
Numerical Galaxy Formation and Cosmology
Lecture3: Numerical hydrodynamics on a mesh

Ewald Puchwein & Benjamin Moster

Why hydrodynamics?

• Everything we see is gas or made from gas

• Need to follow the hydrodynamics:

• To form galaxies and stars

• To study the interstellar, intergalactic and intracluster medium

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

image credit: NASA

bullet cluster

image credit: NASA

bullet cluster

Gas: collisional due to
(magneto-)hydrodynamical forces

image credit: NASA

dark matter (only gravity):
collisionless

dark matter (only gravity):
collisionless

Eulerian vs Lagrangian methods

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

discretize space
(finite-volume scheme)

Eulerian methods Lagrangian methods

discretize mass

use a grid fixed in space
use particles for the gas (like
in n-body) which move with

the flow

Eulerian vs Lagrangian methods

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

discretize space
(finite-volume scheme)

Eulerian methods Lagrangian methods

discretize mass

use a grid fixed in space
use particles for the gas (like
in n-body) which move with

the flow

moving-mesh

discretize space
(finite-volume scheme)

48 V. Springel

AREPO, moving, t = 0.5 AREPO, moving, t = 1.0

AREPO, moving, t = 1.5 AREPO, moving, t = 2.0

AREPO, fixed, t = 2.0 ATHENA, t = 2.0

Figure 32. The top four panels show the time evolution of the Kelvin Helmholtz instability in a low resolution (50×50) test calculation
with the moving-mesh method. Each panel gives the density field (at times t = 0.5, 1.0, 1.5 and 2.0), with the Voronoi mesh overlaid in
black in the lower half of the box. For comparison, the lower two panels show the results for the same initial conditions, but this time
computed keeping the initial Cartesian mesh fixed. The panel on the bottom left shows the result at time t = 2.0 obtained with our code
AREPO for a fixed mesh, while the bottom right gives the result of ATHENA (with second order reconstruction and the Roe solver).
The latter two results are nearly identical. Note however that in the non-linear regime the KH instability appears to evolve somewhat
faster for the moving-mesh code compared with the fixed grid.

c⃝ 0000 RAS, MNRAS 000, 000–000

uses an unstructured
mesh moving with the flow

image credit: V. Springel

The Euler equations

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• The equations of hydrodynamics can be written in terms of
conserved quantities

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

2

mass conservation

momentum conservation

energy conservation

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

2

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

2

equation of state

with and = internal energy per unit mass

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

2

Advection on a grid

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• Let’s consider a simpler problem first

and assuming u = const.

• tesselate space into cells for numerical treatment

• need to advect the mass such that total mass is conserved

➡ calculate mass fluxes at cell interfaces

➡ remove mass from the cell on one side of the interface and
add it to the cell on the other side (this ensures mass
conservation)

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

2

Advection on a grid

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• update conserved quantities

• simplest method: donor-cell algorithm

• or in general

where

image credit: C.P. Dullemond

62

q

x

q

x

q

x

Figure 4.1. Illustration of the piecewise constant (donor-cell) advection algorithm.

Since we (by definition of the fact that we solve a numerical problem) do not know exactly what
this average state is, it is the task of the algorithm to provide a recipe that estimates this as well
as possible. In the two examples below we shall describe two such algorithms.

4.2 Donor-cell advection
The simplest flux conserving scheme is the donor-cell scheme. In this scheme the “average
interface state” is simply:

q̃n+1/2
i+1/2 =

{

qn
i for ui+1/2 > 0

qn
i+1 for ui+1/2 < 0

(4.14)

This means that the donor-cell interface flux is:

fn+1/2
i+1/2 =

{

ui+1/2 qn
i for ui+1/2 > 0

ui+1/2 qn
i+1 for ui+1/2 < 0

(4.15)

The physical interpretation of this method is the following. One assumes that the density is
constant within each cell. We then let the material flow through the cell interfaces, from left to
right for ui+1/2 > 0. Since the density to the left of the cell interface is constant, and since the
CFL condition makes sure that the flow is no further than 1 grid cell spacing at maximum, we
know that for the whole time between time tn and tn+1 the flux through the cell interface (which
is q̃i+1/2 ui+1/2) is constant, and is equal to Eq. (4.15). Once the time step if finished, the state
in each cell has the form of a step function (Fig. 4.1). To get back to the original sub-grid model
we need to average the quantity q(x) out over each cell, to obtain the new qn+1

i . This is what
happens in the donor-cell algorithm.

This method is very strongly similar to the upstream differencing scheme of Section 3.3.2.
The difference comes to light mainly when either the velocity u is space-dependent or the grid
xi is non-constantly spaced (see Section 4.1.2). The Donor-Cell algorithm is easily implemented
but, as the upstream differencing method, it is very diffusive.

i-1 i

i-1/2

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

2

for u > 0

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

2

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

2

q … conserved quantity

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

∂tqk = ∂xfk → qn+1/2
k,i−1/2,L = qnk,i−1/2,L +

∆t

2

fk(qn
i−1/2,L)− fK(qn

i−3/2,R)

∆x

qnk,i−1/2,R (65)

qnk,i−3/2,R (66)

qn+1
i = qni +

∆t

∆x
(fn+1/2

i−1/2 − fn+1/2
i+1/2) (67)

4

Advection on a grid

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• simplest method: donor-cell algorithm

• advection of top hat:

Advection on a grid

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• simplest method: donor-cell algorithm

• advection of top hat:

-> scheme is very diffusive

Advection on a grid

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• next higher order: piecewise linear within cell

average density at interface over time step Δt

flux ->

image credit: C.P. Dullemondi-1 ii-1/2

64

x

q

x

q

x

q

Figure 4.2. Illustration of the piecewise linear advection algorithm. The slope is chosen ac-
cording to Lax-Wendroff’s method.

and similar for fi+1/2(t). The difference is:

⟨fi+1/2(t)⟩tn+1
tn − ⟨fi−1/2(t)⟩tn+1

tn = u(qn
i − qn

i−1) +
1

2
u(σn

i − σn
i−1)(∆x − u∆t) (4.20)

Using Eq. (4.10) we then obtain the update of the state after one time step:

qn+1
i = qn

i −
u∆t

∆x
(qn

i − qn
i−1) −

u∆t

∆x

1

2
(σn

i − σn
i−1)(∆x − u∆t) (4.21)

where we defined fn+1/2
i+1/2 ≡ ⟨fi+1/2(t)⟩tn+1

tn . Eq. (4.21) is the update of the state for a flux-
conserving piecewise linear scheme (assuming that the grid spacing is constant). This is the
higher-order version of the donor-cell algorithm. Note that it is identical to donor-cell if the
slopes are chosen to be zero. Note also that since we chose the grid to be constantly spaced and
the velocity to be globally constant, the algorithm is like an upwind scheme with a correction
term.

The question is now: how shall we choose the slope σn
i of the linear function? The idea

behind the piecewise linear scheme is that one uses the states at adjacent grid points in some
reasonable way. There are three obvious methods:

Centered slope: σn
i =

qn
i+1−qn

i−1

2∆x (Fromm’s method) (4.22)

Upwind slope: σn
i =

qn
i −qn

i−1

∆x (Beam-Warming method) (4.23)

Downwind slope: σn
i =

qn
i+1−qn

i

∆x (Lax-Wendroff method) (4.24)

All these choices result in second-order accurate methods.
→ Exercise: Prove that the piecewise linear scheme with a downwind slope indeed produces

the Lax-Wendroff scheme of Eq. (3.96) in Chapter 3.

u dt

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

2

slope

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

2

dx

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

fi−1/2 = qaverage,i−1/2u (35)

2

Advection on a grid

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

64

x

q

x

q

x

q

Figure 4.2. Illustration of the piecewise linear advection algorithm. The slope is chosen ac-
cording to Lax-Wendroff’s method.

and similar for fi+1/2(t). The difference is:

⟨fi+1/2(t)⟩tn+1
tn − ⟨fi−1/2(t)⟩tn+1

tn = u(qn
i − qn

i−1) +
1

2
u(σn

i − σn
i−1)(∆x − u∆t) (4.20)

Using Eq. (4.10) we then obtain the update of the state after one time step:

qn+1
i = qn

i −
u∆t

∆x
(qn

i − qn
i−1) −

u∆t

∆x

1

2
(σn

i − σn
i−1)(∆x − u∆t) (4.21)

where we defined fn+1/2
i+1/2 ≡ ⟨fi+1/2(t)⟩tn+1

tn . Eq. (4.21) is the update of the state for a flux-
conserving piecewise linear scheme (assuming that the grid spacing is constant). This is the
higher-order version of the donor-cell algorithm. Note that it is identical to donor-cell if the
slopes are chosen to be zero. Note also that since we chose the grid to be constantly spaced and
the velocity to be globally constant, the algorithm is like an upwind scheme with a correction
term.

The question is now: how shall we choose the slope σn
i of the linear function? The idea

behind the piecewise linear scheme is that one uses the states at adjacent grid points in some
reasonable way. There are three obvious methods:

Centered slope: σn
i =

qn
i+1−qn

i−1

2∆x (Fromm’s method) (4.22)

Upwind slope: σn
i =

qn
i −qn

i−1

∆x (Beam-Warming method) (4.23)

Downwind slope: σn
i =

qn
i+1−qn

i

∆x (Lax-Wendroff method) (4.24)

All these choices result in second-order accurate methods.
→ Exercise: Prove that the piecewise linear scheme with a downwind slope indeed produces

the Lax-Wendroff scheme of Eq. (3.96) in Chapter 3.

image credit: C.P. Dullemond

i-1 i

i-1/2
What should we use for
the slope (for u>0)?

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

fi−1/2 = qaverage,i−1/2u (35)

σi−1 =
qi − qi−1

∆x
(36)

2

Lax-Wendroff (downwind)

Reconstruct

Evolve

Average

Advection on a grid

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

64

x

q

x

q

x

q

Figure 4.2. Illustration of the piecewise linear advection algorithm. The slope is chosen ac-
cording to Lax-Wendroff’s method.

and similar for fi+1/2(t). The difference is:

⟨fi+1/2(t)⟩tn+1
tn − ⟨fi−1/2(t)⟩tn+1

tn = u(qn
i − qn

i−1) +
1

2
u(σn

i − σn
i−1)(∆x − u∆t) (4.20)

Using Eq. (4.10) we then obtain the update of the state after one time step:

qn+1
i = qn

i −
u∆t

∆x
(qn

i − qn
i−1) −

u∆t

∆x

1

2
(σn

i − σn
i−1)(∆x − u∆t) (4.21)

where we defined fn+1/2
i+1/2 ≡ ⟨fi+1/2(t)⟩tn+1

tn . Eq. (4.21) is the update of the state for a flux-
conserving piecewise linear scheme (assuming that the grid spacing is constant). This is the
higher-order version of the donor-cell algorithm. Note that it is identical to donor-cell if the
slopes are chosen to be zero. Note also that since we chose the grid to be constantly spaced and
the velocity to be globally constant, the algorithm is like an upwind scheme with a correction
term.

The question is now: how shall we choose the slope σn
i of the linear function? The idea

behind the piecewise linear scheme is that one uses the states at adjacent grid points in some
reasonable way. There are three obvious methods:

Centered slope: σn
i =

qn
i+1−qn

i−1

2∆x (Fromm’s method) (4.22)

Upwind slope: σn
i =

qn
i −qn

i−1

∆x (Beam-Warming method) (4.23)

Downwind slope: σn
i =

qn
i+1−qn

i

∆x (Lax-Wendroff method) (4.24)

All these choices result in second-order accurate methods.
→ Exercise: Prove that the piecewise linear scheme with a downwind slope indeed produces

the Lax-Wendroff scheme of Eq. (3.96) in Chapter 3.

image credit: C.P. Dullemond

i-1 i

i-1/2
What should we use for
the slope (for u>0)?

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

fi−1/2 = qaverage,i−1/2u (35)

σi−1 =
qi − qi−1

∆x
(36)

2

Lax-Wendroff (downwind)

Lax-Wendroff
(downwind)

Reconstruct

Evolve

Average

Advection on a grid

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

64

x

q

x

q

x

q

Figure 4.2. Illustration of the piecewise linear advection algorithm. The slope is chosen ac-
cording to Lax-Wendroff’s method.

and similar for fi+1/2(t). The difference is:

⟨fi+1/2(t)⟩tn+1
tn − ⟨fi−1/2(t)⟩tn+1

tn = u(qn
i − qn

i−1) +
1

2
u(σn

i − σn
i−1)(∆x − u∆t) (4.20)

Using Eq. (4.10) we then obtain the update of the state after one time step:

qn+1
i = qn

i −
u∆t

∆x
(qn

i − qn
i−1) −

u∆t

∆x

1

2
(σn

i − σn
i−1)(∆x − u∆t) (4.21)

where we defined fn+1/2
i+1/2 ≡ ⟨fi+1/2(t)⟩tn+1

tn . Eq. (4.21) is the update of the state for a flux-
conserving piecewise linear scheme (assuming that the grid spacing is constant). This is the
higher-order version of the donor-cell algorithm. Note that it is identical to donor-cell if the
slopes are chosen to be zero. Note also that since we chose the grid to be constantly spaced and
the velocity to be globally constant, the algorithm is like an upwind scheme with a correction
term.

The question is now: how shall we choose the slope σn
i of the linear function? The idea

behind the piecewise linear scheme is that one uses the states at adjacent grid points in some
reasonable way. There are three obvious methods:

Centered slope: σn
i =

qn
i+1−qn

i−1

2∆x (Fromm’s method) (4.22)

Upwind slope: σn
i =

qn
i −qn

i−1

∆x (Beam-Warming method) (4.23)

Downwind slope: σn
i =

qn
i+1−qn

i

∆x (Lax-Wendroff method) (4.24)

All these choices result in second-order accurate methods.
→ Exercise: Prove that the piecewise linear scheme with a downwind slope indeed produces

the Lax-Wendroff scheme of Eq. (3.96) in Chapter 3.

image credit: C.P. Dullemond

i-1 i

i-1/2
What should we use for
the slope (for u>0)?

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

fi−1/2 = qaverage,i−1/2u (35)

σi−1 =
qi − qi−1

∆x
(36)

2

Lax-Wendroff (downwind)

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

fi−1/2 = qaverage,i−1/2u (35)

σi−1 =
qi − qi−1

∆x
(36)

σi−1 =
qi − qi−2

2∆x
(37)

2

Fromm (cell-centered)

Lax-Wendroff
(downwind)

Reconstruct

Evolve

Average

Advection on a grid

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

64

x

q

x

q

x

q

Figure 4.2. Illustration of the piecewise linear advection algorithm. The slope is chosen ac-
cording to Lax-Wendroff’s method.

and similar for fi+1/2(t). The difference is:

⟨fi+1/2(t)⟩tn+1
tn − ⟨fi−1/2(t)⟩tn+1

tn = u(qn
i − qn

i−1) +
1

2
u(σn

i − σn
i−1)(∆x − u∆t) (4.20)

Using Eq. (4.10) we then obtain the update of the state after one time step:

qn+1
i = qn

i −
u∆t

∆x
(qn

i − qn
i−1) −

u∆t

∆x

1

2
(σn

i − σn
i−1)(∆x − u∆t) (4.21)

where we defined fn+1/2
i+1/2 ≡ ⟨fi+1/2(t)⟩tn+1

tn . Eq. (4.21) is the update of the state for a flux-
conserving piecewise linear scheme (assuming that the grid spacing is constant). This is the
higher-order version of the donor-cell algorithm. Note that it is identical to donor-cell if the
slopes are chosen to be zero. Note also that since we chose the grid to be constantly spaced and
the velocity to be globally constant, the algorithm is like an upwind scheme with a correction
term.

The question is now: how shall we choose the slope σn
i of the linear function? The idea

behind the piecewise linear scheme is that one uses the states at adjacent grid points in some
reasonable way. There are three obvious methods:

Centered slope: σn
i =

qn
i+1−qn

i−1

2∆x (Fromm’s method) (4.22)

Upwind slope: σn
i =

qn
i −qn

i−1

∆x (Beam-Warming method) (4.23)

Downwind slope: σn
i =

qn
i+1−qn

i

∆x (Lax-Wendroff method) (4.24)

All these choices result in second-order accurate methods.
→ Exercise: Prove that the piecewise linear scheme with a downwind slope indeed produces

the Lax-Wendroff scheme of Eq. (3.96) in Chapter 3.

image credit: C.P. Dullemond

i-1 i

i-1/2
What should we use for
the slope (for u>0)?

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

fi−1/2 = qaverage,i−1/2u (35)

σi−1 =
qi − qi−1

∆x
(36)

2

Lax-Wendroff (downwind)

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

fi−1/2 = qaverage,i−1/2u (35)

σi−1 =
qi − qi−1

∆x
(36)

σi−1 =
qi − qi−2

2∆x
(37)

2

Fromm (cell-centered)

Fromm (cell-centered)

Lax-Wendroff
(downwind)

Reconstruct

Evolve

Average

Advection on a grid

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

64

x

q

x

q

x

q

Figure 4.2. Illustration of the piecewise linear advection algorithm. The slope is chosen ac-
cording to Lax-Wendroff’s method.

and similar for fi+1/2(t). The difference is:

⟨fi+1/2(t)⟩tn+1
tn − ⟨fi−1/2(t)⟩tn+1

tn = u(qn
i − qn

i−1) +
1

2
u(σn

i − σn
i−1)(∆x − u∆t) (4.20)

Using Eq. (4.10) we then obtain the update of the state after one time step:

qn+1
i = qn

i −
u∆t

∆x
(qn

i − qn
i−1) −

u∆t

∆x

1

2
(σn

i − σn
i−1)(∆x − u∆t) (4.21)

where we defined fn+1/2
i+1/2 ≡ ⟨fi+1/2(t)⟩tn+1

tn . Eq. (4.21) is the update of the state for a flux-
conserving piecewise linear scheme (assuming that the grid spacing is constant). This is the
higher-order version of the donor-cell algorithm. Note that it is identical to donor-cell if the
slopes are chosen to be zero. Note also that since we chose the grid to be constantly spaced and
the velocity to be globally constant, the algorithm is like an upwind scheme with a correction
term.

The question is now: how shall we choose the slope σn
i of the linear function? The idea

behind the piecewise linear scheme is that one uses the states at adjacent grid points in some
reasonable way. There are three obvious methods:

Centered slope: σn
i =

qn
i+1−qn

i−1

2∆x (Fromm’s method) (4.22)

Upwind slope: σn
i =

qn
i −qn

i−1

∆x (Beam-Warming method) (4.23)

Downwind slope: σn
i =

qn
i+1−qn

i

∆x (Lax-Wendroff method) (4.24)

All these choices result in second-order accurate methods.
→ Exercise: Prove that the piecewise linear scheme with a downwind slope indeed produces

the Lax-Wendroff scheme of Eq. (3.96) in Chapter 3.

image credit: C.P. Dullemond

i-1 i

i-1/2
What should we use for
the slope (for u>0)?

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

fi−1/2 = qaverage,i−1/2u (35)

σi−1 =
qi − qi−1

∆x
(36)

2

Lax-Wendroff (downwind)

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

fi−1/2 = qaverage,i−1/2u (35)

σi−1 =
qi − qi−1

∆x
(36)

σi−1 =
qi − qi−2

2∆x
(37)

2

Fromm (cell-centered)

superbee flux limiter

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

fi−1/2 = qaverage,i−1/2u (35)

σi−1 =
qi − qi−1

∆x
(36)

σi−1 =
qi − qi−2

2∆x
(37)

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

2

Fromm (cell-centered)

Lax-Wendroff
(downwind)

Reconstruct

Evolve

Average

Advection on a grid

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

64

x

q

x

q

x

q

Figure 4.2. Illustration of the piecewise linear advection algorithm. The slope is chosen ac-
cording to Lax-Wendroff’s method.

and similar for fi+1/2(t). The difference is:

⟨fi+1/2(t)⟩tn+1
tn − ⟨fi−1/2(t)⟩tn+1

tn = u(qn
i − qn

i−1) +
1

2
u(σn

i − σn
i−1)(∆x − u∆t) (4.20)

Using Eq. (4.10) we then obtain the update of the state after one time step:

qn+1
i = qn

i −
u∆t

∆x
(qn

i − qn
i−1) −

u∆t

∆x

1

2
(σn

i − σn
i−1)(∆x − u∆t) (4.21)

where we defined fn+1/2
i+1/2 ≡ ⟨fi+1/2(t)⟩tn+1

tn . Eq. (4.21) is the update of the state for a flux-
conserving piecewise linear scheme (assuming that the grid spacing is constant). This is the
higher-order version of the donor-cell algorithm. Note that it is identical to donor-cell if the
slopes are chosen to be zero. Note also that since we chose the grid to be constantly spaced and
the velocity to be globally constant, the algorithm is like an upwind scheme with a correction
term.

The question is now: how shall we choose the slope σn
i of the linear function? The idea

behind the piecewise linear scheme is that one uses the states at adjacent grid points in some
reasonable way. There are three obvious methods:

Centered slope: σn
i =

qn
i+1−qn

i−1

2∆x (Fromm’s method) (4.22)

Upwind slope: σn
i =

qn
i −qn

i−1

∆x (Beam-Warming method) (4.23)

Downwind slope: σn
i =

qn
i+1−qn

i

∆x (Lax-Wendroff method) (4.24)

All these choices result in second-order accurate methods.
→ Exercise: Prove that the piecewise linear scheme with a downwind slope indeed produces

the Lax-Wendroff scheme of Eq. (3.96) in Chapter 3.

image credit: C.P. Dullemond

i-1 i

i-1/2
What should we use for
the slope (for u>0)?

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

fi−1/2 = qaverage,i−1/2u (35)

σi−1 =
qi − qi−1

∆x
(36)

2

Lax-Wendroff (downwind)

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

fi−1/2 = qaverage,i−1/2u (35)

σi−1 =
qi − qi−1

∆x
(36)

σi−1 =
qi − qi−2

2∆x
(37)

2

Fromm (cell-centered)

superbee flux limiter

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

∂ρ

∂t
+∇ · (ρu) = 0 (28)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (29)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (30)

fi−1/2 = qi−1u (31)

fi−1/2 =
1

2
ui−1/2

[

(1 + θi−1/2)qi−1 + (1− θi−1/2)qi
]

(32)

θi−1/2 = sgn(ui−1/2) (33)

qaverage,i−1/2 = qi−1 + σi−1

(

∆x

2
−

u∆t

2

)

(34)

fi−1/2 = qaverage,i−1/2u (35)

σi−1 =
qi − qi−1

∆x
(36)

σi−1 =
qi − qi−2

2∆x
(37)

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

2

superbee flux limiter

Fromm (cell-centered)

Lax-Wendroff
(downwind)

Reconstruct

Evolve

Average

Characteristics

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• With a suitable advection scheme we can solve

with u = const.

• the full Euler equations are, however, coupled

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

2

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

2

vn+1/2 = vn + an∆t/2 (19)

xn+1 = xn + vn+1/2∆t (20)

vn+1 = vn+1/2 + an+1∆t/2 (21)

∆t ∝ 1/
√
a (22)

∂ρ

∂t
+∇ · (ρu) = 0 (23)

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0 (24)

∂ρetot
∂t

+∇ · ((ρetot + P)u) = 0 (25)

etot = e+
u2

2
(26)

P = (γ − 1)ρe (27)

2

Characteristics

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• Is it possible to decouple the equations? First we rewrite them
(for simplicity in 1D) by defining

• Using this we find

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

3

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

3

-> all fluid quantities can be
written in terms of q1,q2,q3

-> can use these
expressions to replace them
in the Euler equations

Characteristics

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• Euler equations in terms of q1,q2,q3

where

can be written more compact using the Jacobian

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

3

conserved quantities fluxes

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

⎛

⎝

f1
f2
f3

⎞

⎠ =

⎛

⎝

ρu
ρu2 + P

(ρetot + P)u

⎞

⎠ =

⎛

⎜

⎝

q2

(γ − 1)q3 +
3−γ
2

q2
2

q1

γ q2q3
q1

+ 1−γ
2

q3
2

q2
1

⎞

⎟

⎠
(47)

3

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

⎛

⎝

f1
f2
f3

⎞

⎠ =

⎛

⎝

ρu
ρu2 + P

(ρetot + P)u

⎞

⎠ =

⎛

⎜

⎝

q2

(γ − 1)q3 +
3−γ
2

q2
2

q1

γ q2q3
q1

+ 1−γ
2

q3
2

q2
1

⎞

⎟

⎠
(47)

Ak,j(q) ≡
∂fk
∂qj

(48)

∂tqk = Ak,j(q)∂xqj (49)

∂tqk = Ak,j∂xqj (50)

λ1,λ2,λ3 e1, e2, e3 (51)

qk = q̃ (52)

3

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

⎛

⎝

f1
f2
f3

⎞

⎠ =

⎛

⎝

ρu
ρu2 + P

(ρetot + P)u

⎞

⎠ =

⎛

⎜

⎝

q2

(γ − 1)q3 +
3−γ
2

q2
2

q1

γ q2q3
q1

+ 1−γ
2

q3
2

q2
1

⎞

⎟

⎠
(47)

Ak,j(q) ≡
∂fk
∂qj

(48)

∂tqk +Ak,j(q)∂xqj = 0 (49)

∂tqk +Ak,j∂xqj = 0 (50)

λ1,λ2,λ3 e1, e2, e3 (51)

q =
∑

m

q̃mem (52)

∂tq̃mem +A∂xq̃mem = 0 → em∂tq̃m + λmem∂xq̃m = 0 (53)

→ ∂tq̃m + λm∂xq̃m = 0 (54)

qk → q̃m (55)

q̃m → qk (56)

3

Characteristics

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• Let us one more time consider a simpler system first and
assume A(q) = A = const.

• We can then decouple the equations by finding the eigensystem
of the matrix A

• We can then decompose the state q in this eigenbasis

and find the equations for the individual components

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

⎛

⎝

f1
f2
f3

⎞

⎠ =

⎛

⎝

ρu
ρu2 + P

(ρetot + P)u

⎞

⎠ =

⎛

⎜

⎝

q2

(γ − 1)q3 +
3−γ
2

q2
2

q1

γ q2q3
q1

+ 1−γ
2

q3
2

q2
1

⎞

⎟

⎠
(47)

Ai,j(q) ≡
∂fi
∂qj

(48)

∂tqi = Ai,j(q)∂xqj (49)

∂tqi = Ai,j∂xqj (50)

λ1,λ2,λ3 e1, e2, e3 (51)

3

eigenvalues eigenvectors

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

⎛

⎝

f1
f2
f3

⎞

⎠ =

⎛

⎝

ρu
ρu2 + P

(ρetot + P)u

⎞

⎠ =

⎛

⎜

⎝

q2

(γ − 1)q3 +
3−γ
2

q2
2

q1

γ q2q3
q1

+ 1−γ
2

q3
2

q2
1

⎞

⎟

⎠
(47)

Ak,j(q) ≡
∂fk
∂qj

(48)

∂tqk = Ak,j(q)∂xqj (49)

∂tqk = Ak,j∂xqj (50)

λ1,λ2,λ3 e1, e2, e3 (51)

q =
∑

m

q̃mem (52)

∂tq̃mem,k = Ak,j∂xq̃mem,j → em,k∂tq̃m = λmem,k∂xq̃m (53)

3

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

⎛

⎝

f1
f2
f3

⎞

⎠ =

⎛

⎝

ρu
ρu2 + P

(ρetot + P)u

⎞

⎠ =

⎛

⎜

⎝

q2

(γ − 1)q3 +
3−γ
2

q2
2

q1

γ q2q3
q1

+ 1−γ
2

q3
2

q2
1

⎞

⎟

⎠
(47)

Ak,j(q) ≡
∂fk
∂qj

(48)

∂tqk +Ak,j(q)∂xqj = 0 (49)

∂tqk +Ak,j∂xqj = 0 (50)

λ1,λ2,λ3 e1, e2, e3 (51)

q =
∑

m

q̃mem (52)

∂tq̃mem +A∂xq̃mem = 0 → em∂tq̃m + λmem∂xq̃m = 0 (53)

→ ∂tq̃m + λm∂xq̃m = 0 (54)

qk → q̃m (55)

q̃m → qk (56)

3

Characteristics

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• Plugging decomposition into

and hence

• This is a simple advection equation with characteristic velocity

• We can thus solve the coupled set of equations by

• expanding the state vector in the eigenbasis

• advecting each with its characteristic velocity

• recomputing the new state from the updated

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

⎛

⎝

f1
f2
f3

⎞

⎠ =

⎛

⎝

ρu
ρu2 + P

(ρetot + P)u

⎞

⎠ =

⎛

⎜

⎝

q2

(γ − 1)q3 +
3−γ
2

q2
2

q1

γ q2q3
q1

+ 1−γ
2

q3
2

q2
1

⎞

⎟

⎠
(47)

Ak,j(q) ≡
∂fk
∂qj

(48)

∂tqk = Ak,j(q)∂xqj (49)

∂tqk = Ak,j∂xqj (50)

λ1,λ2,λ3 e1, e2, e3 (51)

q =
∑

m

q̃mem (52)

∂tq̃mem = A∂xq̃mem → em∂tq̃m = λmem∂xq̃m (53)

→ ∂tq̃m = λm∂xq̃m (54)

3

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

⎛

⎝

f1
f2
f3

⎞

⎠ =

⎛

⎝

ρu
ρu2 + P

(ρetot + P)u

⎞

⎠ =

⎛

⎜

⎝

q2

(γ − 1)q3 +
3−γ
2

q2
2

q1

γ q2q3
q1

+ 1−γ
2

q3
2

q2
1

⎞

⎟

⎠
(47)

Ak,j(q) ≡
∂fk
∂qj

(48)

∂tqk = Ak,j(q)∂xqj (49)

∂tqk = Ak,j∂xqj (50)

λ1,λ2,λ3 e1, e2, e3 (51)

q =
∑

m

q̃mem (52)

∂tq̃mem = A∂xq̃mem → em∂tq̃m = λmem∂xq̃m (53)

→ ∂tq̃m = λm∂xq̃m (54)

qk → q̃m (55)

3

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

⎛

⎝

f1
f2
f3

⎞

⎠ =

⎛

⎝

ρu
ρu2 + P

(ρetot + P)u

⎞

⎠ =

⎛

⎜

⎝

q2

(γ − 1)q3 +
3−γ
2

q2
2

q1

γ q2q3
q1

+ 1−γ
2

q3
2

q2
1

⎞

⎟

⎠
(47)

Ak,j(q) ≡
∂fk
∂qj

(48)

∂tqk = Ak,j(q)∂xqj (49)

∂tqk = Ak,j∂xqj (50)

λ1,λ2,λ3 e1, e2, e3 (51)

q =
∑

m

q̃mem (52)

∂tq̃mem = A∂xq̃mem → em∂tq̃m = λmem∂xq̃m (53)

→ ∂tq̃m = λm∂xq̃m (54)

qk → q̃m (55)

3

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

⎛

⎝

f1
f2
f3

⎞

⎠ =

⎛

⎝

ρu
ρu2 + P

(ρetot + P)u

⎞

⎠ =

⎛

⎜

⎝

q2

(γ − 1)q3 +
3−γ
2

q2
2

q1

γ q2q3
q1

+ 1−γ
2

q3
2

q2
1

⎞

⎟

⎠
(47)

Ak,j(q) ≡
∂fk
∂qj

(48)

∂tqk = Ak,j(q)∂xqj (49)

∂tqk = Ak,j∂xqj (50)

λ1,λ2,λ3 e1, e2, e3 (51)

q =
∑

m

q̃mem (52)

∂tq̃mem = A∂xq̃mem → em∂tq̃m = λmem∂xq̃m (53)

→ ∂tq̃m = λm∂xq̃m (54)

qk → q̃m (55)

q̃m → qk (56)

3

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

⎛

⎝

f1
f2
f3

⎞

⎠ =

⎛

⎝

ρu
ρu2 + P

(ρetot + P)u

⎞

⎠ =

⎛

⎜

⎝

q2

(γ − 1)q3 +
3−γ
2

q2
2

q1

γ q2q3
q1

+ 1−γ
2

q3
2

q2
1

⎞

⎟

⎠
(47)

Ak,j(q) ≡
∂fk
∂qj

(48)

∂tqk +Ak,j(q)∂xqj = 0 (49)

∂tqk +Ak,j∂xqj = 0 (50)

λ1,λ2,λ3 e1, e2, e3 (51)

q =
∑

m

q̃mem (52)

∂tq̃mem +A∂xq̃mem = 0 → em∂tq̃m + λmem∂xq̃m = 0 (53)

→ ∂tq̃m + λm∂xq̃m = 0 (54)

qk → q̃m (55)

q̃m → qk (56)

3

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

⎛

⎝

f1
f2
f3

⎞

⎠ =

⎛

⎝

ρu
ρu2 + P

(ρetot + P)u

⎞

⎠ =

⎛

⎜

⎝

q2

(γ − 1)q3 +
3−γ
2

q2
2

q1

γ q2q3
q1

+ 1−γ
2

q3
2

q2
1

⎞

⎟

⎠
(47)

Ak,j(q) ≡
∂fk
∂qj

(48)

∂tqk +Ak,j(q)∂xqj = 0 (49)

∂tqk +Ak,j∂xqj = 0 (50)

λ1,λ2,λ3 e1, e2, e3 (51)

q =
∑

m

q̃mem (52)

∂tq̃mem +A∂xq̃mem = 0 → em∂tq̃m + λmem∂xq̃m = 0 (53)

→ ∂tq̃m + λm∂xq̃m = 0 (54)

qk → q̃m (55)

q̃m → qk (56)

3

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

⎛

⎝

f1
f2
f3

⎞

⎠ =

⎛

⎝

ρu
ρu2 + P

(ρetot + P)u

⎞

⎠ =

⎛

⎜

⎝

q2

(γ − 1)q3 +
3−γ
2

q2
2

q1

γ q2q3
q1

+ 1−γ
2

q3
2

q2
1

⎞

⎟

⎠
(47)

Ak,j(q) ≡
∂fk
∂qj

(48)

∂tqk +Ak,j(q)∂xqj = 0 (49)

∂tqk +Ak,j∂xqj = 0 (50)

λ1,λ2,λ3 e1, e2, e3 (51)

q =
∑

m

q̃mem (52)

∂tq̃mem +A∂xq̃mem = 0 → em∂tq̃m + λmem∂xq̃m = 0 (53)

→ ∂tq̃m + λm∂xq̃m = 0 (54)

qk → q̃m (55)

q̃m → qk (56)

3

Characteristics

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• Each of these modes propagating with a characteristic velocity
is called a characteristic

• for the full Euler equations

➡ eigenvectors depend on q (and thus position)

➡ no global decomposition of the state vector possible

• locally we find:

σi−1 = max(0,min(1, 2r),min(2, r))× (qi − qi−1) (38)

r ≡
qi−2 − qi−1

qi − qi−1
(39)

q1 = ρ (40)

q2 = ρu (41)

q3 = ρetot (42)

u =
q2
q1

(43)

e = etot −
1

2
u2 =

q3
q1

−
1

2

q22
q21

(44)

P = (γ − 1)

(

q3 −
1

2

q22
q1

)

(45)

∂t

⎛

⎝

q1
q2
q3

⎞

⎠+ ∂x

⎛

⎝

f1
f2
f3

⎞

⎠ = 0 (46)

⎛

⎝

f1
f2
f3

⎞

⎠ =

⎛

⎝

ρu
ρu2 + P

(ρetot + P)u

⎞

⎠ =

⎛

⎜

⎝

q2

(γ − 1)q3 +
3−γ
2

q2
2

q1

γ q2q3
q1

+ 1−γ
2

q3
2

q2
1

⎞

⎟

⎠
(47)

Ak,j(q) ≡
∂fk
∂qj

(48)

∂tqk = Ak,j(q)∂xqj (49)

∂tqk = Ak,j∂xqj (50)

λ1,λ2,λ3 e1, e2, e3 (51)

q =
∑

m

q̃mem (52)

∂tq̃mem = A∂xq̃mem → em∂tq̃m = λmem∂xq̃m (53)

→ ∂tq̃m = λm∂xq̃m (54)

qk → q̃m (55)

q̃m → qk (56)

A(q) ̸= const (57)

3A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

4

backward travelling sound wave

fluid motion

forward travelling sound wave

Characteristics

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

17

time − c0 +c

space

c

Figure 1.3. The three characteristics c−, c0, c+ of the hydrodynamics equations in 1-D, be-
longing to the characteristic velocities λ−1,λ0,λ+1.

are called characteristics. They do not necessarily have to be defined as belonging to the origin
(x0, t0). Any line in the (x, t) diagram following the possible trajectory of a signal is called a
characteristic. In this case we have plotted the sound-characteristics.

There is also another set of characteristics. This is not seen in the above analysis. However,
it can be shown if we give the fluid a ‘color’. Suppose that at t = t0 we dye all gas left of x0 blue
and all gas right of x0 as red. We now introduce a special function ϕ(x, t) which gives the color.
If it is 0, it means blue, if 1 it means red. The equation of this passive tracer is:

∂tϕ + u∂xϕ = 0 (1.84)

We now insert u = u0 + u1:
∂tϕ + u0∂xϕ + u1∂xϕ = 0 (1.85)

We immediately see that the last term is negligible compared to the first two, so we obtain
approximately:

∂tϕ + u0∂xϕ = 0 (1.86)

This signal evidently propagates with velocity u0. This gives the third set of characteristics, de-
scribing the movement of the fluid itself. This shows that in total we have, for this 1-D example,
three sets of characteristics, moving at speeds:

λ−1 = u0 −
√

γP0/ρ0 (1.87)
λ0 = u0 (1.88)

λ+1 = u0 +
√

γP0/ρ0 (1.89)

This example shows that, at least for linear perturbations of an otherwise steady constant-density
background, the hydrodynamics equations amount to the propagation of signals at three different
speeds. Two signals are sound signals, while a third signal is the movement of mass (Fig. 1.3).
This third signal may sound a bit as a cheat, since it is simply the passive co-movement with the
background fluid, and has no dynamical character of its own as the sound waves do. However,
in the non-linear evolution of hydrodynamic flows this third characteristic plays an essential
role and is no longer a passive tracer. We will see this later, when we view the hydrodynamics
equations as a hyperbolic set of equations.

image credit: C.P. Dullemond

characteristics

velocities u-c u u+c

➡ could decompose the state vector locally at each cell interface
and advect the components with their local characteristic
velocities

Riemann problems

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• What about shocks and contact discontinuities?

➡ eigensystems differ significantly on both sides

• Let’s look at the full Riemann problem:

• e.g. for uL=uR=0

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

4

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

97

51 2 3 4

Figure 6.3. The solution to the shock tube problem of Sod for γ = 7/5, ρl = 105, Pl = 1,
ρr = 1.25 × 104 and Pr = 0.1, shown at time t = 5000. The regions 1 to 5, as mentioned in
the text, are annotated at the top.

region 2 represents an expansion wave, also called rarefaction wave. This is a simple wave of the
left-going characteristic family (the 1-characteristic family in the terminology of Section 6.1). It
is the only non-constant region in the solution. The dividing line between region 3 and 4 is a
contact discontinuity, i.e. a line separating two fluids of different entropy but the same pressure
and the same velocity. This is a “wave” of the middle characteristic family (the 2-characteristic
family in the terminology of Section 6.1). Therefore u3 = u4 and P3 = P4. The propagation
speed of the contact discontinuity is therefore also uc = u4 and the location of this discontinuity
at some time t is xcontact = uct. Regions 4 and 5 are separated by a forward moving shock wave.
This is a jump in the forward moving characteristic family (the 3-characteristic family in the
terminology of Section 6.1). Since u5 = 0 one can invoke mass conservation to write the shock
propagation speed us in terms of the velocity u4 and the densities in both regions:

us = u4
ρ4

ρ4 − ρ5
(6.23)

The location of the shock wave at time t is therefore xshock = ust. According to the Rankine-
Hugoniot conditions derived in Section 1.9 we can also relate the density ratio and the pressure
ratio over the shock:

ρ4

ρ5
=

P4 + m2P5

P5 + m2P4
(6.24)

wherem2 = (γ−1)/(γ+1). From these relations we can derive the velocity in region 4, because
we know that u5 = 0. We obtain

u4 = (P4 − P5)

√

1 − m2

ρ5(P4 + m2P5)
(6.25)

shock wave

contact discontinuity
expansion /
rarefaction wave

image credit:
C.P. Dullemond

Riemann problems

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

97

51 2 3 4

Figure 6.3. The solution to the shock tube problem of Sod for γ = 7/5, ρl = 105, Pl = 1,
ρr = 1.25 × 104 and Pr = 0.1, shown at time t = 5000. The regions 1 to 5, as mentioned in
the text, are annotated at the top.

region 2 represents an expansion wave, also called rarefaction wave. This is a simple wave of the
left-going characteristic family (the 1-characteristic family in the terminology of Section 6.1). It
is the only non-constant region in the solution. The dividing line between region 3 and 4 is a
contact discontinuity, i.e. a line separating two fluids of different entropy but the same pressure
and the same velocity. This is a “wave” of the middle characteristic family (the 2-characteristic
family in the terminology of Section 6.1). Therefore u3 = u4 and P3 = P4. The propagation
speed of the contact discontinuity is therefore also uc = u4 and the location of this discontinuity
at some time t is xcontact = uct. Regions 4 and 5 are separated by a forward moving shock wave.
This is a jump in the forward moving characteristic family (the 3-characteristic family in the
terminology of Section 6.1). Since u5 = 0 one can invoke mass conservation to write the shock
propagation speed us in terms of the velocity u4 and the densities in both regions:

us = u4
ρ4

ρ4 − ρ5
(6.23)

The location of the shock wave at time t is therefore xshock = ust. According to the Rankine-
Hugoniot conditions derived in Section 1.9 we can also relate the density ratio and the pressure
ratio over the shock:

ρ4

ρ5
=

P4 + m2P5

P5 + m2P4
(6.24)

wherem2 = (γ−1)/(γ+1). From these relations we can derive the velocity in region 4, because
we know that u5 = 0. We obtain

u4 = (P4 − P5)

√

1 − m2

ρ5(P4 + m2P5)
(6.25)

shock wave

contact discontinuity
expansion /
rarefaction wave

image credit:
C.P. Dullemond

can show: Solutions are self-similar, i.e.
they depend only on

Riemann problems
A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q((x − x0)/(t− t0)) (64)

∂tqk +∂xfk = 0 → qn+1/2
k,i−1/2,L = qnk,i−1/2,L−

∆t

2

fk(qn
i−1/2,L)− fK(qn

i−3/2,R)

∆x

qnk,i−1/2,R (65)

qnk,i−3/2,R (66)

qn+1
i = qni +

∆t

∆x
(fn+1/2

i−1/2 − fn+1/2
i+1/2) (67)

A(q) → A(q̂) (68)

q̂ (69)

û =

√
qLuL +

√
qRuR

√
qL +

√
qR

(70)

ĥtot =

√
qLhtot,L +

√
qRhtot,R

√
qL +

√
qR

(71)

4

Godunov’s method

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• assume piecewise constant fluid state

• exactly solve the Riemann problem at each interface (semi-
numeric, iteratively solve algebraic equations)

• choose time step small enough that solutions of neighbouring
interfaces do not overlap

• calculate new average of conserved quantities at end of time step

• easy as flux f(q(x=x0)) is constant for self-similar

99

x

t

Figure 6.4. Godunov’s method: solving a self-similar Riemann problem at each interface
(grey), and making sure that the time step is small enough that they do not overlap. The two
leftmost self-similar Riemann solutions just manage to touch by the end of the time step, which
means that the time step can not be made larger before they will interfere.

6.4 Godunov’s method
We can now apply what we learned about the solution of Riemann problems to devise a new
numerical method for numerical hydrodynamics. Consider our numerical solution at some time
tn to be given by qn

i . These are values of q given at the cell centers located at x = xi. We define
cell interfaces xi+1/2 in the usual way (see Chapter 4) to be located in between the cell centers xi

and xi+1. As our subgrid model we assume that at the start of the time step the state within each
cell is strictly constant (piecewise constant method, see Chapter 4). At each interface the state
variables now describe a jump. If we zoom in to the region around this interface we see that this
is precisely the definition of a Riemann problem, but this time locally within the two adjacent
cells. We can now calculate what the self-similar solution of the Riemann problem at each cell
interface i + 1/2 would be. This is a subgrid analytic evolution of the hydrodynamic system
within each pair of cells. This self-similar solution is calculated at each interface, so in order
to preserve the self-similar character of these solutions we must prevent the solutions from two
adjacent interfaces to overlap. This is depicted in Fig. 6.4. The time step is therefore restricted
to

∆t ≤ min(∆ti) (6.30)

where
∆ti =

xi+1/2 − xi−1/2

max(λi−1/2,k+) −min(λi+1/2,k−)
(6.31)

where λi−1/2,k+ denotes the maximum positive eigenvalue at interface i − 1/2, and will be 0 in
case no positive eigenvalues exist at that interface. Likewise λi+1/2,k− denotes the smallest (i.e.
most negative) negative eigenvalue at interface i + 1/2, or 0 if no negative eigenvalues exist.

How to proceed from here, i.e. how to create a numerical algorithm from this concept, can
be seen in two different way, which we will highlight in the two next subsections.

6.4.1 One way to look at Godunov’s method
At the end of the time step each cell i consists of three regions: a left region which is affected
by the Riemann solution at interface i − 1/2, a middle region which is not yet affected, and a
right region which is affected by the Riemann solution at interface i + 1/2. Since we know the
(semi-)analytic solutions of the Riemann problems and we of course know the unaffected state
in the middle region, we can (semi-)analytically average all state variables over the cell. This
averaging then results in the cell-center value of qn+1

i . This averaging procedure is very similar to
what was done in the donor-cell algorithm, but this time the state in the cell at the end of the time
step is far more complex than in the simple donor-cell algorithm. Because of this complexity we
shall not work this out in this chapter.

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

4

image credit: C.P. Dullemond

Godunov’s method

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• assume piecewise constant fluid state

• exactly solve the Riemann problem at each interface (semi-
numeric, iteratively solve algebraic equations)

• choose time step small enough that solutions of neighbouring
interfaces do not overlap

• calculate new average of conserved quantities at end of time step

• easy as flux f(q(x=x0)) is constant for self-similar

99

x

t

Figure 6.4. Godunov’s method: solving a self-similar Riemann problem at each interface
(grey), and making sure that the time step is small enough that they do not overlap. The two
leftmost self-similar Riemann solutions just manage to touch by the end of the time step, which
means that the time step can not be made larger before they will interfere.

6.4 Godunov’s method
We can now apply what we learned about the solution of Riemann problems to devise a new
numerical method for numerical hydrodynamics. Consider our numerical solution at some time
tn to be given by qn

i . These are values of q given at the cell centers located at x = xi. We define
cell interfaces xi+1/2 in the usual way (see Chapter 4) to be located in between the cell centers xi

and xi+1. As our subgrid model we assume that at the start of the time step the state within each
cell is strictly constant (piecewise constant method, see Chapter 4). At each interface the state
variables now describe a jump. If we zoom in to the region around this interface we see that this
is precisely the definition of a Riemann problem, but this time locally within the two adjacent
cells. We can now calculate what the self-similar solution of the Riemann problem at each cell
interface i + 1/2 would be. This is a subgrid analytic evolution of the hydrodynamic system
within each pair of cells. This self-similar solution is calculated at each interface, so in order
to preserve the self-similar character of these solutions we must prevent the solutions from two
adjacent interfaces to overlap. This is depicted in Fig. 6.4. The time step is therefore restricted
to

∆t ≤ min(∆ti) (6.30)

where
∆ti =

xi+1/2 − xi−1/2

max(λi−1/2,k+) −min(λi+1/2,k−)
(6.31)

where λi−1/2,k+ denotes the maximum positive eigenvalue at interface i − 1/2, and will be 0 in
case no positive eigenvalues exist at that interface. Likewise λi+1/2,k− denotes the smallest (i.e.
most negative) negative eigenvalue at interface i + 1/2, or 0 if no negative eigenvalues exist.

How to proceed from here, i.e. how to create a numerical algorithm from this concept, can
be seen in two different way, which we will highlight in the two next subsections.

6.4.1 One way to look at Godunov’s method
At the end of the time step each cell i consists of three regions: a left region which is affected
by the Riemann solution at interface i − 1/2, a middle region which is not yet affected, and a
right region which is affected by the Riemann solution at interface i + 1/2. Since we know the
(semi-)analytic solutions of the Riemann problems and we of course know the unaffected state
in the middle region, we can (semi-)analytically average all state variables over the cell. This
averaging then results in the cell-center value of qn+1

i . This averaging procedure is very similar to
what was done in the donor-cell algorithm, but this time the state in the cell at the end of the time
step is far more complex than in the simple donor-cell algorithm. Because of this complexity we
shall not work this out in this chapter.

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

4

for linear problems: same as advecting
the components in the eigenbasis

but accounts for shocks and contact
discontinuities

Cons: diffusive (constant fluxes
correspond to donor-cell
advection)

image credit: C.P. Dullemond

MUSCL-Hanckock scheme

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• make Godunov’s method second order by

• using a higher-order reconstruction
(piecewise linear, piecewise parabolic)

• computing the left and right q values at the
interface

• advance these values half a step in time

• use these values in the Riemann solver as
if the state is constant on each side of the
interface

• used in many codes, e.g.: Ramses, Arepo

64

x

q

x

q

x

q

Figure 4.2. Illustration of the piecewise linear advection algorithm. The slope is chosen ac-
cording to Lax-Wendroff’s method.

and similar for fi+1/2(t). The difference is:

⟨fi+1/2(t)⟩tn+1
tn − ⟨fi−1/2(t)⟩tn+1

tn = u(qn
i − qn

i−1) +
1

2
u(σn

i − σn
i−1)(∆x − u∆t) (4.20)

Using Eq. (4.10) we then obtain the update of the state after one time step:

qn+1
i = qn

i −
u∆t

∆x
(qn

i − qn
i−1) −

u∆t

∆x

1

2
(σn

i − σn
i−1)(∆x − u∆t) (4.21)

where we defined fn+1/2
i+1/2 ≡ ⟨fi+1/2(t)⟩tn+1

tn . Eq. (4.21) is the update of the state for a flux-
conserving piecewise linear scheme (assuming that the grid spacing is constant). This is the
higher-order version of the donor-cell algorithm. Note that it is identical to donor-cell if the
slopes are chosen to be zero. Note also that since we chose the grid to be constantly spaced and
the velocity to be globally constant, the algorithm is like an upwind scheme with a correction
term.

The question is now: how shall we choose the slope σn
i of the linear function? The idea

behind the piecewise linear scheme is that one uses the states at adjacent grid points in some
reasonable way. There are three obvious methods:

Centered slope: σn
i =

qn
i+1−qn

i−1

2∆x (Fromm’s method) (4.22)

Upwind slope: σn
i =

qn
i −qn

i−1

∆x (Beam-Warming method) (4.23)

Downwind slope: σn
i =

qn
i+1−qn

i

∆x (Lax-Wendroff method) (4.24)

All these choices result in second-order accurate methods.
→ Exercise: Prove that the piecewise linear scheme with a downwind slope indeed produces

the Lax-Wendroff scheme of Eq. (3.96) in Chapter 3.

left value at
interface

right value
at interface

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

∂tqk = ∂xfk → qn+1/2
k,i−1/2,L = qnk,i−1/2,L (65)

4

ii-1

i-1/2

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

∂tqk = ∂xfk → qn+1/2
k,i−1/2,L = qnk,i−1/2,L (65)

qnk,i−1/2,R (66)

4

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

∂tqk = ∂xfk → qn+1/2
k,i−1/2,L = qnk,i−1/2,L +

∆t

2

fk(qn
i−1/2,L)− fK(qn

i−3/2,R)

∆x

qnk,i−1/2,R (65)

qnk,i−3/2,R (66)

4

image credit:
C.P. Dullemond

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

∂tqk +∂xfk = 0 → qn+1/2
k,i−1/2,L = qnk,i−1/2,L−

∆t

2

fk(qn
i−1/2,L)− fK(qn

i−3/2,R)

∆x

qnk,i−1/2,R (65)

qnk,i−3/2,R (66)

qn+1
i = qni +

∆t

∆x
(fn+1/2

i−1/2 − fn+1/2
i+1/2) (67)

A(q) → A(q̂) (68)

q̂ (69)

û =

√
qLuL +

√
qRuR

√
qL +

√
qR

(70)

ĥtot =

√
qLhtot,L +

√
qRhtot,R

√
qL +

√
qR

(71)

4

Roe’s linearized Riemann solver

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• exact Riemann solvers can be slow (e.g. for magneto-
hydrodynamics)

• alternatively linearise the problem at each interface by setting

• a solution can then be found by decomposing the left and
right states into the eigenbasis of

• and advecting the components with the corresponding
characteristic velocity

➡ yields a solution in smooth parts of the flow

➡ every reasonable average value for should work there

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

∂tqk = ∂xfk → qn+1/2
k,i−1/2,L = qnk,i−1/2,L +

∆t

2

fk(qn
i−1/2,L)− fK(qn

i−3/2,R)

∆x

qnk,i−1/2,R (65)

qnk,i−3/2,R (66)

qn+1
i = qni +

∆t

∆x
(fn+1/2

i−1/2 − fn+1/2
i+1/2) (67)

A(q) → A(q̂) (68)

q̂ (69)

4

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

∂tqk = ∂xfk → qn+1/2
k,i−1/2,L = qnk,i−1/2,L +

∆t

2

fk(qn
i−1/2,L)− fK(qn

i−3/2,R)

∆x

qnk,i−1/2,R (65)

qnk,i−3/2,R (66)

qn+1
i = qni +

∆t

∆x
(fn+1/2

i−1/2 − fn+1/2
i+1/2) (67)

A(q) → A(q̂) (68)

q̂ (69)

4

suitable average value
between left and right state

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

∂tqk = ∂xfk → qn+1/2
k,i−1/2,L = qnk,i−1/2,L +

∆t

2

fk(qn
i−1/2,L)− fK(qn

i−3/2,R)

∆x

qnk,i−1/2,R (65)

qnk,i−3/2,R (66)

qn+1
i = qni +

∆t

∆x
(fn+1/2

i−1/2 − fn+1/2
i+1/2) (67)

A(q) → A(q̂) (68)

q̂ (69)

4

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

∂tqk = ∂xfk → qn+1/2
k,i−1/2,L = qnk,i−1/2,L +

∆t

2

fk(qn
i−1/2,L)− fK(qn

i−3/2,R)

∆x

qnk,i−1/2,R (65)

qnk,i−3/2,R (66)

qn+1
i = qni +

∆t

∆x
(fn+1/2

i−1/2 − fn+1/2
i+1/2) (67)

A(q) → A(q̂) (68)

q̂ (69)

4

Roe’s linearized Riemann solver

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• It is possible to choose the average such that the
linearized Riemann solver also gives the correct propagation
of contact discontinuities and shocks

• Roe average:

• When using this average one can show that the “jump”
corresponds exactly to one eigenvector with a eigenvalue
given by the correct velocity (e.g. the shock velocity).

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

∂tqk = ∂xfk → qn+1/2
k,i−1/2,L = qnk,i−1/2,L +

∆t

2

fk(qn
i−1/2,L)− fK(qn

i−3/2,R)

∆x

qnk,i−1/2,R (65)

qnk,i−3/2,R (66)

qn+1
i = qni +

∆t

∆x
(fn+1/2

i−1/2 − fn+1/2
i+1/2) (67)

A(q) → A(q̂) (68)

q̂ (69)

4

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

∂tqk = ∂xfk → qn+1/2
k,i−1/2,L = qnk,i−1/2,L +

∆t

2

fk(qn
i−1/2,L)− fK(qn

i−3/2,R)

∆x

qnk,i−1/2,R (65)

qnk,i−3/2,R (66)

qn+1
i = qni +

∆t

∆x
(fn+1/2

i−1/2 − fn+1/2
i+1/2) (67)

A(q) → A(q̂) (68)

q̂ (69)

û =

√
qLuL +

√
qRuR

√
qL +

√
qR

(70)

4

A(q) ̸= const (57)

λ− = u−

√

γP

ρ
= u− cs (58)

λ0 = u (59)

λ+ = u+

√

γP

ρ
= u+ cs (60)

q(x, t = t0) = qL forx < x0 (61)

q(x, t = t0) = qR forx > x0 (62)

(63)

q(x, t) = q(x − x0/(t− t0)) (64)

∂tqk = ∂xfk → qn+1/2
k,i−1/2,L = qnk,i−1/2,L +

∆t

2

fk(qn
i−1/2,L)− fK(qn

i−3/2,R)

∆x

qnk,i−1/2,R (65)

qnk,i−3/2,R (66)

qn+1
i = qni +

∆t

∆x
(fn+1/2

i−1/2 − fn+1/2
i+1/2) (67)

A(q) → A(q̂) (68)

q̂ (69)

û =

√
qLuL +

√
qRuR

√
qL +

√
qR

(70)

ĥtot =

√
qLhtot,L +

√
qRhtot,R

√
qL +

√
qR

(71)

4

Multi-dimensional hydrodynamics

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• unsplit schemes:

• compute fluxes for all interfaces of cells

• update cell values once per time step

• directionally split schemes:

• apply 1D hydro scheme alternately along the different
directions

• needs less memory

• but typically preserves e.g. spherical symmetry less well

Adaptive mesh-refinement

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

source: http://www.deus-consortium.org/a-propos/cosmological-models/run/

Eulerian codes use adaptive mesh refinement to get higher resolution in high
density regions

http://www.deus-consortium.org/a-propos/cosmological-models/run/

Moving-mesh hydrodynamics (e.g. Arepo code)

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

• alternatively one can define a
mesh based on a set of points
using a Voronoi tessellation

• points can be allowed to move,
e.g. with the fluid -> then almost
Lagrangian

• need to:

• use unspilt scheme

• transform to frame of moving

interface

• solve Riemann problem

• transform back

Galiliean-invariant cosmological hydrodynamical simulations on a moving mesh 5

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Figure 1. Example of a Voronoi and Delaunay tessellation in 2D, with periodic boundary conditions. The panel on the left shows the
Voronoi tessellation for N = 64 points (shown as red circles), the panel in the middle gives the corresponding Delaunay tessellation,
while the panel on the right shows both simultaneously (solid lines show the Voronoi, dashed lines the Delaunay tessellation).

splits the tessellation into two halfs; those can then be pro-
cessed recursively in turn.

Direct incremental construction techniques start out
from one Delaunay edge, and then find the correct point
that completes it to form a Delaunay triangle. This has
been used by van de Weygaert (1994), for example, who ap-
plied Voronoi tessellations for a statistical analysis of cosmic
structures (a comprehensive dicussion and overview about
this topic is given by van de Weygaert & Schaap, 2009).

Finally, the flipping method starts from an arbitrary
triangulation, and then tries to give it the Delaunay prop-
erty by local changes in the triangulation (“flips”). In 2D, it
can be shown that this can always succeed through simple
flips of edges between two adjacent triangles. However, in
3D, one may get get stuck with tetrahedralizations that are
not flipable into the correct Delaunay triangulation. While
this may appear as a show stopper for incremental insertion
algorithms in 3D, Edelsbrunner & Shah (1996) have shown
that this is not the case. Provided one starts with a valid
Delaunay triangulation, local flips can always restore De-
launayhood after a further point has been inserted into the
mesh, so that the incremental insertion strategy is actually
a robust algorithm also for the three-dimensional case.

We use the incremental insertion strategy in our new
hydrodynamical code. It is among the fastest known algo-
rithms, and most importantly for us, it allows implementing
our particular parallelization strategy for distributed mem-
ory machines, which requires that additional points from
other processors can be easily added to an existing local
tessellation. This task can not be readily accomplished with
the other tessellation approaches, where normally the full
point set needs to be known already at the start of the tes-
sellation procedure.

We illustrate the sequential insertion algorithm in Fig-
ure 2. Starting from a valid Delaunay tessellation, the new
point first needs to be located in one of the triangles (or
tetrahedra in 3D), a problem we shall discuss further below.
After this first step, the identified triangle is then subdi-
vided into 3 triangles by inserting the point, yielding a new
triangulation. However, one or several of the new triangles
may now violate the empty circumcircle criterion. We note

that the latter can also be formulated for individual edges;
we say an edge is a Delaunay edge if there exists a circle
through both of its endpoints which does not contain any
other point in its interior. It can be shown that if an edge is
Delaunay, it is part of the correct Delaunay triangulation.
It is easy to show that the three edges around the newly
inserted point are Delaunay, but the opposite edges may
have lost this property as a result of the insertion (marked
in red in ‘Step 2’ of Fig. 2). These edges must be tested in
turn using the in-circle criterion. If a violating edge is found
(Step 4), it is flipped in the quadrilateral formed by the two
adjacent triangles. This produces two more edges that may
now have lost the Delaunay property, and which lie again
opposite of the inserted point. These edges are added to the
list of edges that need to be tested with the in-circle crite-
rion. The algorithm continues until this list is exhausted, at
which point the new site has been successfully inserted, and
a new valid Delaunay triangulation has been obtained.

To make sure that every point that needs to be inserted
always lies in a triangle to begin with, we start the tessel-
lation procedure with a fiducial large triangle enclosing the
whole system. Especially in 3D dimensions, this simplifies
the algorithms enormously, as the difficult case of an in-
sertion of a point outside of the convex hull of the current
tessellation does not have to be dealt with.

In practice, we will always use periodic or reflecting
boundaries that are realized with a layer of ghost cells (see
below). The enclosing triangle is chosen large enough that
both the primary simulation domain and the ghost region
are enclosed in its interior, such that the enclosing triangle’s
shape or orientation does not influence the used part of the
final tessellation in any way.

The geometric in-circle test can be formulated com-
pactly in terms of an evaluation of a determinant. For ex-
ample, in 2D, the in-circle test is given by

TInCircle(a, b, c, d) =

∣

∣

∣

∣

∣

∣

∣

1 ax ay a2
x + a2

y

1 bx by b2
x + b2

y

1 cx cy c2
x + c2

y

1 dx dy d2
x + d2

y

∣

∣

∣

∣

∣

∣

∣

=

c⃝ 0000 RAS, MNRAS 000, 000–000

image credit: V. Springel

Voronoi tessellation

Moving-mesh methods

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

credit: V. Springel

Moving-mesh methods

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

credit: V. Springel

Moving-mesh methods

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

credit: V. Springel

source: http://en.wikipedia.org/wiki/File:Wavecloudsduval.jpg

http://en.wikipedia.org/wiki/File:Wavecloudsduval.jpg

image credit: V. Springel

Eulerian vs Lagrangian methods

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

discretize space
(finite-volume scheme)

Eulerian methods Lagrangian methods

discretize mass

use a grid fixed in space
use particles for the gas (like
in n-body) which move with

the flow

moving-mesh

discretize space
(finite-volume scheme)

48 V. Springel

AREPO, moving, t = 0.5 AREPO, moving, t = 1.0

AREPO, moving, t = 1.5 AREPO, moving, t = 2.0

AREPO, fixed, t = 2.0 ATHENA, t = 2.0

Figure 32. The top four panels show the time evolution of the Kelvin Helmholtz instability in a low resolution (50×50) test calculation
with the moving-mesh method. Each panel gives the density field (at times t = 0.5, 1.0, 1.5 and 2.0), with the Voronoi mesh overlaid in
black in the lower half of the box. For comparison, the lower two panels show the results for the same initial conditions, but this time
computed keeping the initial Cartesian mesh fixed. The panel on the bottom left shows the result at time t = 2.0 obtained with our code
AREPO for a fixed mesh, while the bottom right gives the result of ATHENA (with second order reconstruction and the Roe solver).
The latter two results are nearly identical. Note however that in the non-linear regime the KH instability appears to evolve somewhat
faster for the moving-mesh code compared with the fixed grid.

c⃝ 0000 RAS, MNRAS 000, 000–000

uses an unstructured
mesh moving with the flow

image credit: V. Springel

Eulerian vs Lagrangian methods

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

discretize space
(finite-volume scheme)

Eulerian methods Lagrangian methods

discretize mass

use a grid fixed in space
use particles for the gas (like
in n-body) which move with

the flow

moving-mesh

discretize space
(finite-volume scheme)

48 V. Springel

AREPO, moving, t = 0.5 AREPO, moving, t = 1.0

AREPO, moving, t = 1.5 AREPO, moving, t = 2.0

AREPO, fixed, t = 2.0 ATHENA, t = 2.0

Figure 32. The top four panels show the time evolution of the Kelvin Helmholtz instability in a low resolution (50×50) test calculation
with the moving-mesh method. Each panel gives the density field (at times t = 0.5, 1.0, 1.5 and 2.0), with the Voronoi mesh overlaid in
black in the lower half of the box. For comparison, the lower two panels show the results for the same initial conditions, but this time
computed keeping the initial Cartesian mesh fixed. The panel on the bottom left shows the result at time t = 2.0 obtained with our code
AREPO for a fixed mesh, while the bottom right gives the result of ATHENA (with second order reconstruction and the Roe solver).
The latter two results are nearly identical. Note however that in the non-linear regime the KH instability appears to evolve somewhat
faster for the moving-mesh code compared with the fixed grid.

c⃝ 0000 RAS, MNRAS 000, 000–000

uses an unstructured
mesh moving with the flow

accurate hydro

accurate hydro, automatic
refinement on density,
Galilean invariant by

construction

automatic refinement on density,
Galilean invariant by construction,

conserves angular momentum
(and entropy in smooth flows)

exactly

need adaptive mesh refinement
to get high resolution

overhead (~30%) for mesh
construction

somewhat less accurate hydro
(e.g. fluid instabilities, but recent

improvements), slower
convergence

Pros:

Cons:

Literature & Outlook

• Lecture script “Numerical Fluid Dynamics”, C.P. Dullemond and V.
Springel, http://www.ita.uni-heidelberg.de/~dullemond/lectures/
num_fluid_2012/index.shtml?lang=en

• ”Numerical Methods for Conservation Laws”, R.J. LeVeque

• “E pur si muove: Galilean-invariant cosmological hydrodynamical
simulations on a moving mesh”, V. Springel, 2010, MNRAS, 401,
791

• Next lecture (Ben):

• Smoothed Particle Hydrodynamics, radiative cooling, sub-

resolution physics
Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016

http://www.ita.uni-heidelberg.de/~dullemond/lectures/num_fluid_2012/index.shtml?lang=en

