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Numerical Galaxy Formation and Cosmology
Lecture3: Numerical hydrodynamics on a mesh

Ewald Puchwein & Benjamin Moster



Why hydrodynamics?

- Everything we see is gas or made from gas

image credit: NASA

* Need to follow the hydrodynamics:
* To form galaxies and stars

* To study the interstellar, intergalactic and intracluster medium
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Eulerian vs Lagrangian methods

Eulerian methods

discretize space

Lagrangian methods

discretize mass

(finite-volume scheme)

use particles for the gas (like

use a grid fixed in space in n-body) which move with
the flow
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Eulerian vs Lagrangian methods

Eulerian methods

discretize space
(finite-volume scheme)

use a grid fixed in space

Ewald Puchwein

moving-mesh

discretize space

(finite-volume scheme)

image credit: V. Springel

uses an unstructured
mesh moving with the flow
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Lagrangian methods

discretize mass

use particles for the gas (like
in n-body) which move with
the flow
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The Euler equations

- The equations of hydrodynamics can be written in terms of
conserved quantities

% +V-(pu) =0 mass conservation
8(507511) + V- (puu) + VP =0 momentum conservation
dpeto
’ng L+ V- ((petor + P)u) =0 energy conservation
22
with  €iot = € + 5} and e = internal energy per unit mass

P=(y—1)pe equation of state
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Advection on a grid

- Let’s consider a simpler problem first

% +V-(pu)=0
and assuming u = const.

- tesselate space into cells for numerical treatment

- need to advect the mass such that total mass is conserved
= calculate mass fluxes at cell interfaces

= remove mass from the cell on one side of the interface and
add it to the cell on the other side (this ensures mass
conservation)
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Advection on a grid

- update conserved guantities

At
n+l _ n n+1/2 n+1/2
¢ =q + E(fz'—l/Q — fiv1/2)

« simplest method: donor-cell algorithm
fi—1/2 = (¢;—1U foru>0

* Or in general
1
Jic1/2 = o Wi=1/2 (1 +0;—1/2)qi—1+ (1 — 0;-1/2)¢]

where 6, 1/, =sgn(u;_1/2)

Ewald Puchwein
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g ... conserved quantity
i-1/2

X
image credit: C.P. Dullemond

27/01/2016



Advection on a grid

 simplest method: donor-cell algorithm

- advection of top hat:
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Advection on a grid

 simplest method: donor-cell algorithm

- advection of top hat:

1.2

-> scheme is very diffusive

/
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Advection on a grid

 next higher order: piecewise linear within cell

u dt

-1 P12 i X  image credit: C.P. Dullemond

average density at interface over time step At

Ax uAt)

Qaverage,i—1/2 — qi—1 +0;_1 ( 5 — 5

flux -> f'i,—l/2 = (average,i—1/2U
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Advection on a grid

Reconstruct i-1/2
gt ' ' What should we use for
the slope (for u>0)?
Lax-Wendroff (downwind)
_ q - q'—l
i Evolve E | | Oi_1 = #
. - Average -
ql '

image credit: C.P. Dullemond
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Lax-Wendroff |
(downwind) |

Advection on a grid

Reconstruct i-1/2

What should we use for
the slope (for u=0)?

A

Lax-Wendroff (downwind)

Evolve ) o1 = M
i : : : 1— AQ?

¥ Average 5

image credit: C.P. Dullemond
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Lax-Wendroff |
(downwind) |

Advection on a grid

0.6

Reconstruct i-1/2

What should we use for
the slope (for u>0)?

Lax-Wendroff (downwind)

qi — 4i—1
Ax

N Evolve : | | i1 =

Fromm (cell-centered)

2Ax

O;—1 =
% Average E

image credit: C.P. Dullemond
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Advection on a grid

Reconstruct i-1/2

What should we use for
the slope (for u>0)?

Lax-Wendroff (downwind)

qi — 4i—1
Ax

N Evolve : | | i1 =

q — — —

Fromm (cell-centered)

Oi—1 =

2Ax

% Average 5

image credit: C.P. Dullemond
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(downwind)

Lax-Wendroff

n n n n
20 40 60 80 100

120

Fromm (cell-centered)
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Advection on a grid

(downwind)

0.8

0.6

Reconstruct

i-1/2

Evolve
e

q] -

¥ Average 5

image credit: C.P. Dullemond
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What should we use for

Lax-Wendroff

n n n n
0 20 40 60 80 100

120

the slope (for u>0)?

Lax-Wendroff (downwind)

qi — 4i—1
Ax

Oi—1 =

Fromm (cell-centered)

Fromm (cell-centered)

2Ax

Oi—1 =

superbee flux limiter

0;—1 = max(0, min(1, 27), min(2,7)) X (¢; — qi—1)
qi—2 — qi—1
4 — qi—1

r
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Lax-Wendroff |
~ (downwind) ’
Advection on a grid
Reconstruct i-1/2 1
gt ~ | ' What should we use for V. G |

the slope (for u>0)?

Frorﬁm (cell-centered)
Lax-Wendroff (downwind)

_ q —_ q._l
N Evolve | | | i1 = %
Fromm (cell-centered) P —
superbee flux limiter
o 4 — gi-2
i—1 = —Qax
. - Average - 2Ax
ql '
superbee flux limiter

0;—1 = max(0, min(1, 27), min(2,7)) X (¢; — qi—1)
qi—2 — qi—1
4 — qi—1

r

image credit: C.P. Dullemond
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Characteristics

« With a suitable advection scheme we can solve

dp
E—I—V-(pu)—()

with u = const.

- the full Euler equations are, however, coupled

op B
E +V- (pu) =0
8%0:) + V. (puu)+ VP =0 P=(vy—1)pe
8,0€tot

BT, + V- ((petor + P)u) =0
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Characteristics

- |s it possible to decouple the equations? First we rewrite them
(for simplicity in 1D) by defining

qi1 = p
42 = pu
d3 = PCtot

« Using this we find

_®
q1 -> all fluid quantities can be
2 written in terms of q1,d2,093
1 5 g 1g;
€ =€ttt — U = — — 5 5

2
2 di1 2 q7 -> can use these
2 expressions to replace them
) in the Euler equations
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Characteristics

 Euler equations in terms of 91,092,093

d1 J1
a15 q2 + a:c f2 =0
qs 3
t t
conserved quantities fluxes
where
fl pu 12 g2
fol = pu® + P — | (v—1Dgz +? q1
B 3
f3 (,061;01; + P)U, fqui]?’ + %ﬁ

can be written more compact using the Jacobian
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Characteristics

- Let us one more time consider a simpler system first and
assume A(g) = A = const.

Orqr + Ak, j0zq; =0

- We can then decouple the equations by finding the eigensystem

of the matrix A
)\1,)\2,)\3 €1,€2,€3

eigenvalues eigenvectors

- We can then decompose the state g in this eigenbasis
q = Z gmem

and find the equations for the individual components
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Characteristics

- Plugging decomposition into 0.qi, + Ay j0.q; =0
OtGmem + A0rqgmen, =0 —  €m0tqm + Am€m0zqm =0
and hence
—  O¢Gm + Amn02Gm =0
- This is a simple advection equation with characteristic velocity A\,
- We can thus solve the coupled set of equations by
- expanding the state vector in the eigenbasis ¢z — ¢m

- advecting each ¢,, with its characteristic velocity

- recomputing the new state from the updated ¢,, — ¢k
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Characteristics

- Each of these modes propagating with a characteristic velocity
Is called a characteristic

- for the full Euler equations A (q) # const
= ecigenvectors depend on g (and thus position)
= no global decomposition of the state vector possible

- locally we find:

VP |
AL =U—|— =uU—Cg backward travelling sound wave
0
Ao = U fluid motion
P .
A =u+ 4/ — =u—+cq forward travelling sound wave
P
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Characteristics

velocities u-c u u+c
time
C_ Co C,

characteristics

=
space
image credit: C.P. Dullemond

= could decompose the state vector locally at each cell interface
and advect the components with their local characteristic
velocities
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Riemann problems

- What about shocks and contact discontinuities?
= eigensystems differ significantly on both sides

* Let’s look at the full Riemann problem:
q(x,t =1tg) = qr forx < xq
g(z,t =tg) = qr forx > xg

* e.g. for u.=ur=0

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016



Riemann problems

expansion /
rarefaction wave

Ewald Puchwein

2

34 5

P contact discontinuity

e

shock wave
/

——=

-20 0 20 40 6

X
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image credit:
o C.P. Dullemond
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Riemann problems

P contact discontinuity

expansion / 1x10°F ' ' ' ' ' ]
rarefaction wave 8x10° [ — i

shock wave
X 6x10*F 4
Q. 4X1O4_ /
2x10*

0

1.0 ' ' | | |

0.8 \ .
x 0.6 -
“ 04t s

0.2 -

0.Q

30)(']0 — t t t t t ]
2.5x107° —
()

N> L

en(x)

can show: Solutions are self-similar, i.e.

they depend only on q(z,t) = q((z — x0)/(t — to

X
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Godunov’s method

« assume piecewise constant fluid state

« exactly solve the Riemann problem at each interface (semi-
numeric, iteratively solve algebraic equations)

- choose time step small enough that solutions of neighbouring
interfaces do not overlap
t

image credit: C.P. Dullemond X

- calculate new average of conserved quantities at end of time step

- easy as flux f(g(x=xo)) is constant for self-similar g(x — xo/(t — to))
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Godunov’s method

« assume piecewise constant fluid state

« exactly solve the Riemann problem at each interface (semi-
numeric, iteratively solve algebraic equations)

* choose time sté¢
interfaces do n¢
t

image credit: C.P. Dullemond

e calculate new g

- easy as flux f(ql

Ewald Puchwein

for linear problems: same as advecting
the components in the eigenbasis

but accounts for shocks and contact
discontinuities

Cons: diffusive (constant fluxes
correspond to donor-cell t))
advection)



MUSCL-Hanckock scheme

- make Godunov’s method second order by

image credit:

' ' : Qe.i C.P. Dullemond
- using a higher-order reconstruction A3/ R

(piecewise linear, piecewise parabolic) qt \

i-1/2

- computing the left and right g values at the

interface r\\.\

- advance these values half a step in time g / \‘ X

left value at  right value
At [k (Q?_l 2 L) — JK <Q?_3 2 R> interface at interface
n+1/2 n /2, /2,

Oqr + 0, fr =0 — i—1/2,L = 9k,i—1/2,L — 2 Ax C]]ZL —1/2,L qz —1/2,R
N ’ s — ’

* use these values in the Riemann solver as
If the state is constant on each side of the
interface

* used in many codes, e.g.: Ramses, Arepo
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Roe’s linearized Riemann solver

- exact Riemann solvers can be slow (e.g. for magneto-
hydrodynamics)

- alternatively linearise the problem at each interface by setting

A

A (q) 5 A ((Al) ( suitable average value

between left and right state

- a solution can then be found by decomposing the left and
right states into the eigenbasis of A(q)

- and advecting the components with the corresponding
characteristic velocity

= vyields a solution in smooth parts of the flow

= every reasonable average value for q should work there

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016



Roe’s linearized Riemann solver

- |t is possible to choose the average q such that the
linearized Riemann solver also gives the correct propagation
of contact discontinuities and shocks

- Roe average:
VALUL + /qRUR
VAL T /4R

P VAL Rtot, L + /GRPtot, R
tot —
VAL + /4R

U =

« When using this average one can show that the “jump”
corresponds exactly to one eigenvector with a eigenvalue
given by the correct velocity (e.g. the shock velocity).

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016



Multi-dimensional hydrodynamics

* unsplit schemes:
- compute fluxes for all interfaces of cells
 update cell values once per time step

- directionally split schemes:

- apply 1D hydro scheme alternately along the different
directions

* needs less memory

 but typically preserves e.g. spherical symmetry less well
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Adaptive mesh-refinement

Eulerian codes use adaptive mesh refinement to get higher resolution in high
density regions

e

L1 | L1 |
[l 1]

] T e
source: http://www.deus-consortium.org/a-propos/cosmological-models/run/
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http://www.deus-consortium.org/a-propos/cosmological-models/run/

Moving-mesh hydrodynamics (e.g. Arepo code)

- alternatively one can define a
mesh based on a set of points

using a Voronoi tessellation <€ ' S
* points can be allowed to move, """’
e.g. with the fluid -> then almost ““ -
Lagrangian »"“‘" .
* need to: ‘ . .‘

* use unspilt scheme "‘g'ek\' :
» transform to frame of moving ‘."

interface

 solve Riemann problem image credit: V. Springel

* transform back
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Moving-mesh methods

credit: V. Springel
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Moving-mesh methods

credit: V. Springel
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Moving-mesh methods

credit: V. Springel

Ewald Puchwein Numerical Galaxy Formation and Cosmology - Lecture 3 27/01/2016


http://en.wikipedia.org/wiki/File:Wavecloudsduval.jpg

Eulerian vs Lagrangian methods

Eulerian methods

discretize space
(finite-volume scheme)

use a grid fixed in space

Ewald Puchwein

moving-mesh

discretize space

(finite-volume scheme)

image credit: V. Springel

uses an unstructured
mesh moving with the flow

Numerical Galaxy Formation and Cosmology - Lecture 3

Lagrangian methods

discretize mass

use particles for the gas (like
in n-body) which move with
the flow
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Eulerian vs Lagrangian methods

Eulerian methods moving-mesh Lagrangian methods

discretize space discretize space

(finite-volume scheme) (finite-volume scheme) discretize mass

automatic refinement on density,
Galilean invariant by construction,
conserves angular momentum
(and entropy in smooth flows)
exactly

Pros: accurate hydro, automatic

refinement on density,
Galilean invariant by
construction

accurate hydro

Cons:
somewhat less accurate hydro

need adaptive mesh refinement overhead (~30%) for mesh (e.g. fluid instabilities, but recent
to get high resolution construction improvements), slower
convergence




Literature & Outlook

» Lecture script “Numerical Fluid Dynamics”, C.P. Dullemond and V.
Springel, http://www.ita.uni-heidelberg.de/~dullemond/lectures/
num fluid 2012/index.shtml?lang=en

- "Numerical Methods for Conservation Laws”, R.J. LeVeque

+ “E pur si muove: Galilean-invariant cosmological hydrodynamical
simulations on a moving mesh”, V. Springel, 2010, MNRAS, 401,
791

 Next lecture (Ben):

- Smoothed Particle Hydrodynamics, radiative cooling, sub-
resolution physics
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