

Numerical Galaxy Formation and Cosmology Lecture3: Numerical hydrodynamics on a mesh

Ewald Puchwein & Benjamin Moster

Why hydrodynamics?

• Everything we see is gas or made from gas

image credit: NASA

- Need to follow the hydrodynamics:
 - To form galaxies and stars
 - To study the interstellar, intergalactic and intracluster medium

Ewald Puchwein

bullet cluster

image credit: NASA

bullet cluster

Gas: collisional due to (magneto-)hydrodynamical forces

dark matter (only gravity): collisionless

> k matter (only gravity): collisionless

> > image credit: NASA

Eulerian vs Lagrangian methods

Eulerian methods

discretize space (finite-volume scheme)

use a grid fixed in space

Lagrangian methods

discretize mass

Eulerian vs Lagrangian methods

Eulerian methods

discretize space (finite-volume scheme)

moving-mesh

discretize space (finite-volume scheme)

image credit: V. Springel

use a grid fixed in space

uses an unstructured mesh moving with the flow

Lagrangian methods

discretize mass

The Euler equations

 The equations of hydrodynamics can be written in terms of conserved quantities

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0 & \text{mass conservation} \\ \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u}\mathbf{u}) + \nabla P &= \mathbf{0} & \text{momentum conservation} \\ \frac{\partial \rho e_{\text{tot}}}{\partial t} + \nabla \cdot ((\rho e_{\text{tot}} + P)\mathbf{u}) &= 0 & \text{energy conservation} \\ \end{split}$$
with $e_{\text{tot}} = e + \frac{u^2}{2}$ and e = internal energy per unit mass

$$P = (\gamma - 1)\rho e$$
 equation of state

• Let's consider a simpler problem first

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

and assuming u = const.

- tesselate space into cells for numerical treatment
- need to advect the mass such that total mass is conserved
 - ➡ calculate mass fluxes at cell interfaces
 - remove mass from the cell on one side of the interface and add it to the cell on the other side (this ensures mass conservation)

update conserved quantities

$$q_i^{n+1} = q_i^n + \frac{\Delta t}{\Delta x} (f_{i-1/2}^{n+1/2} - f_{i+1/2}^{n+1/2})$$

• simplest method: donor-cell algorithm

$$f_{i-1/2} = q_{i-1}u \quad \text{for u} > \mathbf{0}$$

• or in general

$$f_{i-1/2} = \frac{1}{2}u_{i-1/2} \left[(1 + \theta_{i-1/2})q_{i-1} + (1 - \theta_{i-1/2})q_i \right]$$

where $\theta_{i-1/2} = sgn(u_{i-1/2})$

- simplest method: donor-cell algorithm
- advection of top hat:

- simplest method: donor-cell algorithm
- advection of top hat:

• next higher order: piecewise linear within cell

average density at interface over time step Δt

$$q_{\text{average},i-1/2} = q_{i-1} + \sigma_{i-1} \left(\frac{\Delta x}{2} - \frac{u\Delta t}{2}\right)$$

flux -> $f_{i-1/2} = q_{\text{average}, i-1/2} u$

Ewald Puchwein

Numerical Galaxy Formation and Cosmology - Lecture 3

What should we use for the slope (for u>0)?

Lax-Wendroff (downwind)

$$\sigma_{i-1} = \frac{q_i - q_{i-1}}{\Delta x}$$

image credit: C.P. Dullemond

Ewald Puchwein

Numerical Galaxy Formation and Cosmology - Lecture 3

What should we use for the slope (for u>0)?

Lax-Wendroff (downwind)

$$\sigma_{i-1} = \frac{q_i - q_{i-1}}{\Delta x}$$

Ewald Puchwein

Numerical Galaxy Formation and Cosmology - Lecture 3

What should we use for the slope (for u>0)?

Lax-Wendroff (downwind)

$$\sigma_{i-1} = \frac{q_i - q_{i-1}}{\Delta x}$$

Fromm (cell-centered)

$$\sigma_{i-1} = \frac{q_i - q_{i-2}}{2\Delta x}$$

Ewald Puchwein

Numerical Galaxy Formation and Cosmology - Lecture 3

What should we use for the slope (for u>0)?

Lax-Wendroff (downwind)

$$\sigma_{i-1} = \frac{q_i - q_{i-1}}{\Delta x}$$

Fromm (cell-centered)

$$\sigma_{i-1} = \frac{q_i - q_{i-2}}{2\Delta x}$$

Ewald Puchwein

Numerical Galaxy Formation and Cosmology - Lecture 3

image credit: C.P. Dullemond

What should we use for the slope (for u>0)?

Lax-Wendroff (downwind)

$$\sigma_{i-1} = \frac{q_i - q_{i-1}}{\Delta x}$$

Fromm (cell-centered)

$$\sigma_{i-1} = \frac{q_i - q_{i-2}}{2\Delta x}$$

superbee flux limiter

 $\sigma_{i-1} = \max(0, \min(1, 2r), \min(2, r)) \times (q_i - q_{i-1})$ $r \equiv \frac{q_{i-2} - q_{i-1}}{q_i - q_{i-1}}$

Ewald Puchwein

Numerical Galaxy Formation and Cosmology - Lecture 3

27/01/2016

100

image credit: C.P. Dullemond

What should we use for the slope (for u>0)?

Lax-Wendroff (downwind)

$$\sigma_{i-1} = \frac{q_i - q_{i-1}}{\Delta x}$$

Fromm (cell-centered)

$$\sigma_{i-1} = \frac{q_i - q_{i-2}}{2\Delta x}$$

superbee flux limiter

 $\sigma_{i-1} = \max(0, \min(1, 2r), \min(2, r)) \times (q_i - q_{i-1})$ $r \equiv \frac{q_{i-2} - q_{i-1}}{q_i - q_{i-1}}$

Ewald Puchwein

Numerical Galaxy Formation and Cosmology - Lecture 3

• With a suitable advection scheme we can solve

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

with u = const.

• the full Euler equations are, however, coupled

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$
$$\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u}\mathbf{u}) + \nabla P = \mathbf{0} \qquad P = (\gamma - 1)\rho e$$
$$\frac{\partial \rho e_{\text{tot}}}{\partial t} + \nabla \cdot ((\rho e_{\text{tot}} + P)\mathbf{u}) = 0$$

 Is it possible to decouple the equations? First we rewrite them (for simplicity in 1D) by defining

$$q_1 = \rho$$
$$q_2 = \rho u$$
$$q_3 = \rho e_{\text{tot}}$$

Using this we find

$$u = \frac{q_2}{q_1}$$

$$e = e_{\text{tot}} - \frac{1}{2}u^2 = \frac{q_3}{q_1} - \frac{1}{2}\frac{q_2^2}{q_1^2}$$

$$P = (\gamma - 1)\left(q_3 - \frac{1}{2}\frac{q_2^2}{q_1}\right)$$

-> all fluid quantities can be written in terms of q_1,q_2,q_3

-> can use these expressions to replace them in the Euler equations

Ewald Puchwein

Numerical Galaxy Formation and Cosmology - Lecture 3

• Euler equations in terms of q₁,q₂,q₃

$$\partial_t \begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix} + \partial_x \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = 0$$

$$\uparrow$$
conserved quantities fluxes

where

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \begin{pmatrix} \rho u \\ \rho u^2 + P \\ (\rho e_{\text{tot}} + P)u \end{pmatrix} = \begin{pmatrix} q_2 \\ (\gamma - 1)q_3 + \frac{3 - \gamma}{2} \frac{q_2^2}{q_1} \\ \gamma \frac{q_2 q_3}{q_1} + \frac{1 - \gamma}{2} \frac{q_2^3}{q_1^2} \end{pmatrix}$$

can be written more compact using the Jacobian

$$A_{k,j}(q) \equiv \frac{\partial f_k}{\partial q_j} \quad \longrightarrow \quad \partial_t q_k + A_{k,j}(q) \partial_x q_j = 0$$

Ewald Puchwein

Numerical Galaxy Formation and Cosmology - Lecture 3

 Let us one more time consider a simpler system first and assume A(q) = A = const.

$$\partial_t q_k + A_{k,j} \partial_x q_j = 0$$

 We can then decouple the equations by finding the eigensystem of the matrix A

$$\lambda_1, \lambda_2, \lambda_3$$
 $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$
eigenvalues eigenvectors

• We can then decompose the state q in this eigenbasis

$$\mathbf{q} = \sum_{m} \tilde{q}_m \mathbf{e}_m$$

and find the equations for the individual components

Ewald Puchwein

• Plugging decomposition into $\partial_t q_k + A_{k,j} \partial_x q_j = 0$

 $\partial_t \tilde{q}_m \mathbf{e}_m + \mathbf{A} \partial_x \tilde{q}_m \mathbf{e}_m = 0 \qquad \rightarrow \quad \mathbf{e}_m \partial_t \tilde{q}_m + \lambda_m \mathbf{e}_m \partial_x \tilde{q}_m = 0$

and hence

$$\rightarrow \quad \partial_t \tilde{q}_m + \lambda_m \partial_x \tilde{q}_m = 0$$

- This is a simple advection equation with characteristic velocity λ_m
- We can thus solve the coupled set of equations by
 - expanding the state vector in the eigenbasis $q_k \rightarrow \tilde{q}_m$
 - advecting each \tilde{q}_m with its characteristic velocity
 - recomputing the new state from the updated $\tilde{q}_m \rightarrow q_k$

- Each of these modes propagating with a characteristic velocity is called a *characteristic*
- for the full Euler equations $\mathbf{A}(\mathbf{q}) \neq \mathrm{const}$
 - eigenvectors depend on q (and thus position)
 - no global decomposition of the state vector possible
- locally we find:

$$egin{aligned} \lambda_{-} &= u - \sqrt{rac{\gamma P}{
ho}} = u - c_{
m s} & ext{backward travelling sound wave} \ \lambda_{0} &= u & ext{fluid motion} \ \lambda_{+} &= u + \sqrt{rac{\gamma P}{
ho}} = u + c_{
m s} & ext{forward travelling sound wave} \end{aligned}$$

Numerical Galaxy Formation and Cosmology - Lecture 3

image credit: C.P. Dullemond

could decompose the state vector locally at each cell interface and advect the components with their local characteristic velocities

Riemann problems

- What about shocks and contact discontinuities?
 - eigensystems differ significantly on both sides
- Let's look at the full Riemann problem:

$$q(x, t = t_0) = q_L \quad \text{for } x < x_0$$
$$q(x, t = t_0) = q_R \quad \text{for } x > x_0$$

• e.g. for $u_L=u_R=0$

Ewald Puchwein

Riemann problems

Riemann problems

Godunov's method

- assume piecewise constant fluid state
- exactly solve the Riemann problem at each interface (seminumeric, iteratively solve algebraic equations)
- choose time step small enough that solutions of neighbouring interfaces do not overlap

• easy as flux f(q(x=x_0)) is constant for self-similar $q(x - x_0/(t - t_0))$

Godunov's method

- assume piecewise constant fluid state
- exactly solve the Riemann problem at each interface (seminumeric, iteratively solve algebraic equations)

choose time stern for linear problems: same as advecting the components in the eigenbasis

but accounts for shocks and contact discontinuities

image credit: C.P. Dullemond

- calculate new a Cons:
- easy as flux f(q

ns: diffusive (constant fluxes correspond to donor-cell advection)

Ewald Puchwein

 t_0)

MUSCL-Hanckock scheme

- make Godunov's method second order by
- using a higher-order reconstruction (piecewise linear, piecewise parabolic)
- computing the left and right q values at the interface
- advance these values half a step in time

$$\partial_t q_k + \partial_x f_k = 0 \quad \to \quad q_{k,i-1/2,L}^{n+1/2} = q_{k,i-1/2,L}^n - \frac{\Delta t}{2} \frac{f_k(\mathbf{q}_{i-1/2,L}^n) - f_K(\mathbf{q}_{i-3/2,R}^n)}{\Delta x} \quad \begin{array}{c} \text{intervalue at interface} \\ \text{interface} \\ q_{k,i-1/2,L}^n & q_{k,i-1/2,R}^n \end{array}$$

- use these values in the Riemann solver as if the state is constant on each side of the interface
- used in many codes, e.g.: Ramses, Arepo

Ewald Puchwein

Numerical Galaxy Formation and Cosmology - Lecture 3

$$q_{k,i-3/2,\mathrm{R}}^{n}$$
 inage credit:
C.P. Dullemond
 $q_{i-1/2}^{n}$ is the second sec

interface

27/01/2016

at interface

Roe's linearized Riemann solver

- exact Riemann solvers can be slow (e.g. for magnetohydrodynamics)
- alternatively linearise the problem at each interface by setting

 $\mathbf{A}(\mathbf{q}) \rightarrow \mathbf{A}(\hat{\mathbf{q}})$

suitable average value between left and right state

- a solution can then be found by decomposing the left and right states into the eigenbasis of ${\bf A}(\hat{\bf q})$
- and advecting the components with the corresponding characteristic velocity
 - ➡ yields a solution in smooth parts of the flow
 - \clubsuit every reasonable average value for $\,\hat{\mathbf{q}}\,$ should work there

Roe's linearized Riemann solver

- It is possible to choose the average \hat{q} such that the linearized Riemann solver also gives the correct propagation of contact discontinuities and shocks
- Roe average:

$$\hat{u} = \frac{\sqrt{q_{\rm L}}u_{\rm L} + \sqrt{q_{\rm R}}u_{\rm R}}{\sqrt{q_{\rm L}} + \sqrt{q_{\rm R}}}$$

$$\hat{h}_{\text{tot}} = \frac{\sqrt{q_{\text{L}}}h_{\text{tot,L}} + \sqrt{q_{\text{R}}}h_{\text{tot,R}}}{\sqrt{q_{\text{L}}} + \sqrt{q_{\text{R}}}}$$

• When using this average one can show that the "jump" corresponds exactly to one eigenvector with a eigenvalue given by the correct velocity (e.g. the shock velocity).

Multi-dimensional hydrodynamics

- unsplit schemes:
 - compute fluxes for all interfaces of cells
 - update cell values once per time step
- directionally split schemes:
 - apply 1D hydro scheme alternately along the different directions
 - needs less memory
 - but typically preserves e.g. spherical symmetry less well

Adaptive mesh-refinement

Eulerian codes use adaptive mesh refinement to get higher resolution in high density regions

source: http://www.deus-consortium.org/a-propos/cosmological-models/run/

Ewald Puchwein

Numerical Galaxy Formation and Cosmology - Lecture 3

Moving-mesh hydrodynamics (e.g. Arepo code)

- alternatively one can define a mesh based on a set of points using a Voronoi tessellation
- points can be allowed to move, e.g. with the fluid -> then almost Lagrangian
- need to:
 - use unspilt scheme
 - transform to frame of moving interface
 - solve Riemann problem
 - transform back

Voronoi tessellation

image credit: V. Springel

Moving-mesh methods

credit: V. Springel

Ewald Puchwein

Numerical Galaxy Formation and Cosmology - Lecture 3

Moving-mesh methods

credit: V. Springel

Ewald Puchwein

Numerical Galaxy Formation and Cosmology - Lecture 3

Moving-mesh methods

Ewald Puchwein

Numerical Galaxy Formation and Cosmology - Lecture 3

Eulerian vs Lagrangian methods

Eulerian methods

discretize space (finite-volume scheme)

moving-mesh

discretize space (finite-volume scheme)

image credit: V. Springel

use a grid fixed in space

uses an unstructured mesh moving with the flow

Lagrangian methods

discretize mass

Eulerian vs Lagrangian methods

Pros:

accurate hydro

accurate hydro, automatic refinement on density, Galilean invariant by construction

automatic refinement on density, Galilean invariant by construction, conserves angular momentum (and entropy in smooth flows) exactly

Cons:

need adaptive mesh refinement overhead (~30%) for mesh to get high resolution

construction

somewhat less accurate hydro (e.g. fluid instabilities, but recent improvements), slower convergence

Literature & Outlook

- Lecture script "Numerical Fluid Dynamics", C.P. Dullemond and V. Springel, <u>http://www.ita.uni-heidelberg.de/~dullemond/lectures/</u> <u>num_fluid_2012/index.shtml?lang=en</u>
- "Numerical Methods for Conservation Laws", R.J. LeVeque
- "E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh", V. Springel, 2010, MNRAS, 401, 791
- Next lecture (Ben):
 - Smoothed Particle Hydrodynamics, radiative cooling, subresolution physics

Ewald Puchwein