deriving the operators by hand to deduce the structure of
their general form. Since PGTs all have the same structure but with increasing complexity, it was
expected that these operators will have the same structure which is why the ansatz approach is
appropriate. As a first example, consider the I operator for ECT; the terms which mix the A field
with itself in the Lagrangian, are of the form AabcA

abc and terms with different contractions on the
indices, see Eq. (3.14). Thus the following ansatz was used;

Iabcdef = C1η
afηbeηcd + C10η

aeηbcηdf + C11η
acηbeηdf + C12η

abηceηdf + C13η
adηbcηef

+ C14η
acηbdηef + C15η

abηcdηef + C2η
aeηbfηcd + C3η

afηbdηcd + C4η
adηbfηce

+ C5η
aeηbdηcd + C6η

adηbeηcf + C7η
afηbcηde + C8η

acηbfηde + C9η
abηcfηde.

(3.50)

In xAct this was implemented as follows;

DefTensor [ Io [ a , b , c , d , e , f ] , M] ;
ExpandIo = With [{ l h s = Io [ a , b , c , d , e , f ] , rhs = MakeAnsatz@IndexConfigurations [ η [

a , b ] η [ c , d ] η [ e , f ] ] } , MakeRule [{ lhs , rhs } , ContractMetr ics −> True , MetricOn
−> All , UseSymmetries −> True ] ]

We can then easily solve for the coefficients Ci for the relevant part of the Lagrangian. For
example, by picking the A2 terms from the ECT Lagrangian we can solve as follows;

IocoeefsECT = With [{ l h s = − A[ a , b , c ] A[−b , −c , −a ] + A[ a , b , −a ] A[−b , c , −c ] ,
rhs = A[−a , −b , −c ] Io [ a , b , c , d , e , f ] A[−d , −e , −f ] / . ExpandIo } ,
So lveConstants [ l h s == rhs ] ] [ [ 1 ] ] .

This gives the Ci coefficients up to some degree of freedom. For instance, for ECT we get C7 = −C15.
In this case we can simply set these extra coefficients to zero to obtain the simplest linear combination
that gives the correct operator. After doing this manually we can then define a rule that sets the
operator for the relevant theory;

FinalIoECT = With [{ l h s = IoECT [ a , b , c , d , e , f ] , rhs = − η [ a , f ] η [ b , d ] η [ c , e ]
+ η [ a , c ] η [ b , d ] η [ e , f ]} , MakeRule [{ lhs , rhs } , ContractMetr ics −> On, MetricOn
−> Al l ] ]

In order to obtain D, the Lagrangian in Fourier space needed to be obtained. This was done
using the following rules;

f t v = With [{ l h s = pd [ i ] [ F [ a , b ] ] , rhs = I v [ i ] F [ a , b ]} , MakeRule [{ lhs , rhs } ,
MetricOn −> All , ContractMetr ics −> On ] ]

ftA = With [{ l h s = pd [ i ] [A[ a , b , c ] ] , rhs = I v [ i ] A[ a , b , c ]} , MakeRule [{ lhs , rhs } ,
MetricOn −> All , ContractMetr ics −> On ] ]

Note that v[ i ] refers to the Fourier space wave vector which was denoted by ka in Sec. 3.2.
The relevant terms for the D operator take on the form f∂A thus in Fourier space an ansatz of

linear combinations of terms such as ηabηcdve and different index contractions was used;

AnsatzDECT = With [{ l h s = DECT[ a , b , c , d , e ] , rhs = MakeAnsatz@IndexConfigurations [ η
[ a , b ] η [ c , d ] v [ e ] ] } , MakeRule [{ lhs , rhs } , MetricOn −> All , ContractMetr ics −>
On ] ] ;

The operator S was trickier to obtain as it contains terms such as

∂df
di∂if

c
c (3.51)
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and so the Fourier transform is more complicated to perform. In order to do so efficiently, we used
the fact that adding boundary terms to the Lagrangian does not change the equations of motion.
By noticing that

∂d(f
di∂if

c
c ) = ∂df

di∂if
c
c + fdi∂d∂if

c
c , (3.52)

we can replace the term in Eq. (3.51) by −fdi∂d∂if
c
c in our Lagrangian since the two terms will

result in the same equations of motion. We can then perform the Fourier transform by applying the
ftv and ftA rules defined above. The ansatz used for the S operator is given by a linear combination
of two ansatz of the form vavbηcd and v2ηabηcd.

DefTensor [ S [ a , b , c , d ] , M]
ExpandSAnsatz = With [{ l h s = S [ a , b , c , d ] , rhs = MakeAnsatz@IndexConfigurations [ v [ a ]

v [ b ] η [ c , d ] ] + MakeAnsatz [ IndexConf igurat ions [ vabs ˆ2 η [ a , b ] η [ c , d ] ] ,
ConstantPre f ix −> ”A” ]} , MakeRule [{ lhs , rhs } , ContractMetr ics −> True , MetricOn
−> Al l ] ] ;

The next step is to obtain the a matrices. This was done element by element for the individual
spin-parity components. First the SPO matrices as given by Lin, Hobson, and Lasenby [39] were
defined in the code. As an example, the P (2+) matrix, given in Eq. (3.26), is defined as;

DefTensor [ P2p11[− i , −j , −k , −a , −b , −c ] , M] ;
ExpandP2p11 = With [{ l h s = P2p11[− i , −j , −k , −a , −b , −c ] , rhs = S imp l i f y [

Antisymmetrize [ Antisymmetrize [−2/3 θ[−c , −b ] θ[−k , −j ] Ω[− i , −a ] + θ[− i , −c ] θ[−k
, −a ] Ω[− j , −b ] + θ[− i , −a ] θ[−k , −c ] Ω[− j , −b ] , {−a , −b } ] , {− i , −j } ] ] } ,
MakeRule [{ lhs , rhs } , MetricOn −> All , ContractMetr ics −> On ] ] ;
. . .

P2p = {{P2p11 , P2p12} , {P2p21 , P2p22 }} ;

We can then solve for the relevant a(2+) element using Eq. (3.25a);

DefConstantSymbol [ a2p11ECT ]
P2p [ [ 1 , 1 ] ] [ − i , −j , −k , −a , −b , −c ] IoECT [ a , b , c , d , e , f ] P2p [ [ 1 , 1 ] ] [ −d , −e , −f ,

−l , −m, −n ] − a2p11ECT P2p [ [ 1 , 1 ] ] [ − i , −j , −k , −l , −m, −n ] == 0 / .
ExpandP2p11 / . FinalIoECT / .

Expandθ / . ExpandΩ
SolveConstants [%]

The exact same process was used to obtain the other elements of the a(2+) matrix and subsequently
the other a matrices corresponding to the remaining spin-parity components.

In addition to the massless poles arising from the determinant of the b matrices, the SPOs also
contain singularities of the form k−2n with n being a positive integer. To deal with these poles, it is
convenient to go over to an explicit coordinate system and then take the limit of the null cone [39].
To carry out calculations in a coordinate basis in xAct, the xCoba package is required [73]. For this
reason, pre-existing code as part of the PSALTer package was used from this point onward1.

4 Results and Discussion

4.1 GR, ECT & TEGR in Minkowski Space

The method described in Sec. 3.2 was first applied to ECT, GR and TEGR so as to compare
the results with theories that are well understood and calibrate the code. Starting from GR, the

1The PSALTer package is a code that is currently being developed by the group to perform this particle spectrum
analysis for various gravitational theories. It is not yet published and the dS linearising scheme that will be discussed
in an upcoming section has been added to it to extend upon its functionality.
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Lagrangian we would like to investigate is as defined in Eq. (2.4), multiplied by the coupling constant
−λ on which the unitarity conditions will depend

LGR

b
= −λ(R− T 2). (4.1)

The a matrices which define the operator O as in Eq. (3.22) are given by
0 3ikλ√

2
i
√

3
2kλ

−3ikλ√
2

−2k2λ 0

−i
√

3
2kλ 0 0

 ,
(
0
)
,


0 0 i

√
2kλ

0 0 0

−i
√
2kλ 0 0

 ,


0 0 ikλ −ikλ

0 0 0 0

−ikλ 0 0 0

ikλ 0 0 0

 ,

0 0

0 k2λ

 ,
(
0
)

(4.2)

These correspond to the 0+, 01, 1+, 1−, 2+ and 2− spin-parity sectors respectively. The corresponding
b−1 matrices which then define the propagator O−1 via Eq. (3.29) are

0 0
i
√

2
3

kλ

0 −− 1
2k2λ

√
3

2k2λ

−
i
√

2
3

kλ

√
3

2k2λ
− 3

2k2λ

 ,
(
0
)
,


0 0 i√

2kλ

0 0 0

i√
2kλ

0 0

 ,


0 0 i

2kλ − i
2kλ

0 0 0 0

− i
2kλ 0 0 0

i
2kλ 0 0 0

 ,

0 0

0 1
k2λ

 ,
(
0
)
. (4.3)

Using our analysis we find that GR has no massive modes and two massless eigenvalues{
p2

λ
,
p2

λ

}
, (4.4)

corresponding to two massive modes propagating in the 2+ sector. This is in perfect agreement with
the predictions from the linearised theory of GR in which the number of independent components
of the symmetric polarisation tensor Hµν is reduced to two after imposing gauge constraints. These
independent modes correspond to a spin-2 particle since displacement under gravitational waves is
invariant under rotations by π [74]. The unitarity condition for no tachyons or ghosts is given by
λ > 0. This is in accordance with the Einstein–Hilbert action for which λ = 1/2κ where κ > 0 [35].

The gauge constraints on the source currents for GR, as output by the code can be seen in Fig. 3.
In order to understand the physical meaning of these constraints, we would need to go from the
spin-parity decomposition seen in the output, to position space. Since the main aim of the project
was to extend the analysis to dS spacetime, this was not explicitly done, however for GR in this
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Figure 3: Gauge constraints on the source currents for GR as output by the Mathematica code.

PGT formulation we expect the source constraints to correspond to those arising from the Poincaré
symmetry as given in Eq. (3.28).

In the same order as before, the a matrices for ECT are found to be
−λ − ikλ√

2
−i
√

3
2kλ

ikλ√
2

0 0

i
√

3
2kλ 0 0

 ,
(
−λ
)
,


−λ

2 − λ√
2

− ikλ√
2

λ√
2

0 0

ikλ√
2

0 0

 ,


−λ

2
λ√
2

0 ikλ

λ√
2

0 0 0

0 0 0 0

−ikλ 0 0 0

 ,

 λ
2 − ikλ√

2

ikλ√
2

0

 ,
(
λ
2

)
(4.5)

with corresponding b−1 matrices
0 − i

2
√
2kλ

−
i
√

3
2

2kλ

i
2
√
2kλ

1
8k2λ

√
3

8k2λ

i
√

3
2

2kλ

√
3

8k2λ
3

8k2λ

 ,
(
− 1

λ

)
,


0 −

√
2

λ+k2λ
− i

√
2k

λ+k2λ

−
√
2

λ+k2λ
1

(1+k2)2λ
ik

(1+k2)2λ

i
√
2k

λ+k2λ
− ik

(1+k2)2λ
k2

(1+k2)2λ

 ,


0

√
2

λ+2k2λ
0 2ik

λ+2k2λ√
2

λ+2k2λ
1

(1+2k2)2λ
0 i

√
2k

(1+2k2)2λ

0 0 0 0

− 2ik
λ2k2λ

− i
√
2k

(1+2k2)2λ
0 2k2

(1+2k2)2λ

 ,

 0 − i
√
2

kλ

i
√
2

kλ − 1
k2λ

 ,
(

2
λ

)
. (4.6)

These matrices result in no massive propagating modes and two massless eigenvalues as given in
Eq. (3.33). This implies that ECT and GR have an identical particle spectrum, as expected. The
unitarity condition is λ < 0. Notice that in the pure gravity case of ECT one can solve for the spin
connection from the equations of motion to obtain the Levi–Civita connection and thus torsion
does not play a dynamical role in the theory. Since ECT and GR give the same dynamics when not
coupled to other fields, the particle spectrum should also be identical as is indeed observed [75].

A similar result is expected for TEGR since this theory is also expected to be dynamically
equivalent to GR. Performing the analysis by treating both the tetrad field and the spin connection
as independent fields in the theory (as is done for both GR and ECT) results in the theory having
no massive or massless propagating modes. This is a result of not using a gauge condition which is
necessary for TEGR to be dynamically equivalent to GR. One such gauge is that of Weitzenböck in
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which the spin connection vanishes i.e. Aij
µ ≡ 0 [60]. This gives rise to the Weitzenböck spacetime

in which the curvature of the spin-connection vanishes. As a result, the Lagrangian of TEGR as
in Eq. (2.5) is equal to the Einstein–Hilbert Lagrangian up to a divergence term which does not
influence the dynamics of the theory [35]. The a matrices in this gauge are found to be


0 0 0

0 −2k2λ 0

0 0 0

 ,
(
0
)
,


0 0 0

0 0 0

0 0 0

 ,


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

0 0

0 k2λ

 ,
(
0
)

(4.7)

with corresponding b−1 matrices


0 0 0

0 − 1
2k2λ

0

0 0 0

 ,
(
0
)
,


0 0 0

0 0 0

0 0 0

 ,


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

0 0

0 1
k2λ

 ,
(
0
)
. (4.8)

These matrices give no massive propagating modes and two massless eigenvalues{
2p2

λ
,
p2

λ

}
(4.9)

corresponding to two massless 2+ particles, in accordance with the analysis for GR and ECT. The
unitarity condition for this theory is λ > 0.

Since there are no off-diagonal elements in the b−1 matrices in Eq. (4.8) we can investigate
whether the theory is PCR as discussed in Sec. 3.2. In both the 0+ and the 2+ matrices, the
non-zero terms that go as ∝ k−2 correspond to the s field, i.e. the symmetric part of the f field.
Thus, TEGR is not PCR. This is because the PCR criterion requires the propagator of this s field
to drop off as at least k−4. Since the b−1 matrices for ECT and GR have off-diagonal terms it is not
possible to apply the PCR criterion employed by Lin, Hobson, and Lasenby [39] although we know
a priori that these theories are not PCR.

4.2 Linearised ECT in dS Spacetime

In this section, the general method developed in Sec. 3.3 to linearise a PGT Lagrangian around dS
spacetime is applied to ECT. This simple theory provides an opportunity to calibrate the method
and sheds light on the type of linearised PGT Lagrangians we expect to see for more complex
theories.

The linearised Ricci scalar obtained using the xAct code discussed in Sec. 3.4 for ECT is

R = 12H2 +
AacbA

abc

a2
+

Aab
aA

c
b c

a2
+ 6afa

aH
2 − a2fabfbaH

2 + a2fa
a f

b
bH

2

− 2Aabcf
abHvc

a
− 2Aacbf

abHvc

a
+

2fab∂bA
c

a c

a
− 2∂bA

ab
a

a2
−

2fab∂cA
c

a b

a
.

(4.10)

The only way to get a full guarantee that this is indeed the correct linearised Ricci scalar in de
Sitter is to perform the calculation by hand. However, performing this calculation analytically can
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be very complex so instead some consistency checks can be performed. Firstly, the Ricci scalar to
zeroth order in the perturbations can be read off from Eq. (4.10) as R = 12H2, this is exactly the
value expected from the literature for a dS spacetime [71].

A second consistency check can be performed by analysing the factors of a appearing in Eq. (4.10).
Expanding the definition of the Ricci scalar in terms of the perturbed tetrad and spin-connection
gives

R = (
1

a
δ µ
A + ϵf µ

A )(
1

a
δ ν
B + ϵf ν

B )[∂[µ∆
AB

ν] + ϵ∂[µA
AB

ν] +∆A
E[µ∆

EB
ν]

+ ϵ∆A
E[µA

EB
ν] + ϵAA

E[µ∆
EB

ν] + ϵ2AA
E[µA

EB
ν]].

(4.11)

It is straightforward to analytically obtain an expression for the Ricci rotation coefficients

∆ijµ = aHδmµ(δ
0

j ηim − δ 0
i ηjm). (4.12)

Thus noticing that ∆ ∼ a and ∂∆ ∼ a2 we can then calculate the a-dependence of the terms in
Eq. (4.11). For example 1

af∂∆ ∼ af . Note that we still have the vector vc in Eq. (4.10) which is
hiding a factor of a. We can thus replace this by a vector ṽc such that vc = aṽc where ṽc = (1, 0, 0, 0).
After performing this substitution we find that the factors of a that appear in the linearised Ricci
scalar as obtained using xAct precisely match those as expected from the analytical analysis discussed
above.

The particle spectrum of a theory of gravity should not depend on the scale factor a. This is
because we don’t expect the particle content of a theory of gravity to change with time. Because of
this, we expect each term of the Lagrangian of ECT to have the same scale factor dependence. In
order to achieve this we make use of the principle of reparametrization invariance i.e. diffeomorphism
invariance. Specifically, a physical system should remain invariant under a reparametrization of
the time coordinate [71]. We can thus rescale the tetrad and spin connection as f → f̃ = af and
A → Ã = A

a .
To perform the Fourier transform of the Lagrangian, we can set the coordinate frame in such a

way that ṽc = kc/|k| = k̃c. This is a valid choice of kc due to diffeomorphism invariance. Performing
a usual Fourier transform then gives the Ricci scalar in Fourier space with the re-scaled fields as

R = 12H2 + ÃacbÃ
abc + Ãab

aÃ
c
b c + 6f̃a

aH
2 − f̃abf̃baH

2 + f̃a
a f̃

b
bH

2 − 2Ã c
b cf̃

abHk̃a

+ 4Ã b
a bHk̃a + 2Ã c

b cf̃
a
aHk̃b − 2Ãabcf̃

abHk̃c − 2Ãacbf̃
abHk̃c − 2iÃab

akb
a

+
2iÃ c

a cf̃
abkb

a
−

2iÃ c
a bf̃

abkc
a

,

(4.13)

where we are treating a as constant. Notice that the only factors of a that remain in the expression
are accompanying the wave vector kb. If we replace kb by the wave vector in proper coordinates akb

the scale factor dependence is completely eliminated. Note that this does not affect terms containing
k̃a = ka

|k| =
aka

a|k| .
In order to obtain the final ECT Lagrangian we need to multiply by b, which in terms of the

rescaled fields becomes,
b = a4(1− af i

i ) = a4(1− f̃ i
i ). (4.14)

This will only introduce an over-all factor of a to our expression and gives the final ECT Lagrangian,
linearised around dS spacetime in Fourier space to be,

LECT = a4(12H2 + ÃacbÃ
abc + Ãab

aÃ
c
b c − 6f̃a

aH
2 − f̃abf̃baH

2 − 5f̃a
a f̃

b
bH

2

+ 4Ãab
bHk̃a − 2Ãab

bf̃
c
cHk̃a − 2Ãabcf̃acHk̃b − 2Ãabcf̃abHk̃c − 2ãbbf̃

c
aHk̃c

− 2iÃab
akb − 2iÃabcf̃ackb + 2iÃab

af̃
c
ckb + 2iÃab

bf̃
c

a kc)

(4.15)
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In future work, the particle spectrum of ECT can be analysed by making use of this final form of
the linearised Lagrangian in Eq. (4.15).

4.3 Particle spectrum of scalar field & linearised GR in de Sitter space

In this section, the particle spectra of a free scalar field and linearised GR in dS spacetime are
analysed. These simpler theories are useful to understand the type of behaviour expected for the
full PGT case. The following analysis is also useful to highlight any modifications needed for the
code developed to be able to perform the analysis in this new background.

The simplest field we can consider in dS spacetime is that of a massless scalar field ϕ, whose
Lagrangian is given by

L =
1

2

√
−ggµν∇µϕ∇νϕ, (4.16)

where gµν is the dS metric and g is its determinant. By using the relation between the dS metric
and the Minkowski metric gµν = a2ηµν we can rewrite this as

L =
1

2
a2ηµν∇µϕ∇νϕ (4.17)

For Eq. (4.17) to have the same form of the Lagrangian of a free field in Minkowski space we can
use reparametrisation invariance and make the substitution ϕ → ϕ̃ = ϕ

a . Keeping track of the
derivatives of a and making use of a unit timelike vector on Minkowski space nµ, similar to what is
done in Sec. 3.3, we obtain the Lagrangian

L =
1

2
H2ϕ2a2 −Haϕµ∇µϕ+

1

2
∇µϕ∇µϕ, (4.18)

where contractions are all done using the Minkowski metric. Finally, noticing that adding boundary
terms does not affect the equations of motion we get

L =
1

2
∇aϕ∇aϕ+H2ϕ2, (4.19)

where H = aH. We can now compare this Lagrangian to that of a massive scalar field with mass m

L =
1

2
∇aϕ∇aϕ− 1

2
m2ϕ2. (4.20)

By direct comparison of Eqs. (4.19) and (4.20) we can observe that by moving to a dS background,
in Minkowski spacetime it seems like the scalar field is obtaining an effective tachyonic mass
m2 = −2H2 < 0. Indeed, when running the code with the linearised Lagrangian in Eq. (4.16)
around dS, we find that there is a massive pole with a tachyonic square mass equal to −2H2. This is
always negative since H is real. The code identifies no massless propagating modes. It is important
to note that this does not imply that a massless scalar field gives rise to a tachyonic particle in dS
but rather reflects the fact that the method for performing the spectrum analysis was designed
around the case of perturbing around Minkowski spacetime and that this pole should be identified
with a healthy dS mode function [76].

In a similar way as was done for PGT in Sec. 3.3, we can linearise GR in its metric formulation
whose Lagrangian is given by

LGR = −
√
−g

2κ
(R− 2Λ), (4.21)
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with Λ being the cosmological constant. We do this by introducing a perturbation hµν of the dS
metric. Excluding the details of the calculation, the linearised Lagrangian is found to be

L =
H2habh

ab

κ
−

H2haah
b
b

κ
− 2H2h c

a hbcn
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κ
− H2habh

c
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c
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κ
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2κ
− hab∇c∇chab
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2κ

.

(4.22)

For this linearised Lagrangian with coupling constant α we find the a-matrices to be(
−3αH2 1
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√
3α(2ik − 3H)H

1
2

√
3α(−2ik − 3H)H −α(k2 + 2H2)
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)
,
(
0
)
,
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0
)
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1
2α(k

2 + 2H2)
)
,
(
0
)
. (4.23)

Note that since the fundamental fields in the metric formulation of GR are different from those in
PGT, these a matrices correspond to slightly different SPOs to those presented in Sec. 4 but serve
the exact same function of decomposing the operator O of the theory as a linear combination in
terms of the SPO orthonormal basis. The corresponding inverse b matrices are given by,4(k2+2H2)

3αH4
4ik−6H√
3αH3

−4ik−6H√
3αH3

4
αH2

 ,

0 0

0 0

 ,
(
0
)
,
(
0
)
,
(

2
α(k2+2H2)

)
,
(
0
)
. (4.24)

We find that there are four gauge constraints on the source current which correspond to the
conservation of the stress-energy tensor i.e. ∂bτab = 0. This is exactly what we observe when
linearising in Minkowski spacetime and is a good consistency check to make sure that important
physical laws still hold in de Sitter space. Retaining important symmetries when moving away from
flat Minkowski background is a stringent criterion that a modified theory of gravity should meet.
Studying the gauge constraints when performing this analysis for different PGTs is thus critical in
future works.

The propagator analysis finds that there is one massive propagating spin-parity sector with
m2 = −2H2 which according to the code is classified as a tachyonic massive mode. The residue of
this pole is equal to 2/α. Notice how in the case of GR, the exact same tachyonic mass as that
of the free field appears. This is in accordance with the literature in which the mode functions of
the graviton polarisations and the free field are considered to be the same [77]. The code fails to
identify the massless modes of the theory however, we can still conclude that the spectrum cannot
have more than two massless eigenvalues. Conservation of the stress-energy tensor imposes four
gauge constraints. This removes eight degrees of freedom from the ten symmetries of the symmetric
rank two tensor, leaving two degrees of freedom [78].

The reason behind the failure of the code to identify the massless polarisations is related to the
requirement to move to a coordinate basis in order to calculate the poles arising from the SPOs, as
discussed at the end of Sec. 3.4. For the dS case, rather than taking the limit of the null cone, we
would need to take the limit for the tachyonic one-sheet hyperbola lying outside the light cone as
highlighted in Fig. 4. This is yet to be implemented in the code. Despite this limitation, the above
analysis highlights the potential that the code developed has in analysing the particle spectrum of
theories around a de Sitter spacetime.
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Figure 4: Sketch highlighting a tachyonic one-sheet hyperbola which lies outside the future light
cone. In a dS spacetime, massless poles should be investigated in the limit of this hyperbola rather
than that of the null cone.

5 Conclusion

In this project, the method for analysing the particle spectrum of PGT was studied in detail,
implemented as a general novel Mathematica code and extended to dS spacetime. The main findings
and conclusions are summarised below.

First, a systematic method for analysing the propagator structure of PGT around Minkowski
spacetime was studied and a novel Mathematica code was developed to allow for the implementation
of this method to any general PGT Lagrangian. The particle spectra of GR and ECT were
investigated in detail. The analysis was also applied for the first time for TEGR. It was found
that all three theories contain two massless propagating modes, corresponding to a spin-2 particle
as expected. The method confirmed that for TEGR to be dynamically equivalent to GR, the
Weitzenböck gauge is necessary as otherwise the theory contains no propagating modes.

Given the relevance of a dS cosmology, especially in the context of inflation and late-times
acceleration, the propagator analysis was then extended to a dS background. In this non-trivial
background, linearising a PGT Lagrangian proved to be significantly more complex than doing so
around a Minkowski background. The mathematical details of this linearisation process, alongside
a Mathematica implementation were presented in this work. It was seen that for ECT, the scale
factor dependence of the Lagrangian can be eliminated by utilising the concept of reparametrisation
invariance. This ensures that the particle spectrum of the theory is not time dependant.

The particle spectra of a free scalar field, and linearised GR were analysed around dS spacetime
to provide an indication of the expected results for PGT. It was found that using the standard
particle analysis developed for Minkowski space, switching to a dS background had the same effect
as introducing a time-dependant tachyonic massive mode to the theory which should be interpreted
as a healthy dS mode function.

The main focus after this project should be to modify the code developed to allow for a full
analysis of the particle spectra of PGT in de Sitter spacetime. Specifically, the code should be able
to distinguish between the effective tachyonic mass that a theory picks up from the dS background,
and an actual tachyon that would spoil the stability of the theory. Furthermore, the inability to
calculate the number of massless polarisations should be further investigated and corrected for so
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that the full particle spectrum can be analysed. ECT, GR and TEGR in the PGT formalism should
then be used as calibration cases as was done for the Minkowski analysis.

Since the dS linearising method developed is a general one, this analysis can be easily extended
to other PGTs, so that their particle spectra can be analysed using the code developed. In particular,
future work should focus on investigating the PCR theories free of ghosts and tachyons found by Lin,
Hobson, and Lasenby [51] around a dS spacetime. The particle analysis can also be applied to other
modified gravity theories to ensure that no new degrees of freedom are introduced when transitioning
from a Minkowski to a dS background, a phenomenon called strong-coupling [79]. Scalar-tensor
theories can also be studied to ensure that spontaneous scalarisation does not occur when moving
to a dS background, i.e. that the theories do not produce tachyonic instabilities because of this
background [80]. This will allow for the identification of theories which have a healthy particle
spectrum in dS so that their potential at producing a theory of quantum gravity, or solving some
cosmological tensions can be further investigated.
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A Deriving the a matrices

In order to solve for the a coefficient matrices which then define the operator Ô via Eq. (3.22)
we used Eq. (3.23). However, in their paper Lin, Hobson, and Lasenby [39] suppress the explicit
Local Lorentz indices which are crucial for understanding which indices are contracted. For this
reason, Eq. (3.23) was derived again from first principles starting from Eq. (3.22) and using the
orthonormality properties of the SPOs. The property which is of particular relevance for this
derivation is the orthogonality one;

Pik(J
P ) µ́

ά Plj(J
′P ′

)
µ́β́

= δJJ ′δPP ′δklPij(J
P )άβ́. (A.1)

Explicitly including Lorentz indices in Eq. (3.22) gives

Ôάβ́ =
∑

i,j,J,P

aijP̂ij(J
P )άβ́. (A.2)

From here onward we are dropping the Ô notation and noting that the ea vectors as seen
in Eq. (3.17) are responsible for picking out the right part of the Ô operator as highlighted in
Eqs. (3.25a) - (3.25d).

Pre- and post- multiplying Eq. (A.2) by diagonal SPOs

Pii(J
P )µ́ν́Oάβ́Pjj(J

P )γ́ρ́ =
∑

k,l,J ′,P ′

akl(J
′P ′

)Pii(J
P )µ́ν́Pkl(J

′P ′
)άβ́Pjj(J

P )γ́ρ́. (A.3)

Because of δJJ ′δPP ′ in Eq.(A.1) the only terms that remain in the sum over J ′ and P ′ in Eq. (A.3)
are those with JP = J ′P ′

so we can simplify this to

Pii(J
P )µ́ν́Oάβ́Pjj(J

P )γ́ρ́ =
∑
k,l

akl(J
P )Pii(J

P )µ́ν́Pkl(J
P )άβ́Pjj(J

P )γ́ρ́. (A.4)
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Next we focus on Pkl(J
P )άβ́Pjj(J

P )γ́ρ́. In order to apply Eq. (A.1), the inner Lorentz index must

match and so we set γ́ = β́ to obtain

Pkl(J
P )άβ́Pjj(J

P )β́ρ́ = δljPkj(J
P )άρ́. (A.5)

Because of δlj , the summation over l in Eq. (A.4) sets l = j.
Next we focus on Pii(J

P )µ́ν́Pkj(J
P )άρ́. Using a similar argument we require the inner indices to

match and so ν́ = ά and
Pii(J

P )µ́άPkj(J
P )άρ́ = δikPij(J

P )µ́ρ́. (A.6)

The summation over k then sets k = i to give the final expression

Pii(J
P )µ́άOάβ́Pjj(J

P )β́ρ́ = aijPij(J
P )µ́ρ́ . (A.7)
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Studi di Salerno, 2016.

29

https://doi.org/10.1103/PhysRevD.21.867
https://doi.org/10.1103/PhysRevD.21.3269
https://doi.org/10.1103/PhysRevD.21.3269
https://doi.org/10.1103/PhysRevD.18.3535
https://doi.org/10.1103/PhysRevD.101.064038
https://doi.org/10.1088/0264-9381/24/18/r01
https://doi.org/10.1088/0264-9381/24/18/r01
https://arxiv.org/abs/gr-qc/9707062
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.31349/revmexfise.17.73
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1063/1.1703702
http://iopscience.iop.org/article/10.1088/1361-6633/ac9cef
http://iopscience.iop.org/article/10.1088/1361-6633/ac9cef
https://arxiv.org/abs/gr-qc/0606062
https://doi.org/10.1088/0264-9381/32/5/055012
https://doi.org/10.1088/0264-9381/32/5/055012
https://doi.org/10.1088/1361-6382/ab2e1f
https://doi.org/10.1088/1361-6382/ab2e1f


[65] E. Noether. “Invariant variation problems”. In: Transport Theory and Statistical Physics 1.3
(Jan. 1971), pp. 186–207. doi: 10.1080/00411457108231446.

[66] P. van Nieuwenhuizen. “On ghost-free tensor Lagrangians and linearized gravitation”. In:
Nuclear Physics B 60 (1973), pp. 478–492. issn: 0550-3213. doi: https://doi.org/10.1016/
0550-3213(73)90194-6.

[67] R. J. Rivers. “Lagrangian theory for neutral massive spin-2 fields”. In: Il Nuovo Cimento
(1955-1965) 34 (1964), pp. 386–403.

[68] E. H. Moore. “On the reciprocal of the general algebraic matrix”. In: Bull. Am. Math. Soc. 26
(1920), pp. 394–395.

[69] A. Bjerhammar. Application of Calculus of Matrices to Method of Least Squares: With Special
Reference to Geodetic Calculations. Elanders boktr., 1951.

[70] R. Penrose. “A generalized inverse for matrices”. In:Mathematical Proceedings of the Cambridge
Philosophical Society 51.3 (1955), pp. 406–413. doi: 10.1017/S0305004100030401.

[71] S. Carroll. Spacetime and Geometry: An Introduction to General Relativity. San Francisco:
Benjamin Cummings, 2004. isbn: 0805387323.

[72] J. M. Martin-Garcia. xAct: Efficient tensor computer algebra for the Wolfram Language. url:
http://www.xact.es/.

[73] J. M. Martin-Garcia and D. Yllanes. xCoba. Feb. 2020. url: http://xact.es/xCoba/.

[74] R. M. Wald. General relativity. Chicago, IL: Chicago Univ. Press, 1984.

[75] G. K. Karananas et al. “Matter matters in Einstein-Cartan gravity”. In: Phys. Rev. D 104 (6
Sept. 2021), p. 064036. doi: 10.1103/PhysRevD.104.064036.

[76] R. Wald. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics.
Chicago Lectures in Physics. Chicago, Illinois: University of Chicago Press, 1994. isbn:
9780226870274.

[77] J. Bonifacio et al. The graviton four-point function in de Sitter space. 2022. arXiv: 2212.07370
[hep-th].

[78] M. Henneaux and C. Teitelboim. Quantization of Gauge Systems. eng. Princeton, New Jersey,
1992. isbn: 9780691087757.

[79] H.-J. Yo and J. M. Nester. “Hamiltonian Analysis of Poincaré Gauge Theory: Higher Spin
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