# # epytext.py: epydoc formatted docstring parsing # Edward Loper # # Created [04/10/01 12:00 AM] # $Id: epytext.py 1210 2006-04-10 13:25:50Z edloper $ # """ Parser for epytext strings. Epytext is a lightweight markup whose primary intended application is Python documentation strings. This parser converts Epytext strings to a XML/DOM representation. Epytext strings can contain the following X{structural blocks}: - X{epytext}: The top-level element of the DOM tree. - X{para}: A paragraph of text. Paragraphs contain no newlines, and all spaces are soft. - X{section}: A section or subsection. - X{field}: A tagged field. These fields provide information about specific aspects of a Python object, such as the description of a function's parameter, or the author of a module. - X{literalblock}: A block of literal text. This text should be displayed as it would be displayed in plaintext. The parser removes the appropriate amount of leading whitespace from each line in the literal block. - X{doctestblock}: A block containing sample python code, formatted according to the specifications of the C{doctest} module. - X{ulist}: An unordered list. - X{olist}: An ordered list. - X{li}: A list item. This tag is used both for unordered list items and for ordered list items. Additionally, the following X{inline regions} may be used within C{para} blocks: - X{code}: Source code and identifiers. - X{math}: Mathematical expressions. - X{index}: A term which should be included in an index, if one is generated. - X{italic}: Italicized text. - X{bold}: Bold-faced text. - X{uri}: A Universal Resource Indicator (URI) or Universal Resource Locator (URL) - X{link}: A Python identifier which should be hyperlinked to the named object's documentation, when possible. The returned DOM tree will conform to the the following Document Type Description:: @var SYMBOLS: A list of the of escape symbols that are supported by epydoc. Currently the following symbols are supported: <<>> """ # Note: the symbol list is appended to the docstring automatically, # below. __docformat__ = 'epytext en' # Code organization.. # 1. parse() # 2. tokenize() # 3. colorize() # 4. helpers # 5. testing import re, string, types, sys, os.path from xml.dom.minidom import Document, Text import xml.dom.minidom from epydoc.markup import * from epydoc.util import wordwrap, plaintext_to_html, plaintext_to_latex from epydoc.docwriter.html_colorize import colorize_doctestblock ################################################## ## Constants ################################################## # The possible heading underline characters, listed in order of # heading depth. _HEADING_CHARS = "=-~" # Escape codes. These should be needed very rarely. _ESCAPES = {'lb':'{', 'rb': '}'} # Symbols. These can be generated via S{...} escapes. SYMBOLS = [ # Arrows '<-', '->', '^', 'v', # Greek letters 'alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta', 'eta', 'theta', 'iota', 'kappa', 'lambda', 'mu', 'nu', 'xi', 'omicron', 'pi', 'rho', 'sigma', 'tau', 'upsilon', 'phi', 'chi', 'psi', 'omega', 'Alpha', 'Beta', 'Gamma', 'Delta', 'Epsilon', 'Zeta', 'Eta', 'Theta', 'Iota', 'Kappa', 'Lambda', 'Mu', 'Nu', 'Xi', 'Omicron', 'Pi', 'Rho', 'Sigma', 'Tau', 'Upsilon', 'Phi', 'Chi', 'Psi', 'Omega', # HTML character entities 'larr', 'rarr', 'uarr', 'darr', 'harr', 'crarr', 'lArr', 'rArr', 'uArr', 'dArr', 'hArr', 'copy', 'times', 'forall', 'exist', 'part', 'empty', 'isin', 'notin', 'ni', 'prod', 'sum', 'prop', 'infin', 'ang', 'and', 'or', 'cap', 'cup', 'int', 'there4', 'sim', 'cong', 'asymp', 'ne', 'equiv', 'le', 'ge', 'sub', 'sup', 'nsub', 'sube', 'supe', 'oplus', 'otimes', 'perp', # Alternate (long) names 'infinity', 'integral', 'product', '>=', '<=', ] # Convert to a dictionary, for quick lookup _SYMBOLS = {} for symbol in SYMBOLS: _SYMBOLS[symbol] = 1 # Add symbols to the docstring. symblist = ' ' symblist += ';\n '.join([' - C{E{S}{%s}}=S{%s}' % (symbol, symbol) for symbol in SYMBOLS]) __doc__ = __doc__.replace('<<>>', symblist) del symbol, symblist # Tags for colorizing text. _COLORIZING_TAGS = { 'C': 'code', 'M': 'math', 'X': 'indexed', 'I': 'italic', 'B': 'bold', 'U': 'uri', 'L': 'link', # A Python identifier that should be linked to 'E': 'escape', # escapes characters or creates symbols 'S': 'symbol', 'G': 'graph', } # Which tags can use "link syntax" (e.g., U{Python})? _LINK_COLORIZING_TAGS = ['link', 'uri'] ################################################## ## Structuring (Top Level) ################################################## def parse(str, errors = None): """ Return a DOM tree encoding the contents of an epytext string. Any errors generated during parsing will be stored in C{errors}. @param str: The epytext string to parse. @type str: C{string} @param errors: A list where any errors generated during parsing will be stored. If no list is specified, then fatal errors will generate exceptions, and non-fatal errors will be ignored. @type errors: C{list} of L{ParseError} @return: a DOM tree encoding the contents of an epytext string. @rtype: L{xml.dom.minidom.Document} @raise ParseError: If C{errors} is C{None} and an error is encountered while parsing. """ # Initialize errors list. if errors == None: errors = [] raise_on_error = 1 else: raise_on_error = 0 # Preprocess the string. str = re.sub('\015\012', '\012', str) str = string.expandtabs(str) # Tokenize the input string. tokens = _tokenize(str, errors) # Have we encountered a field yet? encountered_field = 0 # Create an XML document to hold the epytext. doc = Document() # Maintain two parallel stacks: one contains DOM elements, and # gives the ancestors of the current block. The other contains # indentation values, and gives the indentation of the # corresponding DOM elements. An indentation of "None" reflects # an unknown indentation. However, the indentation must be # greater than, or greater than or equal to, the indentation of # the prior element (depending on what type of DOM element it # corresponds to). No 2 consecutive indent_stack values will be # ever be "None." Use initial dummy elements in the stack, so we # don't have to worry about bounds checking. stack = [None, doc.createElement('epytext')] indent_stack = [-1, None] for token in tokens: # Uncomment this for debugging: #print ('%s: %s\n%s: %s\n' % # (''.join(['%-11s' % (t and t.tagName) for t in stack]), # token.tag, ''.join(['%-11s' % i for i in indent_stack]), # token.indent)) # Pop any completed blocks off the stack. _pop_completed_blocks(token, stack, indent_stack) # If Token has type PARA, colorize and add the new paragraph if token.tag == Token.PARA: _add_para(doc, token, stack, indent_stack, errors) # If Token has type HEADING, add the new section elif token.tag == Token.HEADING: _add_section(doc, token, stack, indent_stack, errors) # If Token has type LBLOCK, add the new literal block elif token.tag == Token.LBLOCK: stack[-1].appendChild(token.to_dom(doc)) # If Token has type DTBLOCK, add the new doctest block elif token.tag == Token.DTBLOCK: stack[-1].appendChild(token.to_dom(doc)) # If Token has type BULLET, add the new list/list item/field elif token.tag == Token.BULLET: _add_list(doc, token, stack, indent_stack, errors) else: assert 0, 'Unknown token type: '+token.tag # Check if the DOM element we just added was a field.. if stack[-1].tagName == 'field': encountered_field = 1 elif encountered_field == 1: if len(stack) <= 3: estr = ("Fields must be the final elements in an "+ "epytext string.") errors.append(StructuringError(estr, token.startline)) # If there was an error, then signal it! if len([e for e in errors if e.is_fatal()]) > 0: if raise_on_error: raise errors[0] else: return None # Return the top-level epytext DOM element. doc.appendChild(stack[1]) return doc def _pop_completed_blocks(token, stack, indent_stack): """ Pop any completed blocks off the stack. This includes any blocks that we have dedented past, as well as any list item blocks that we've dedented to. The top element on the stack should only be a list if we're about to start a new list item (i.e., if the next token is a bullet). """ indent = token.indent if indent != None: while (len(stack) > 2): pop = 0 # Dedent past a block if indent_stack[-1]!=None and indent len(stack): estr = "Wrong underline character for heading." errors.append(StructuringError(estr, heading_token.startline)) # Pop the appropriate number of headings so we're at the # correct level. stack[heading_token.level+2:] = [] indent_stack[heading_token.level+2:] = [] # Colorize the heading head = _colorize(doc, heading_token, errors, 'heading') # Add the section's and heading's DOM elements. sec = doc.createElement("section") stack[-1].appendChild(sec) stack.append(sec) sec.appendChild(head) indent_stack.append(None) def _add_list(doc, bullet_token, stack, indent_stack, errors): """ Add a new list item or field to the DOM tree, with the given bullet or field tag. When necessary, create the associated list. """ # Determine what type of bullet it is. if bullet_token.contents[-1] == '-': list_type = 'ulist' elif bullet_token.contents[-1] == '.': list_type = 'olist' elif bullet_token.contents[-1] == ':': list_type = 'fieldlist' else: raise AssertionError('Bad Bullet: %r' % bullet_token.contents) # Is this a new list? newlist = 0 if stack[-1].tagName != list_type: newlist = 1 elif list_type == 'olist' and stack[-1].tagName == 'olist': old_listitem = stack[-1].childNodes[-1] old_bullet = old_listitem.getAttribute("bullet").split('.')[:-1] new_bullet = bullet_token.contents.split('.')[:-1] if (new_bullet[:-1] != old_bullet[:-1] or int(new_bullet[-1]) != int(old_bullet[-1])+1): newlist = 1 # Create the new list. if newlist: if stack[-1].tagName is 'fieldlist': # The new list item is not a field list item (since this # is a new list); but it's indented the same as the field # list. This either means that they forgot to indent the # list, or they are trying to put something after the # field list. The first one seems more likely, so we'll # just warn about that (to avoid confusion). estr = "Lists must be indented." errors.append(StructuringError(estr, bullet_token.startline)) if stack[-1].tagName in ('ulist', 'olist', 'fieldlist'): stack.pop() indent_stack.pop() if (list_type != 'fieldlist' and indent_stack[-1] is not None and bullet_token.indent == indent_stack[-1]): # Ignore this error if there's text on the same line as # the comment-opening quote -- epydoc can't reliably # determine the indentation for that line. if bullet_token.startline != 1 or bullet_token.indent != 0: estr = "Lists must be indented." errors.append(StructuringError(estr, bullet_token.startline)) if list_type == 'fieldlist': # Fieldlist should be at the top-level. for tok in stack[2:]: if tok.tagName != "section": estr = "Fields must be at the top level." errors.append( StructuringError(estr, bullet_token.startline)) break stack[2:] = [] indent_stack[2:] = [] # Add the new list. lst = doc.createElement(list_type) stack[-1].appendChild(lst) stack.append(lst) indent_stack.append(bullet_token.indent) if list_type == 'olist': start = bullet_token.contents.split('.')[:-1] if start != '1': lst.setAttribute("start", start[-1]) # Fields are treated somewhat specially: A "fieldlist" # node is created to make the parsing simpler, but fields # are adjoined directly into the "epytext" node, not into # the "fieldlist" node. if list_type == 'fieldlist': li = doc.createElement("field") token_words = bullet_token.contents[1:-1].split(None, 1) tag_elt = doc.createElement("tag") tag_elt.appendChild(doc.createTextNode(token_words[0])) li.appendChild(tag_elt) if len(token_words) > 1: arg_elt = doc.createElement("arg") arg_elt.appendChild(doc.createTextNode(token_words[1])) li.appendChild(arg_elt) else: li = doc.createElement("li") if list_type == 'olist': li.setAttribute("bullet", bullet_token.contents) # Add the bullet. stack[-1].appendChild(li) stack.append(li) indent_stack.append(None) ################################################## ## Tokenization ################################################## class Token: """ C{Token}s are an intermediate data structure used while constructing the structuring DOM tree for a formatted docstring. There are five types of C{Token}: - Paragraphs - Literal blocks - Doctest blocks - Headings - Bullets The text contained in each C{Token} is stored in the C{contents} variable. The string in this variable has been normalized. For paragraphs, this means that it has been converted into a single line of text, with newline/indentation replaced by single spaces. For literal blocks and doctest blocks, this means that the appropriate amount of leading whitespace has been removed from each line. Each C{Token} has an indentation level associated with it, stored in the C{indent} variable. This indentation level is used by the structuring procedure to assemble hierarchical blocks. @type tag: C{string} @ivar tag: This C{Token}'s type. Possible values are C{Token.PARA} (paragraph), C{Token.LBLOCK} (literal block), C{Token.DTBLOCK} (doctest block), C{Token.HEADINGC}, and C{Token.BULLETC}. @type startline: C{int} @ivar startline: The line on which this C{Token} begins. This line number is only used for issuing errors. @type contents: C{string} @ivar contents: The normalized text contained in this C{Token}. @type indent: C{int} or C{None} @ivar indent: The indentation level of this C{Token} (in number of leading spaces). A value of C{None} indicates an unknown indentation; this is used for list items and fields that begin with one-line paragraphs. @type level: C{int} or C{None} @ivar level: The heading-level of this C{Token} if it is a heading; C{None}, otherwise. Valid heading levels are 0, 1, and 2. @type PARA: C{string} @cvar PARA: The C{tag} value for paragraph C{Token}s. @type LBLOCK: C{string} @cvar LBLOCK: The C{tag} value for literal C{Token}s. @type DTBLOCK: C{string} @cvar DTBLOCK: The C{tag} value for doctest C{Token}s. @type HEADING: C{string} @cvar HEADING: The C{tag} value for heading C{Token}s. @type BULLET: C{string} @cvar BULLET: The C{tag} value for bullet C{Token}s. This C{tag} value is also used for field tag C{Token}s, since fields function syntactically the same as list items. """ # The possible token types. PARA = "para" LBLOCK = "literalblock" DTBLOCK = "doctestblock" HEADING = "heading" BULLET = "bullet" def __init__(self, tag, startline, contents, indent, level=None): """ Create a new C{Token}. @param tag: The type of the new C{Token}. @type tag: C{string} @param startline: The line on which the new C{Token} begins. @type startline: C{int} @param contents: The normalized contents of the new C{Token}. @type contents: C{string} @param indent: The indentation of the new C{Token} (in number of leading spaces). A value of C{None} indicates an unknown indentation. @type indent: C{int} or C{None} @param level: The heading-level of this C{Token} if it is a heading; C{None}, otherwise. @type level: C{int} or C{None} """ self.tag = tag self.startline = startline self.contents = contents self.indent = indent self.level = level def __repr__(self): """ @rtype: C{string} @return: the formal representation of this C{Token}. C{Token}s have formal representaitons of the form:: """ return '' % (self.tag, self.startline) def to_dom(self, doc): """ @return: a DOM representation of this C{Token}. @rtype: L{xml.dom.minidom.Element} """ e = doc.createElement(self.tag) e.appendChild(doc.createTextNode(self.contents)) return e # Construct regular expressions for recognizing bullets. These are # global so they don't have to be reconstructed each time we tokenize # a docstring. _ULIST_BULLET = '[-]( +|$)' _OLIST_BULLET = '(\d+[.])+( +|$)' _FIELD_BULLET = '@\w+( [^{}:\n]+)?:( +|$)' _BULLET_RE = re.compile(_ULIST_BULLET + '|' + _OLIST_BULLET + '|' + _FIELD_BULLET) _LIST_BULLET_RE = re.compile(_ULIST_BULLET + '|' + _OLIST_BULLET) _FIELD_BULLET_RE = re.compile(_FIELD_BULLET) del _ULIST_BULLET, _OLIST_BULLET, _FIELD_BULLET def _tokenize_doctest(lines, start, block_indent, tokens, errors): """ Construct a L{Token} containing the doctest block starting at C{lines[start]}, and append it to C{tokens}. C{block_indent} should be the indentation of the doctest block. Any errors generated while tokenizing the doctest block will be appended to C{errors}. @param lines: The list of lines to be tokenized @param start: The index into C{lines} of the first line of the doctest block to be tokenized. @param block_indent: The indentation of C{lines[start]}. This is the indentation of the doctest block. @param errors: A list where any errors generated during parsing will be stored. If no list is specified, then errors will generate exceptions. @return: The line number of the first line following the doctest block. @type lines: C{list} of C{string} @type start: C{int} @type block_indent: C{int} @type tokens: C{list} of L{Token} @type errors: C{list} of L{ParseError} @rtype: C{int} """ # If they dedent past block_indent, keep track of the minimum # indentation. This is used when removing leading indentation # from the lines of the doctest block. min_indent = block_indent linenum = start + 1 while linenum < len(lines): # Find the indentation of this line. line = lines[linenum] indent = len(line) - len(line.lstrip()) # A blank line ends doctest block. if indent == len(line): break # A Dedent past block_indent is an error. if indent < block_indent: min_indent = min(min_indent, indent) estr = 'Improper doctest block indentation.' errors.append(TokenizationError(estr, linenum)) # Go on to the next line. linenum += 1 # Add the token, and return the linenum after the token ends. contents = [line[min_indent:] for line in lines[start:linenum]] contents = '\n'.join(contents) tokens.append(Token(Token.DTBLOCK, start, contents, block_indent)) return linenum def _tokenize_literal(lines, start, block_indent, tokens, errors): """ Construct a L{Token} containing the literal block starting at C{lines[start]}, and append it to C{tokens}. C{block_indent} should be the indentation of the literal block. Any errors generated while tokenizing the literal block will be appended to C{errors}. @param lines: The list of lines to be tokenized @param start: The index into C{lines} of the first line of the literal block to be tokenized. @param block_indent: The indentation of C{lines[start]}. This is the indentation of the literal block. @param errors: A list of the errors generated by parsing. Any new errors generated while will tokenizing this paragraph will be appended to this list. @return: The line number of the first line following the literal block. @type lines: C{list} of C{string} @type start: C{int} @type block_indent: C{int} @type tokens: C{list} of L{Token} @type errors: C{list} of L{ParseError} @rtype: C{int} """ linenum = start + 1 while linenum < len(lines): # Find the indentation of this line. line = lines[linenum] indent = len(line) - len(line.lstrip()) # A Dedent to block_indent ends the literal block. # (Ignore blank likes, though) if len(line) != indent and indent <= block_indent: break # Go on to the next line. linenum += 1 # Add the token, and return the linenum after the token ends. contents = [line[block_indent+1:] for line in lines[start:linenum]] contents = '\n'.join(contents) contents = re.sub('(\A[ \n]*\n)|(\n[ \n]*\Z)', '', contents) tokens.append(Token(Token.LBLOCK, start, contents, block_indent)) return linenum def _tokenize_listart(lines, start, bullet_indent, tokens, errors): """ Construct L{Token}s for the bullet and the first paragraph of the list item (or field) starting at C{lines[start]}, and append them to C{tokens}. C{bullet_indent} should be the indentation of the list item. Any errors generated while tokenizing will be appended to C{errors}. @param lines: The list of lines to be tokenized @param start: The index into C{lines} of the first line of the list item to be tokenized. @param bullet_indent: The indentation of C{lines[start]}. This is the indentation of the list item. @param errors: A list of the errors generated by parsing. Any new errors generated while will tokenizing this paragraph will be appended to this list. @return: The line number of the first line following the list item's first paragraph. @type lines: C{list} of C{string} @type start: C{int} @type bullet_indent: C{int} @type tokens: C{list} of L{Token} @type errors: C{list} of L{ParseError} @rtype: C{int} """ linenum = start + 1 para_indent = None doublecolon = lines[start].rstrip()[-2:] == '::' # Get the contents of the bullet. para_start = _BULLET_RE.match(lines[start], bullet_indent).end() bcontents = lines[start][bullet_indent:para_start].strip() while linenum < len(lines): # Find the indentation of this line. line = lines[linenum] indent = len(line) - len(line.lstrip()) # "::" markers end paragraphs. if doublecolon: break if line.rstrip()[-2:] == '::': doublecolon = 1 # A blank line ends the token if indent == len(line): break # Dedenting past bullet_indent ends the list item. if indent < bullet_indent: break # A line beginning with a bullet ends the token. if _BULLET_RE.match(line, indent): break # If this is the second line, set the paragraph indentation, or # end the token, as appropriate. if para_indent == None: para_indent = indent # A change in indentation ends the token if indent != para_indent: break # Go on to the next line. linenum += 1 # Add the bullet token. tokens.append(Token(Token.BULLET, start, bcontents, bullet_indent)) # Add the paragraph token. pcontents = ([lines[start][para_start:].strip()] + [line.strip() for line in lines[start+1:linenum]]) pcontents = ' '.join(pcontents).strip() if pcontents: tokens.append(Token(Token.PARA, start, pcontents, para_indent)) # Return the linenum after the paragraph token ends. return linenum def _tokenize_para(lines, start, para_indent, tokens, errors): """ Construct a L{Token} containing the paragraph starting at C{lines[start]}, and append it to C{tokens}. C{para_indent} should be the indentation of the paragraph . Any errors generated while tokenizing the paragraph will be appended to C{errors}. @param lines: The list of lines to be tokenized @param start: The index into C{lines} of the first line of the paragraph to be tokenized. @param para_indent: The indentation of C{lines[start]}. This is the indentation of the paragraph. @param errors: A list of the errors generated by parsing. Any new errors generated while will tokenizing this paragraph will be appended to this list. @return: The line number of the first line following the paragraph. @type lines: C{list} of C{string} @type start: C{int} @type para_indent: C{int} @type tokens: C{list} of L{Token} @type errors: C{list} of L{ParseError} @rtype: C{int} """ linenum = start + 1 doublecolon = 0 while linenum < len(lines): # Find the indentation of this line. line = lines[linenum] indent = len(line) - len(line.lstrip()) # "::" markers end paragraphs. if doublecolon: break if line.rstrip()[-2:] == '::': doublecolon = 1 # Blank lines end paragraphs if indent == len(line): break # Indentation changes end paragraphs if indent != para_indent: break # List bullets end paragraphs if _BULLET_RE.match(line, indent): break # Check for mal-formatted field items. if line[indent] == '@': estr = "Possible mal-formatted field item." errors.append(TokenizationError(estr, linenum, is_fatal=0)) # Go on to the next line. linenum += 1 contents = [line.strip() for line in lines[start:linenum]] # Does this token look like a heading? if ((len(contents) < 2) or (contents[1][0] not in _HEADING_CHARS) or (abs(len(contents[0])-len(contents[1])) > 5)): looks_like_heading = 0 else: looks_like_heading = 1 for char in contents[1]: if char != contents[1][0]: looks_like_heading = 0 break if looks_like_heading: if len(contents[0]) != len(contents[1]): estr = ("Possible heading typo: the number of "+ "underline characters must match the "+ "number of heading characters.") errors.append(TokenizationError(estr, start, is_fatal=0)) else: level = _HEADING_CHARS.index(contents[1][0]) tokens.append(Token(Token.HEADING, start, contents[0], para_indent, level)) return start+2 # Add the paragraph token, and return the linenum after it ends. contents = ' '.join(contents) tokens.append(Token(Token.PARA, start, contents, para_indent)) return linenum def _tokenize(str, errors): """ Split a given formatted docstring into an ordered list of C{Token}s, according to the epytext markup rules. @param str: The epytext string @type str: C{string} @param errors: A list where any errors generated during parsing will be stored. If no list is specified, then errors will generate exceptions. @type errors: C{list} of L{ParseError} @return: a list of the C{Token}s that make up the given string. @rtype: C{list} of L{Token} """ tokens = [] lines = str.split('\n') # Scan through the lines, determining what @type of token we're # dealing with, and tokenizing it, as appropriate. linenum = 0 while linenum < len(lines): # Get the current line and its indentation. line = lines[linenum] indent = len(line)-len(line.lstrip()) if indent == len(line): # Ignore blank lines. linenum += 1 continue elif line[indent:indent+4] == '>>> ': # blocks starting with ">>> " are doctest block tokens. linenum = _tokenize_doctest(lines, linenum, indent, tokens, errors) elif _BULLET_RE.match(line, indent): # blocks starting with a bullet are LI start tokens. linenum = _tokenize_listart(lines, linenum, indent, tokens, errors) if tokens[-1].indent != None: indent = tokens[-1].indent else: # Check for mal-formatted field items. if line[indent] == '@': estr = "Possible mal-formatted field item." errors.append(TokenizationError(estr, linenum, is_fatal=0)) # anything else is either a paragraph or a heading. linenum = _tokenize_para(lines, linenum, indent, tokens, errors) # Paragraph tokens ending in '::' initiate literal blocks. if (tokens[-1].tag == Token.PARA and tokens[-1].contents[-2:] == '::'): tokens[-1].contents = tokens[-1].contents[:-1] linenum = _tokenize_literal(lines, linenum, indent, tokens, errors) return tokens ################################################## ## Inline markup ("colorizing") ################################################## # Assorted regular expressions used for colorizing. _BRACE_RE = re.compile('{|}') _TARGET_RE = re.compile('^(.*?)\s*<(?:URI:|URL:)?([^<>]+)>$') def _colorize(doc, token, errors, tagName='para'): """ Given a string containing the contents of a paragraph, produce a DOM C{Element} encoding that paragraph. Colorized regions are represented using DOM C{Element}s, and text is represented using DOM C{Text}s. @param errors: A list of errors. Any newly generated errors will be appended to this list. @type errors: C{list} of C{string} @param tagName: The element tag for the DOM C{Element} that should be generated. @type tagName: C{string} @return: a DOM C{Element} encoding the given paragraph. @returntype: C{Element} """ str = token.contents linenum = 0 # Maintain a stack of DOM elements, containing the ancestors of # the text currently being analyzed. New elements are pushed when # "{" is encountered, and old elements are popped when "}" is # encountered. stack = [doc.createElement(tagName)] # This is just used to make error-reporting friendlier. It's a # stack parallel to "stack" containing the index of each element's # open brace. openbrace_stack = [0] # Process the string, scanning for '{' and '}'s. start is the # index of the first unprocessed character. Each time through the # loop, we process the text from the first unprocessed character # to the next open or close brace. start = 0 while 1: match = _BRACE_RE.search(str, start) if match == None: break end = match.start() # Open braces start new colorizing elements. When preceeded # by a capital letter, they specify a colored region, as # defined by the _COLORIZING_TAGS dictionary. Otherwise, # use a special "literal braces" element (with tag "litbrace"), # and convert them to literal braces once we find the matching # close-brace. if match.group() == '{': if (end>0) and 'A' <= str[end-1] <= 'Z': if (end-1) > start: stack[-1].appendChild(doc.createTextNode(str[start:end-1])) if not _COLORIZING_TAGS.has_key(str[end-1]): estr = "Unknown inline markup tag." errors.append(ColorizingError(estr, token, end-1)) stack.append(doc.createElement('unknown')) else: tag = _COLORIZING_TAGS[str[end-1]] stack.append(doc.createElement(tag)) else: if end > start: stack[-1].appendChild(doc.createTextNode(str[start:end])) stack.append(doc.createElement('litbrace')) openbrace_stack.append(end) stack[-2].appendChild(stack[-1]) # Close braces end colorizing elements. elif match.group() == '}': # Check for (and ignore) unbalanced braces. if len(stack) <= 1: estr = "Unbalanced '}'." errors.append(ColorizingError(estr, token, end)) start = end + 1 continue # Add any remaining text. if end > start: stack[-1].appendChild(doc.createTextNode(str[start:end])) # Special handling for symbols: if stack[-1].tagName == 'symbol': if (len(stack[-1].childNodes) != 1 or not isinstance(stack[-1].childNodes[0], Text)): estr = "Invalid symbol code." errors.append(ColorizingError(estr, token, end)) else: symb = stack[-1].childNodes[0].data if _SYMBOLS.has_key(symb): # It's a symbol symbol = doc.createElement('symbol') stack[-2].removeChild(stack[-1]) stack[-2].appendChild(symbol) symbol.appendChild(doc.createTextNode(symb)) else: estr = "Invalid symbol code." errors.append(ColorizingError(estr, token, end)) # Special handling for escape elements: if stack[-1].tagName == 'escape': if (len(stack[-1].childNodes) != 1 or not isinstance(stack[-1].childNodes[0], Text)): estr = "Invalid escape code." errors.append(ColorizingError(estr, token, end)) else: escp = stack[-1].childNodes[0].data if _ESCAPES.has_key(escp): # It's an escape from _ESCPAES stack[-2].removeChild(stack[-1]) escp = _ESCAPES[escp] stack[-2].appendChild(doc.createTextNode(escp)) elif len(escp) == 1: # It's a single-character escape (eg E{.}) stack[-2].removeChild(stack[-1]) stack[-2].appendChild(doc.createTextNode(escp)) else: estr = "Invalid escape code." errors.append(ColorizingError(estr, token, end)) # Special handling for literal braces elements: if stack[-1].tagName == 'litbrace': variables = stack[-1].childNodes stack[-2].removeChild(stack[-1]) stack[-2].appendChild(doc.createTextNode('{')) for child in variables: stack[-2].appendChild(child) stack[-2].appendChild(doc.createTextNode('}')) # Special handling for graphs: if stack[-1].tagName == 'graph': _colorize_graph(doc, stack[-1], token, end, errors) # Special handling for link-type elements: if stack[-1].tagName in _LINK_COLORIZING_TAGS: _colorize_link(doc, stack[-1], token, end, errors) # Pop the completed element. openbrace_stack.pop() stack.pop() start = end+1 # Add any final text. if start < len(str): stack[-1].appendChild(doc.createTextNode(str[start:])) if len(stack) != 1: estr = "Unbalanced '{'." errors.append(ColorizingError(estr, token, openbrace_stack[-1])) return stack[0] GRAPH_TYPES = ['classtree', 'packagetree', 'importgraph', 'callgraph'] def _colorize_graph(doc, graph, token, end, errors): """ Eg:: G{classtree} G{classtree x, y, z} G{importgraph} """ bad_graph_spec = False children = graph.childNodes[:] for child in children: graph.removeChild(child) if len(children) != 1 or not isinstance(children[0], Text): bad_graph_spec = "Bad graph specification" else: pieces = children[0].data.split(None, 1) graphtype = pieces[0].replace(':','').strip().lower() if graphtype in GRAPH_TYPES: if len(pieces) == 2: if re.match(r'\s*:?\s*([\w\.]+\s*,?\s*)*', pieces[1]): args = pieces[1].replace(',', ' ').replace(':','').split() else: bad_graph_spec = "Bad graph arg list" else: args = [] else: bad_graph_spec = ("Bad graph type %s -- use one of %s" % (pieces[0], ', '.join(GRAPH_TYPES))) if bad_graph_spec: errors.append(ColorizingError(bad_graph_spec, token, end)) graph.appendChild(doc.createTextNode('none')) graph.appendChild(doc.createTextNode('')) return graph.appendChild(doc.createTextNode(graphtype)) for arg in args: graph.appendChild(doc.createTextNode(arg)) def _colorize_link(doc, link, token, end, errors): variables = link.childNodes[:] # If the last child isn't text, we know it's bad. if len(variables)==0 or not isinstance(variables[-1], Text): estr = "Bad %s target." % link.tagName errors.append(ColorizingError(estr, token, end)) return # Did they provide an explicit target? match2 = _TARGET_RE.match(variables[-1].data) if match2: (text, target) = match2.groups() variables[-1].data = text # Can we extract an implicit target? elif len(variables) == 1: target = variables[0].data else: estr = "Bad %s target." % link.tagName errors.append(ColorizingError(estr, token, end)) return # Construct the name element. name_elt = doc.createElement('name') for child in variables: name_elt.appendChild(link.removeChild(child)) # Clean up the target. For URIs, assume http or mailto if they # don't specify (no relative urls) target = re.sub(r'\s', '', target) if link.tagName=='uri': if not re.match(r'\w+:', target): if re.match(r'\w+@(\w+)(\.\w+)*', target): target = 'mailto:' + target else: target = 'http://'+target elif link.tagName=='link': # Remove arg lists for functions (e.g., L{_colorize_link()}) target = re.sub(r'\(.*\)$', '', target) if not re.match(r'^[a-zA-Z_]\w*(\.[a-zA-Z_]\w*)*$', target): estr = "Bad link target." errors.append(ColorizingError(estr, token, end)) return # Construct the target element. target_elt = doc.createElement('target') target_elt.appendChild(doc.createTextNode(target)) # Add them to the link element. link.appendChild(name_elt) link.appendChild(target_elt) ################################################## ## Formatters ################################################## def to_epytext(tree, indent=0, seclevel=0): """ Convert a DOM document encoding epytext back to an epytext string. This is the inverse operation from L{parse}. I.e., assuming there are no errors, the following is true: - C{parse(to_epytext(tree)) == tree} The inverse is true, except that whitespace, line wrapping, and character escaping may be done differently. - C{to_epytext(parse(str)) == str} (approximately) @param tree: A DOM document encoding of an epytext string. @type tree: L{xml.dom.minidom.Document} @param indent: The indentation for the string representation of C{tree}. Each line of the returned string will begin with C{indent} space characters. @type indent: C{int} @param seclevel: The section level that C{tree} appears at. This is used to generate section headings. @type seclevel: C{int} @return: The epytext string corresponding to C{tree}. @rtype: C{string} """ if isinstance(tree, Document): return to_epytext(tree.childNodes[0], indent, seclevel) if isinstance(tree, Text): str = re.sub(r'\{', '\0', tree.data) str = re.sub(r'\}', '\1', str) return str if tree.tagName == 'epytext': indent -= 2 if tree.tagName == 'section': seclevel += 1 variables = [to_epytext(c, indent+2, seclevel) for c in tree.childNodes] childstr = ''.join(variables) # Clean up for literal blocks (add the double "::" back) childstr = re.sub(':(\s*)\2', '::\\1', childstr) if tree.tagName == 'para': str = wordwrap(childstr, indent)+'\n' str = re.sub(r'((^|\n)\s*\d+)\.', r'\1E{.}', str) str = re.sub(r'((^|\n)\s*)-', r'\1E{-}', str) str = re.sub(r'((^|\n)\s*)@', r'\1E{@}', str) str = re.sub(r'::(\s*($|\n))', r'E{:}E{:}\1', str) str = re.sub('\0', 'E{lb}', str) str = re.sub('\1', 'E{rb}', str) return str elif tree.tagName == 'li': bulletAttr = tree.getAttributeNode('bullet') if bulletAttr: bullet = bulletAttr.value else: bullet = '-' return indent*' '+ bullet + ' ' + childstr.lstrip() elif tree.tagName == 'heading': str = re.sub('\0', 'E{lb}',childstr) str = re.sub('\1', 'E{rb}', str) uline = len(childstr)*_HEADING_CHARS[seclevel-1] return (indent-2)*' ' + str + '\n' + (indent-2)*' '+uline+'\n' elif tree.tagName == 'doctestblock': str = re.sub('\0', '{', childstr) str = re.sub('\1', '}', str) lines = [' '+indent*' '+line for line in str.split('\n')] return '\n'.join(lines) + '\n\n' elif tree.tagName == 'literalblock': str = re.sub('\0', '{', childstr) str = re.sub('\1', '}', str) lines = [(indent+1)*' '+line for line in str.split('\n')] return '\2' + '\n'.join(lines) + '\n\n' elif tree.tagName == 'field': numargs = 0 while tree.childNodes[numargs+1].tagName == 'arg': numargs += 1 tag = variables[0] args = variables[1:1+numargs] body = variables[1+numargs:] str = (indent)*' '+'@'+variables[0] if args: str += '(' + ', '.join(args) + ')' return str + ':\n' + ''.join(body) elif tree.tagName == 'target': return '<%s>' % childstr elif tree.tagName in ('fieldlist', 'tag', 'arg', 'epytext', 'section', 'olist', 'ulist', 'name'): return childstr elif tree.tagName == 'symbol': return 'E{%s}' % childstr elif tree.tagName == 'graph': return 'G{%s}' % ' '.join(variables) else: for (tag, name) in _COLORIZING_TAGS.items(): if name == tree.tagName: return '%s{%s}' % (tag, childstr) raise ValueError('Unknown DOM element %r' % tree.tagName) def to_plaintext(tree, indent=0, seclevel=0): """ Convert a DOM document encoding epytext to a string representation. This representation is similar to the string generated by C{to_epytext}, but C{to_plaintext} removes inline markup, prints escaped characters in unescaped form, etc. @param tree: A DOM document encoding of an epytext string. @type tree: L{xml.dom.minidom.Document} @param indent: The indentation for the string representation of C{tree}. Each line of the returned string will begin with C{indent} space characters. @type indent: C{int} @param seclevel: The section level that C{tree} appears at. This is used to generate section headings. @type seclevel: C{int} @return: The epytext string corresponding to C{tree}. @rtype: C{string} """ if isinstance(tree, Document): return to_plaintext(tree.childNodes[0], indent, seclevel) if isinstance(tree, Text): return tree.data if tree.tagName == 'section': seclevel += 1 # Figure out the child indent level. if tree.tagName == 'epytext': cindent = indent elif tree.tagName == 'li' and tree.getAttributeNode('bullet'): cindent = indent + 1 + len(tree.getAttributeNode('bullet').value) else: cindent = indent + 2 variables = [to_plaintext(c, cindent, seclevel) for c in tree.childNodes] childstr = ''.join(variables) if tree.tagName == 'para': return wordwrap(childstr, indent)+'\n' elif tree.tagName == 'li': # We should be able to use getAttribute here; but there's no # convenient way to test if an element has an attribute.. bulletAttr = tree.getAttributeNode('bullet') if bulletAttr: bullet = bulletAttr.value else: bullet = '-' return indent*' ' + bullet + ' ' + childstr.lstrip() elif tree.tagName == 'heading': uline = len(childstr)*_HEADING_CHARS[seclevel-1] return ((indent-2)*' ' + childstr + '\n' + (indent-2)*' ' + uline + '\n') elif tree.tagName == 'doctestblock': lines = [(indent+2)*' '+line for line in childstr.split('\n')] return '\n'.join(lines) + '\n\n' elif tree.tagName == 'literalblock': lines = [(indent+1)*' '+line for line in childstr.split('\n')] return '\n'.join(lines) + '\n\n' elif tree.tagName == 'fieldlist': return childstr elif tree.tagName == 'field': numargs = 0 while tree.childNodes[numargs+1].tagName == 'arg': numargs += 1 tag = variables[0] args = variables[1:1+numargs] body = variables[1+numargs:] str = (indent)*' '+'@'+variables[0] if args: str += '(' + ', '.join(args) + ')' return str + ':\n' + ''.join(body) elif tree.tagName == 'uri': if len(variables) != 2: raise ValueError('Bad URI ') elif variables[0] == variables[1]: return '<%s>' % variables[1] else: return '%r<%s>' % (variables[0], variables[1]) elif tree.tagName == 'link': if len(variables) != 2: raise ValueError('Bad Link') return '%s' % variables[0] elif tree.tagName in ('olist', 'ulist'): # [xx] always use condensed lists. ## Use a condensed list if each list item is 1 line long. #for child in variables: # if child.count('\n') > 2: return childstr return childstr.replace('\n\n', '\n')+'\n' elif tree.tagName == 'symbol': return '%s' % childstr elif tree.tagName == 'graph': return '<<%s graph: %s>>' % (variables[0], ', '.join(variables[1:])) else: # Assume that anything else can be passed through. return childstr def to_debug(tree, indent=4, seclevel=0): """ Convert a DOM document encoding epytext back to an epytext string, annotated with extra debugging information. This function is similar to L{to_epytext}, but it adds explicit information about where different blocks begin, along the left margin. @param tree: A DOM document encoding of an epytext string. @type tree: L{xml.dom.minidom.Document} @param indent: The indentation for the string representation of C{tree}. Each line of the returned string will begin with C{indent} space characters. @type indent: C{int} @param seclevel: The section level that C{tree} appears at. This is used to generate section headings. @type seclevel: C{int} @return: The epytext string corresponding to C{tree}. @rtype: C{string} """ if isinstance(tree, Document): return to_debug(tree.childNodes[0], indent, seclevel) if isinstance(tree, Text): str = re.sub(r'\{', '\0', tree.data) str = re.sub(r'\}', '\1', str) return str if tree.tagName == 'section': seclevel += 1 variables = [to_debug(c, indent+2, seclevel) for c in tree.childNodes] childstr = ''.join(variables) # Clean up for literal blocks (add the double "::" back) childstr = re.sub(':( *\n \|\n)\2', '::\\1', childstr) if tree.tagName == 'para': str = wordwrap(childstr, indent-6, 69)+'\n' str = re.sub(r'((^|\n)\s*\d+)\.', r'\1E{.}', str) str = re.sub(r'((^|\n)\s*)-', r'\1E{-}', str) str = re.sub(r'((^|\n)\s*)@', r'\1E{@}', str) str = re.sub(r'::(\s*($|\n))', r'E{:}E{:}\1', str) str = re.sub('\0', 'E{lb}', str) str = re.sub('\1', 'E{rb}', str) lines = str.rstrip().split('\n') lines[0] = ' P>|' + lines[0] lines[1:] = [' |'+l for l in lines[1:]] return '\n'.join(lines)+'\n |\n' elif tree.tagName == 'li': bulletAttr = tree.getAttributeNode('bullet') if bulletAttr: bullet = bulletAttr.value else: bullet = '-' return ' LI>|'+ (indent-6)*' '+ bullet + ' ' + childstr[6:].lstrip() elif tree.tagName in ('olist', 'ulist'): return 'LIST>|'+(indent-4)*' '+childstr[indent+2:] elif tree.tagName == 'heading': str = re.sub('\0', 'E{lb}', childstr) str = re.sub('\1', 'E{rb}', str) uline = len(childstr)*_HEADING_CHARS[seclevel-1] return ('SEC'+`seclevel`+'>|'+(indent-8)*' ' + str + '\n' + ' |'+(indent-8)*' ' + uline + '\n') elif tree.tagName == 'doctestblock': str = re.sub('\0', '{', childstr) str = re.sub('\1', '}', str) lines = [' |'+(indent-4)*' '+line for line in str.split('\n')] lines[0] = 'DTST>'+lines[0][5:] return '\n'.join(lines) + '\n |\n' elif tree.tagName == 'literalblock': str = re.sub('\0', '{', childstr) str = re.sub('\1', '}', str) lines = [' |'+(indent-5)*' '+line for line in str.split('\n')] lines[0] = ' LIT>'+lines[0][5:] return '\2' + '\n'.join(lines) + '\n |\n' elif tree.tagName == 'field': numargs = 0 while tree.childNodes[numargs+1].tagName == 'arg': numargs += 1 tag = variables[0] args = variables[1:1+numargs] body = variables[1+numargs:] str = ' FLD>|'+(indent-6)*' '+'@'+variables[0] if args: str += '(' + ', '.join(args) + ')' return str + ':\n' + ''.join(body) elif tree.tagName == 'target': return '<%s>' % childstr elif tree.tagName in ('fieldlist', 'tag', 'arg', 'epytext', 'section', 'olist', 'ulist', 'name'): return childstr elif tree.tagName == 'symbol': return 'E{%s}' % childstr elif tree.tagName == 'graph': return 'G{%s}' % ' '.join(variables) else: for (tag, name) in _COLORIZING_TAGS.items(): if name == tree.tagName: return '%s{%s}' % (tag, childstr) raise ValueError('Unknown DOM element %r' % tree.tagName) ################################################## ## Top-Level Wrapper function ################################################## def pparse(str, show_warnings=1, show_errors=1, stream=sys.stderr): """ Pretty-parse the string. This parses the string, and catches any warnings or errors produced. Any warnings and errors are displayed, and the resulting DOM parse structure is returned. @param str: The string to parse. @type str: C{string} @param show_warnings: Whether or not to display non-fatal errors generated by parsing C{str}. @type show_warnings: C{boolean} @param show_errors: Whether or not to display fatal errors generated by parsing C{str}. @type show_errors: C{boolean} @param stream: The stream that warnings and errors should be written to. @type stream: C{stream} @return: a DOM document encoding the contents of C{str}. @rtype: L{xml.dom.minidom.Document} @raise SyntaxError: If any fatal errors were encountered. """ errors = [] confused = 0 try: val = parse(str, errors) warnings = [e for e in errors if not e.is_fatal()] errors = [e for e in errors if e.is_fatal()] except: confused = 1 if not show_warnings: warnings = [] warnings.sort() errors.sort() if warnings: print >>stream, '='*SCRWIDTH print >>stream, "WARNINGS" print >>stream, '-'*SCRWIDTH for warning in warnings: print >>stream, warning.as_warning() print >>stream, '='*SCRWIDTH if errors and show_errors: if not warnings: print >>stream, '='*SCRWIDTH print >>stream, "ERRORS" print >>stream, '-'*SCRWIDTH for error in errors: print >>stream, error print >>stream, '='*SCRWIDTH if confused: raise elif errors: raise SyntaxError('Encountered Errors') else: return val ################################################## ## Parse Errors ################################################## class TokenizationError(ParseError): """ An error generated while tokenizing a formatted documentation string. """ class StructuringError(ParseError): """ An error generated while structuring a formatted documentation string. """ class ColorizingError(ParseError): """ An error generated while colorizing a paragraph. """ def __init__(self, descr, token, charnum, is_fatal=1): """ Construct a new colorizing exception. @param descr: A short description of the error. @type descr: C{string} @param token: The token where the error occured @type token: L{Token} @param charnum: The character index of the position in C{token} where the error occured. @type charnum: C{int} """ ParseError.__init__(self, descr, token.startline, is_fatal) self.token = token self.charnum = charnum CONTEXT_RANGE = 20 def descr(self): RANGE = self.CONTEXT_RANGE if self.charnum <= RANGE: left = self.token.contents[0:self.charnum] else: left = '...'+self.token.contents[self.charnum-RANGE:self.charnum] if (len(self.token.contents)-self.charnum) <= RANGE: right = self.token.contents[self.charnum:] else: right = (self.token.contents[self.charnum:self.charnum+RANGE] + '...') return ('%s\n\n%s%s\n%s^' % (self._descr, left, right, ' '*len(left))) ################################################## ## Convenience parsers ################################################## def parse_as_literal(str): """ Return a DOM document matching the epytext DTD, containing a single literal block. That literal block will include the contents of the given string. This method is typically used as a fall-back when the parser fails. @param str: The string which should be enclosed in a literal block. @type str: C{string} @return: A DOM document containing C{str} in a single literal block. @rtype: L{xml.dom.minidom.Document} """ doc = Document() epytext = doc.createElement('epytext') lit = doc.createElement('literalblock') doc.appendChild(epytext) epytext.appendChild(lit) lit.appendChild(doc.createTextNode(str)) return doc def parse_as_para(str): """ Return a DOM document matching the epytext DTD, containing a single paragraph. That paragraph will include the contents of the given string. This can be used to wrap some forms of automatically generated information (such as type names) in paragraphs. @param str: The string which should be enclosed in a paragraph. @type str: C{string} @return: A DOM document containing C{str} in a single paragraph. @rtype: L{xml.dom.minidom.Document} """ doc = Document() epytext = doc.createElement('epytext') para = doc.createElement('para') doc.appendChild(epytext) epytext.appendChild(para) para.appendChild(doc.createTextNode(str)) return doc ################################################################# ## SUPPORT FOR EPYDOC ################################################################# from epydoc.docwriter.dotgraph import * def parse_docstring(docstring, errors, **options): """ Parse the given docstring, which is formatted using epytext; and return a C{ParsedDocstring} representation of its contents. @param docstring: The docstring to parse @type docstring: C{string} @param errors: A list where any errors generated during parsing will be stored. @type errors: C{list} of L{ParseError} @param options: Extra options. Unknown options are ignored. Currently, no extra options are defined. @rtype: L{ParsedDocstring} """ return ParsedEpytextDocstring(parse(docstring, errors)) class ParsedEpytextDocstring(ParsedDocstring): SYMBOL_TO_HTML = { # Symbols '<-': 'larr', '->': 'rarr', '^': 'uarr', 'v': 'darr', # Greek letters 'alpha': 'alpha', 'beta': 'beta', 'gamma': 'gamma', 'delta': 'delta', 'epsilon': 'epsilon', 'zeta': 'zeta', 'eta': 'eta', 'theta': 'theta', 'iota': 'iota', 'kappa': 'kappa', 'lambda': 'lambda', 'mu': 'mu', 'nu': 'nu', 'xi': 'xi', 'omicron': 'omicron', 'pi': 'pi', 'rho': 'rho', 'sigma': 'sigma', 'tau': 'tau', 'upsilon': 'upsilon', 'phi': 'phi', 'chi': 'chi', 'psi': 'psi', 'omega': 'omega', 'Alpha': 'Alpha', 'Beta': 'Beta', 'Gamma': 'Gamma', 'Delta': 'Delta', 'Epsilon': 'Epsilon', 'Zeta': 'Zeta', 'Eta': 'Eta', 'Theta': 'Theta', 'Iota': 'Iota', 'Kappa': 'Kappa', 'Lambda': 'Lambda', 'Mu': 'Mu', 'Nu': 'Nu', 'Xi': 'Xi', 'Omicron': 'Omicron', 'Pi': 'Pi', 'Rho': 'Rho', 'Sigma': 'Sigma', 'Tau': 'Tau', 'Upsilon': 'Upsilon', 'Phi': 'Phi', 'Chi': 'Chi', 'Psi': 'Psi', 'Omega': 'Omega', # HTML character entities 'larr': 'larr', 'rarr': 'rarr', 'uarr': 'uarr', 'darr': 'darr', 'harr': 'harr', 'crarr': 'crarr', 'lArr': 'lArr', 'rArr': 'rArr', 'uArr': 'uArr', 'dArr': 'dArr', 'hArr': 'hArr', 'copy': 'copy', 'times': 'times', 'forall': 'forall', 'exist': 'exist', 'part': 'part', 'empty': 'empty', 'isin': 'isin', 'notin': 'notin', 'ni': 'ni', 'prod': 'prod', 'sum': 'sum', 'prop': 'prop', 'infin': 'infin', 'ang': 'ang', 'and': 'and', 'or': 'or', 'cap': 'cap', 'cup': 'cup', 'int': 'int', 'there4': 'there4', 'sim': 'sim', 'cong': 'cong', 'asymp': 'asymp', 'ne': 'ne', 'equiv': 'equiv', 'le': 'le', 'ge': 'ge', 'sub': 'sub', 'sup': 'sup', 'nsub': 'nsub', 'sube': 'sube', 'supe': 'supe', 'oplus': 'oplus', 'otimes': 'otimes', 'perp': 'perp', # Alternate (long) names 'infinity': 'infin', 'integral': 'int', 'product': 'prod', '<=': 'le', '>=': 'ge', } SYMBOL_TO_LATEX = { # Symbols '<-': r'\(\leftarrow\)', '->': r'\(\rightarrow\)', '^': r'\(\uparrow\)', 'v': r'\(\downarrow\)', # Greek letters (use lower case when upcase not available) 'alpha': r'\(\alpha\)', 'beta': r'\(\beta\)', 'gamma': r'\(\gamma\)', 'delta': r'\(\delta\)', 'epsilon': r'\(\epsilon\)', 'zeta': r'\(\zeta\)', 'eta': r'\(\eta\)', 'theta': r'\(\theta\)', 'iota': r'\(\iota\)', 'kappa': r'\(\kappa\)', 'lambda': r'\(\lambda\)', 'mu': r'\(\mu\)', 'nu': r'\(\nu\)', 'xi': r'\(\xi\)', 'omicron': r'\(o\)', 'pi': r'\(\pi\)', 'rho': r'\(\rho\)', 'sigma': r'\(\sigma\)', 'tau': r'\(\tau\)', 'upsilon': r'\(\upsilon\)', 'phi': r'\(\phi\)', 'chi': r'\(\chi\)', 'psi': r'\(\psi\)', 'omega': r'\(\omega\)', 'Alpha': r'\(\alpha\)', 'Beta': r'\(\beta\)', 'Gamma': r'\(\Gamma\)', 'Delta': r'\(\Delta\)', 'Epsilon': r'\(\epsilon\)', 'Zeta': r'\(\zeta\)', 'Eta': r'\(\eta\)', 'Theta': r'\(\Theta\)', 'Iota': r'\(\iota\)', 'Kappa': r'\(\kappa\)', 'Lambda': r'\(\Lambda\)', 'Mu': r'\(\mu\)', 'Nu': r'\(\nu\)', 'Xi': r'\(\Xi\)', 'Omicron': r'\(o\)', 'Pi': r'\(\Pi\)', 'ho': r'\(\rho\)', 'Sigma': r'\(\Sigma\)', 'Tau': r'\(\tau\)', 'Upsilon': r'\(\Upsilon\)', 'Phi': r'\(\Phi\)', 'Chi': r'\(\chi\)', 'Psi': r'\(\Psi\)', 'Omega': r'\(\Omega\)', # HTML character entities 'larr': r'\(\leftarrow\)', 'rarr': r'\(\rightarrow\)', 'uarr': r'\(\uparrow\)', 'darr': r'\(\downarrow\)', 'harr': r'\(\leftrightarrow\)', 'crarr': r'\(\hookleftarrow\)', 'lArr': r'\(\Leftarrow\)', 'rArr': r'\(\Rightarrow\)', 'uArr': r'\(\Uparrow\)', 'dArr': r'\(\Downarrow\)', 'hArr': r'\(\Leftrightarrow\)', 'copy': r'{\textcopyright}', 'times': r'\(\times\)', 'forall': r'\(\forall\)', 'exist': r'\(\exists\)', 'part': r'\(\partial\)', 'empty': r'\(\emptyset\)', 'isin': r'\(\in\)', 'notin': r'\(\notin\)', 'ni': r'\(\ni\)', 'prod': r'\(\prod\)', 'sum': r'\(\sum\)', 'prop': r'\(\propto\)', 'infin': r'\(\infty\)', 'ang': r'\(\angle\)', 'and': r'\(\wedge\)', 'or': r'\(\vee\)', 'cap': r'\(\cap\)', 'cup': r'\(\cup\)', 'int': r'\(\int\)', 'there4': r'\(\therefore\)', 'sim': r'\(\sim\)', 'cong': r'\(\cong\)', 'asymp': r'\(\approx\)', 'ne': r'\(\ne\)', 'equiv': r'\(\equiv\)', 'le': r'\(\le\)', 'ge': r'\(\ge\)', 'sub': r'\(\subset\)', 'sup': r'\(\supset\)', 'nsub': r'\(\supset\)', 'sube': r'\(\subseteq\)', 'supe': r'\(\supseteq\)', 'oplus': r'\(\oplus\)', 'otimes': r'\(\otimes\)', 'perp': r'\(\perp\)', # Alternate (long) names 'infinity': r'\(\infty\)', 'integral': r'\(\int\)', 'product': r'\(\prod\)', '<=': r'\(\le\)', '>=': r'\(\ge\)', } def __init__(self, dom_tree): if isinstance(dom_tree, Document): dom_tree = dom_tree.childNodes[0] self._tree = dom_tree # Caching: self._html = self._latex = self._plaintext = None self._terms = None def to_html(self, docstring_linker, directory=None, docindex=None, context=None, **options): if self._html is not None: return self._html if self._tree is None: return '' indent = options.get('indent', 0) self._html = self._to_html(self._tree, docstring_linker, directory, docindex, context, indent) return self._html def to_latex(self, docstring_linker, **options): if self._latex is not None: return self._latex if self._tree is None: return '' indent = options.get('indent', 0) self._hyperref = options.get('hyperref', 1) self._latex = self._to_latex(self._tree, docstring_linker, indent) return self._latex def to_plaintext(self, docstring_linker, **options): # [XX] don't cache -- different options might be used!! #if self._plaintext is not None: return self._plaintext if self._tree is None: return '' if 'indent' in options: self._plaintext = to_plaintext(self._tree, indent=options['indent']) else: self._plaintext = to_plaintext(self._tree) return self._plaintext def _index_term_key(self, tree): str = to_plaintext(tree) str = re.sub(r'\s\s+', '-', str) return "index-"+re.sub("[^a-zA-Z0-9]", "_", str) def _to_html(self, tree, linker, directory, docindex, context, indent=0, seclevel=0): if isinstance(tree, Text): return plaintext_to_html(tree.data) if tree.tagName == 'epytext': indent -= 2 if tree.tagName == 'section': seclevel += 1 # Process the variables first. variables = [self._to_html(c, linker, directory, docindex, context, indent+2, seclevel) for c in tree.childNodes] # Get rid of unnecessary

...

tags; they introduce extra # space on most browsers that we don't want. for i in range(len(variables)-1): if (not isinstance(tree.childNodes[i], Text) and tree.childNodes[i].tagName == 'para' and (isinstance(tree.childNodes[i+1], Text) or tree.childNodes[i+1].tagName != 'para')): variables[i] = ' '*(indent+2)+variables[i][5+indent:-5]+'\n' if (tree.hasChildNodes() and not isinstance(tree.childNodes[-1], Text) and tree.childNodes[-1].tagName == 'para'): variables[-1] = ' '*(indent+2)+variables[-1][5+indent:-5]+'\n' # Construct the HTML string for the variables. childstr = ''.join(variables) # Perform the approriate action for the DOM tree type. if tree.tagName == 'para': return wordwrap('

%s

' % childstr, indent) elif tree.tagName == 'code': return '%s' % childstr elif tree.tagName == 'uri': return ('%s' % (variables[1], variables[0])) elif tree.tagName == 'link': return linker.translate_identifier_xref(variables[1], variables[0]) elif tree.tagName == 'italic': return '%s' % childstr elif tree.tagName == 'math': return '%s' % childstr elif tree.tagName == 'indexed': term = tree.cloneNode(1) term.tagName = 'epytext' return linker.translate_indexterm(ParsedEpytextDocstring(term)) #term_key = self._index_term_key(tree) #return linker.translate_indexterm(childstr, term_key) elif tree.tagName == 'bold': return '%s' % childstr elif tree.tagName == 'ulist': return '%s
    \n%s%s
\n' % (indent*' ', childstr, indent*' ') elif tree.tagName == 'olist': startAttr = tree.getAttributeNode('start') if startAttr: start = ' start="%s"' % startAttr.value else: start = '' return ('%s\n%s%s\n' % (indent*' ', start, childstr, indent*' ')) elif tree.tagName == 'li': return indent*' '+'
  • \n%s%s
  • \n' % (childstr, indent*' ') elif tree.tagName == 'heading': return ('%s%s\n' % ((indent-2)*' ', seclevel, childstr, seclevel)) elif tree.tagName == 'literalblock': return '
    \n%s\n
    \n' % childstr elif tree.tagName == 'doctestblock': dtb = colorize_doctestblock(childstr.strip()) return '
    \n%s
    \n' % dtb elif tree.tagName == 'fieldlist': raise AssertionError("There should not be any field lists left") elif tree.tagName in ('epytext', 'section', 'tag', 'arg', 'name', 'target', 'html'): return childstr elif tree.tagName == 'symbol': symbol = tree.childNodes[0].data if self.SYMBOL_TO_HTML.has_key(symbol): return '&%s;' % self.SYMBOL_TO_HTML[symbol] else: return '[??]' elif tree.tagName == 'graph': # Generate the graph. graph = self._build_graph(variables[0], variables[1:], linker, docindex, context) if not graph: return '' # Write the graph. image_url = '%s.gif' % graph.uid image_file = os.path.join(directory, image_url) return graph.to_html(image_file, image_url) else: raise ValueError('Unknown epytext DOM element %r' % tree.tagName) #GRAPH_TYPES = ['classtree', 'packagetree', 'importgraph'] def _build_graph(self, graph_type, graph_args, linker, docindex, context): # Generate the graph if graph_type == 'classtree': if graph_args: bases = [docindex.find(name, context) for name in graph_args] elif isinstance(context, ClassDoc): bases = [context] else: log.warning("Could not construct class tree: you must " "specify one or more base classes.") return None return class_tree_graph(bases, linker, context) elif graph_type == 'packagetree': if graph_args: packages = [docindex.find(name, context) for name in graph_args] elif isinstance(context, ModuleDoc): packages = [context] else: log.warning("Could not construct package tree: you must " "specify one or more root packages.") return None return package_tree_graph(packages, linker, context) elif graph_type == 'importgraph': modules = [d for d in docindex.root if isinstance(d, ModuleDoc)] return import_graph(modules, docindex, linker, context) elif graph_type == 'callgraph': if graph_args: docs = [docindex.find(name, context) for name in graph_args] docs = [doc for doc in docs if doc is not None] else: docs = [context] return call_graph(docs, docindex, linker, context) else: log.warning("Unknown graph type %s" % graph_type) def _to_latex(self, tree, linker, indent=0, seclevel=0, breakany=0): if isinstance(tree, Text): return plaintext_to_latex(tree.data, breakany=breakany) if tree.tagName == 'section': seclevel += 1 # Figure out the child indent level. if tree.tagName == 'epytext': cindent = indent else: cindent = indent + 2 variables = [self._to_latex(c, linker, cindent, seclevel, breakany) for c in tree.childNodes] childstr = ''.join(variables) if tree.tagName == 'para': return wordwrap(childstr, indent)+'\n' elif tree.tagName == 'code': return '\\texttt{%s}' % childstr elif tree.tagName == 'uri': if len(variables) != 2: raise ValueError('Bad URI ') if self._hyperref: # ~ and # should not be escaped in the URI. uri = tree.childNodes[1].childNodes[0].data uri = uri.replace('{\\textasciitilde}', '~') uri = uri.replace('\\#', '#') if variables[0] == variables[1]: return '\\href{%s}{\\textit{%s}}' % (uri, variables[1]) else: return ('%s\\footnote{\\href{%s}{%s}}' % (variables[0], uri, variables[1])) else: if variables[0] == variables[1]: return '\\textit{%s}' % variables[1] else: return '%s\\footnote{%s}' % (variables[0], variables[1]) elif tree.tagName == 'link': if len(variables) != 2: raise ValueError('Bad Link') return linker.translate_identifier_xref(variables[1], variables[0]) elif tree.tagName == 'italic': return '\\textit{%s}' % childstr elif tree.tagName == 'math': return '\\textit{%s}' % childstr elif tree.tagName == 'indexed': term = tree.cloneNode(1) term.tagName = 'epytext' return linker.translate_indexterm(ParsedEpytextDocstring(term)) elif tree.tagName == 'bold': return '\\textbf{%s}' % childstr elif tree.tagName == 'li': return indent*' ' + '\\item ' + childstr.lstrip() elif tree.tagName == 'heading': return ' '*(indent-2) + '(section) %s\n\n' % childstr elif tree.tagName == 'doctestblock': return '\\begin{alltt}\n%s\\end{alltt}\n\n' % childstr elif tree.tagName == 'literalblock': return '\\begin{alltt}\n%s\\end{alltt}\n\n' % childstr elif tree.tagName == 'fieldlist': return indent*' '+'{omitted fieldlist}\n' elif tree.tagName == 'olist': return (' '*indent + '\\begin{enumerate}\n\n' + ' '*indent + '\\setlength{\\parskip}{0.5ex}\n' + childstr + ' '*indent + '\\end{enumerate}\n\n') elif tree.tagName == 'ulist': return (' '*indent + '\\begin{itemize}\n' + ' '*indent + '\\setlength{\\parskip}{0.6ex}\n' + childstr + ' '*indent + '\\end{itemize}\n\n') elif tree.tagName == 'symbol': symbol = tree.childNodes[0].data if self.SYMBOL_TO_LATEX.has_key(symbol): return r'%s' % self.SYMBOL_TO_LATEX[symbol] else: return '[??]' elif tree.tagName == 'graph': return '(GRAPH)' #raise ValueError, 'graph not implemented yet for latex' else: # Assume that anything else can be passed through. return childstr def summary(self): if self._tree is None: return self # Is the cloning that happens here safe/proper? (Cloning # between 2 different documents) tree = self._tree doc = Document() epytext = doc.createElement('epytext') doc.appendChild(epytext) # Find the first paragraph. variables = tree.childNodes while (len(variables) > 0) and (variables[0].tagName != 'para'): if variables[0].tagName in ('section', 'ulist', 'olist', 'li'): variables = variables[0].childNodes else: variables = variables[1:] # Special case: if the docstring contains a single literal block, # then try extracting the summary from it. if (len(variables) == 0 and len(tree.childNodes) == 1 and tree.childNodes[0].tagName == 'literalblock'): str = re.split(r'\n\s*(\n|$).*', tree.childNodes[0].childNodes[0].data, 1)[0] variables = [doc.createElement('para')] variables[0].appendChild(doc.createTextNode(str)) # If we didn't find a paragraph, return an empty epytext. if len(variables) == 0: return ParsedEpytextDocstring(doc) # Extract the first sentence. parachildren = variables[0].childNodes para = doc.createElement('para') epytext.appendChild(para) for parachild in parachildren: if isinstance(parachild, Text): m = re.match(r'(\s*[\w\W]*?\.)(\s|$)', parachild.data) if m: para.appendChild(doc.createTextNode(m.group(1))) return ParsedEpytextDocstring(doc) para.appendChild(parachild.cloneNode(1)) return ParsedEpytextDocstring(doc) def split_fields(self, errors=None): if self._tree is None: return (self, ()) tree = self._tree.cloneNode(1) # Hmm.. fields = [] if (tree.hasChildNodes() and tree.childNodes[-1].tagName == 'fieldlist' and tree.childNodes[-1].hasChildNodes()): field_nodes = tree.childNodes[-1].childNodes tree.removeChild(tree.childNodes[-1]) for field in field_nodes: # Get the tag tag = field.childNodes[0].childNodes[0].data.lower() field.removeChild(field.childNodes[0]) # Get the argument. if field.childNodes and field.childNodes[0].tagName == 'arg': arg = field.childNodes[0].childNodes[0].data field.removeChild(field.childNodes[0]) else: arg = None # Process the field. field.tagName = 'epytext' fields.append(Field(tag, arg, ParsedEpytextDocstring(field))) # Save the remaining docstring as the description.. if tree.hasChildNodes() and tree.childNodes[0].hasChildNodes(): descr = tree else: descr = None return ParsedEpytextDocstring(descr), fields def index_terms(self): if self._terms is None: self._terms = [] self._index_terms(self._tree, self._terms) return self._terms def _index_terms(self, tree, terms): if tree is None or isinstance(tree, Text): return if tree.tagName == 'indexed': term = tree.cloneNode(1) term.tagName = 'epytext' terms.append(ParsedEpytextDocstring(term)) # Look for index items in child nodes. for child in tree.childNodes: self._index_terms(child, terms)