



# Numerical Galaxy Formation & Cosmology

### Lecture 4: Smoothed particle hydrodynamics and baryonic sub-grid models

Benjamin Moster

**Ewald Puchwein** 

### Outline of the lecture course

- Lecture I: Motivation & Initial conditions
- Lecture 2: Gravity algorithms & parallelization
- Lecture 3: Hydro schemes
- Lecture 4: SPH, Radiative cooling & heating, Subresolution physics
- Lecture 5: Halo and subhalo finders & Semi-analytic models
- Lecture 6: Getting started with Gadget
- Lecture 7: Example cosmological box
- Lecture 8: Example galaxy collision
- 2 Benjamin Moster Numerical Galaxy Formation & Cosmology IV IoA, 03.02.2016

### Outline of this lecture

- Smoothed particle hydrodynamics (SPH)
  - Idea & smoothing kernel
  - Equations of motion
  - Artificial viscosity
  - Advantages and problems (fluid-mixing, SPH blobs)
  - Modern SPH techniques (Pressure-entropy, artificial diffusion, etc.)
- Baryonic sub-grid physics
  - Radiative Cooling and heating
  - Star formation
  - Stellar feedback (Multi-phase model, blastwave feedback)
  - AGN feedback
  - 3 Benjamin Moster Numerical Galaxy Formation & Cosmology IV IoA, 03.02.2016

### Smoothed particle hydrodynamics

- Idea: treat hydrodynamics in a completely mesh-free fashion
  Use: set of sampling particles to represent the fluid
- Gas cloud of mass  $M_g$  represented by N particles of mass m =  $M_g$  / N
- Each particle i interacts with each other particle
  j through the symmetric SPH Kernel W(r<sub>ij</sub>,h)
- Depends on inter-particles distance  $r = |\vec{x}_i \vec{x}_j|$ and on 'smoothing-length' h (defines Kernel width)
- Most commonly the cubic spline Kernel is used:

$$W(r,h) = \frac{8}{\pi h^3} \begin{cases} 1 - 6(r/h)^2 + 6(r/h)^3 & 0 \le (r/h) \le 1/2\\ 2(1 - r/h)^3 & 1/2 < (r/h) \le 1\\ 0 & 1 < (r/h) \end{cases}$$

4 Benjamin Moster Numerical Galaxy Fo

Numerical Galaxy Formation & Cosmology IV



### Smoothed particle hydrodynamics

- The density in SPH is given by 'smoothing' the particle masses:  $\rho(\vec{x}) = \sum_{j} m \ W(\vec{x} - \vec{x}_{j}, h)$
- For any field F, we can define a smoothed interpolated version:  $F_s(\vec{x}) = \int d\vec{x} \ F(\vec{x}') \ W(\vec{x} - \vec{x}', h) = \sum_j \frac{m_j}{\rho_j} \ F_j \ W(\vec{x} - \vec{x}_j, h)$
- And the derivative is given by:  $\vec{\nabla}F_s(\vec{x}) = \sum_j \frac{m_j}{\rho_j} F_j \vec{\nabla}W(\vec{x} - \vec{x}_j, h)$
- Usually smoothing length h is not constant:

$$\frac{4\pi}{3}h^3 = \frac{N_{\rm ngb}m_i}{\rho_i}$$

IoA, 03.02.2016

• Pressure is related to the density via:

 $P_i = A_i \rho_i^{\gamma} = (\gamma - 1)\rho_i u_i$ 

5 Benjamin Moster

### Equations of motion

Equations of motion derived from Lagrangian:  $\mathcal{L} = \sum_{i} \left( \frac{1}{2} m_i \vec{v}_i^2 - m_i u_i \right)$ • From  $\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\vec{x_i}}} - \frac{\partial \mathcal{L}}{\partial \vec{x_i}} = 0$  we get  $m_i \frac{\mathrm{d}\vec{v_i}}{\mathrm{d}t} = -\sum_i m_j \frac{P_j}{\rho_j^2} \frac{\partial \rho_j}{\partial \vec{x_i}}$ where  $\frac{\partial \rho_j}{\partial \vec{x}_i} = \vec{\nabla} \rho_j + \frac{\partial \rho_j}{\partial h_i} \frac{\partial h_j}{\partial \vec{x}_i}$ and h is constant in the 1st term • Differentiation of  $\rho_j h_j^3 = const$ :  $\frac{\partial \rho_j}{\partial \vec{x}_i} = \left(1 + \frac{h_j}{3\rho_i} \frac{\partial \rho_j}{\partial h_i}\right)^{-1} \vec{\nabla}_i \rho_j$ • Using  $\vec{\nabla}_i \rho_j = m_i \vec{\nabla}_i W_{ij}(h_j) + \delta_{ij} \sum m_k \vec{\nabla}_i W_{ki}(h_i)$ we get:  $\frac{\mathrm{d}\vec{v}_i}{\mathrm{d}t} = -\sum_i m_j \left( f_i \frac{P_i}{\rho_i^2} \vec{\nabla}_i W_{ij}(h_i) + f_j \frac{P_j}{\rho_j^2} \vec{\nabla}_j W_{ij}(h_j) \right)$ with  $f_i = \left(1 + \frac{h_i}{3\rho_i} \frac{\partial \rho_i}{\partial h_i}\right)^{-1}$ , mass & energy automatically constant Numerical Galaxy Formation & Cosmology IV 8 Benjamin Moster IoA, 03.02.2016

### Artificial viscosity

- Up to now: entropy is conserved along the flow (for each particle)
- Friction force:  $\frac{\mathrm{d}\vec{v}_i}{\mathrm{d}t}\Big|_{\mathrm{vics}} = -\sum_j m_j \Pi_{ij} \vec{\nabla}_i \vec{W}_{ij}$
- Since antisymmetric in i and j: (angular) momentum preserved To conserve total E:  $\frac{\mathrm{d}u_i}{\mathrm{d}t}\Big|_{\mathrm{vics}} = \frac{1}{2} \sum_{i} m_j \Pi_{ij} \vec{v}_{ij} \vec{\nabla}_i \vec{W}_{ij}$
- Usual choice:  $\Pi_{ij} = (-\alpha c_{ij}\mu_{ij} + \beta \mu_{ij}^2)/\rho_{ij}$  with  $\mu_{ij} = \frac{h_{ij}\vec{v}_{ij}\vec{x}_{ij}}{|x_{ij}|^2 + \epsilon h_{ij}^2}$ and  $\Pi_{ij} = 0$  for  $\vec{v}_{ij}\vec{x}_{ij} < 0$
- To prevent viscosity in shear flows (and conserve angular momentum): Balsara switch:  $\Pi_{ij} \to f_{ij} \cdot \Pi_{ij}$  with  $f_i^{AV} = \frac{|\vec{\nabla} \cdot \vec{v}|_i}{|\vec{\nabla} \cdot \vec{v}|_i + |\vec{\nabla} \times \vec{v}|_i}$
- IOBenjamin MosterNumerical Galaxy Formation & Cosmology IVIoA, 03.02.2016

### Advantages and problems

### • Advantages of SPH:

- Numerically very robust
- excellent conservation properties
- ► Lagrangian nature ➡ trace flow & Galilean-invariant
- Inherently adaptive (no ad-hoc refinement needed)
- Couples properly to N-body gravity methods
- Problems?
  - SPH doesn't mix fluids (well)
  - ,Kaufmann-blobs' form
  - Impacts accretion rates, SFRs disc sizes, gas fractions, etc...



IoA, 03.02.2016

### Advantages and problems

### • Advantages of SPH:

- Numerically very robust
- excellent conservation properties
- ► Lagrangian nature ➡ trace flow & Galilean-invariant
- Inherently adaptive (no ad-hoc refinement needed)
- Couples properly to N-body gravity methods
- Problems?
  - SPH doesn't mix fluids (well)
  - ,Kaufmann-blobs' form
  - Impacts accretion rates, SFRs disc sizes, gas fractions, etc...



IoA, 03.02.2016

## The mixing problem

- $P \propto u \rho$
- Contact discontinuity in hydrostatic eq.: P = cst.
- Left:  $u_1 \rho_1$ , Right:  $u_2 \rho_2$ •  $u_1 = \rho_2 / \rho_1 u_2$
- SPH: smooth density gradient Energy not smoothed
- Pressure blib introduced
  Surface tension prevents mixing





20; 104 10 102 y[kpc] 0 đ -10 10.3 101 -20 -10 10 -10 0 10 -200 -20 20 x [ kpc ] y [kpc] 20 10'10 10 y[kpc] 0 ۵. -10 101 -20 101 -10 10 0 10 -20 20 -20-10 0 x[kpc] y [kpc] 10 20 10 y[kpc] 0 < 10 -10 10 101 .20 -10 10 10 -20 0 20 -20-10 0 x[kpc] y [kpc] -4 -2 0 -3 -1 -5 log Σ [g cm<sup>-1</sup> 2 3 5 Credit: A. Hobbs & J. Read

Density increases
 Energy decreases

Two gas clouds collide

13 Benjamin Moster

Numerical Galaxy Formation & Cosmology IV

- Two gas clouds collide
- Density increases
  Energy decreases
- Density is smoothed
  Energy isn't smoothed
  → Pressure blip



13 Benjamin Moster

Numerical Galaxy Formation & Cosmology IV

- Two gas clouds collide
- Density increases
  Energy decreases
- Density is smoothed
  Energy isn't smoothed
  Pressure blip
- Pressure minimum causes
  nearby particles to collapse
  blob



Numerical Galaxy Formation & Cosmology IV

- Two gas clouds collide
- Density increases
  Energy decreases
- Density is smoothed
  Energy isn't smoothed
  Pressure blip
- Pressure minimum causes
  nearby particles to collapse
  blob



Numerical Galaxy Formation & Cosmology IV

### Artificial Diffusion

- Physical Diffusion should be included in simulations (shouldn't include metal diffusion without energy diffusion
- $du/dt = -P/\rho \nabla v$
- Diffusion removes the energy minimum 
   pressure smooth
- Surface tension vanishes
  Fluids can mix / no blobs form
- However: Unclear how much diffusion to be added



Numerical Galaxy Formation & Cosmology IV IoA, 03.02.2016

### Kelvin Helmholtz Instability



16 Benjamin Moster

Numerical Galaxy Formation & Cosmology IV

### Kelvin Helmholtz Instability



6





I7 Benjamin

### Isolated discs in hot halo



18 Benjamin Moster

Numerical Galaxy Formation & Cosmology IV

### Outline of this lecture

- Smoothed particle hydrodynamics (SPH)
  - Idea & smoothing kernel
  - Equations of motion
  - Artificial viscosity
  - Advantages and problems (fluid-mixing, SPH blobs)
  - Modern SPH techniques (Pressure-entropy, artificial diffusion, etc.)
- Baryonic sub-grid physics
  - Radiative Cooling and heating
  - Star formation
  - Stellar feedback (Multi-phase model, blastwave feedback)
  - AGN feedback
- 19Benjamin MosterNumerical Galaxy Formation & Cosmology IVIoA, 03.02.2016

### Outline of this lecture

- Smoothed particle hydrodynamics (SPH)
  - Idea & smoothing kernel
  - Equations of motion
  - Artificial viscosity
  - Advantages and problems (fluid-mixing, SPH blobs)
  - Modern SPH techniques (Pressure-entropy, artificial diffusion, etc.)
- Baryonic sub-grid physics
  - Radiative Cooling and heating
  - Star formation
  - Stellar feedback (Multi-phase model, blastwave feedback)
  - AGN feedback
- 19Benjamin MosterNumerical Galaxy Formation & Cosmology IVIoA, 03.02.2016

### How to form a galaxy...

- Up to now we have included Gravity (N-body), and Hydrodynamics
- All other processed happen below the scale we can resolve
- Include effective models to describe these physics:
  - Radiative cooling and heating
  - Star formation
  - Feedback from supernovae
  - Feedback from AGN
  - Feedback from other sources?
- All processes are in general rather poorly understood...

20 Benjamin Moster

IoA, 03.02.2016

### Radiative Cooling & Heating

- Stars can only form when gas is dense enough (i.e. cold enough)
- Gas can cool via a number of mechanisms:
  - Inverse Compton scattering of CMB photons by electrons in the hot gas. Long cooling time (only important in the early Universe).
  - Excitation of rot. & vib. levels in molecular hydrogen through collisions, and subsequent decay (important in low mass haloes).
  - Photon emission after collisions between atoms and electrons, excited levels decay radiatively (important in int. mass haloes).
  - Bremsstrahlung: electrons are accelerated in an ionized plasma (important in massive clusters)
- Gas is heated by a background of high energy UV photons from quasars and massive stars
- 21Benjamin MosterNumerical Galaxy Formation & Cosmology IVIoA, 03.02.2016

### Radiative Cooling & Heating

- Each particle (or cell) carries information on density and temperature
- Need to compute abundances of the different ionic species of the gas
  Assume: gas optically thin,
  & Ionisation equilibrium
- Compute cooling rate:  $\Lambda = \sum_{i} \Lambda_{i}(n_{i}, T)$
- Heating rate from photoionisation:  $\mathcal{H} = \sum_{i} n_i \epsilon_i$

$$\begin{split} \Gamma_{eH_0} n_e n_{H_0} + \Gamma_{\gamma H_0} n_{H_0} &= \alpha_{H_+} n_{H_+} n_e ,\\ \Gamma_{eH_{e_0}} n_{H_{e_0}} n_e + \Gamma_{\gamma H_{e_0}} n_{H_{e_0}} &= (\alpha_{H_{e_+}} + \alpha_d) n_{H_{e_+}} n_e ,\\ \Gamma_{eH_{e_+}} n_{H_{e_+}} n_e + \Gamma_{\gamma H_{e_+}} n_{H_{e_+}} + (\alpha_{H_{e_+}} + \alpha_d) n_{H_{e_+}} n_e \\ &= \alpha_{H_{e_{++}}} n_{H_{e_{++}}} n_e + \Gamma_{eH_{e_0}} n_{H_{e_0}} n_e + \Gamma_{\gamma H_{e_0}} n_{H_{e_0}} ,\\ \alpha_{H_{e_{++}}} n_{H_{e_{++}}} n_e &= \Gamma_{eH_{e_+}} n_{H_{e_+}} n_e + \Gamma_{\gamma H_{e_+}} n_{H_{e_+}} . \end{split}$$

| COOLING RATES | C | DOL | ING | RAT | TES |
|---------------|---|-----|-----|-----|-----|
|---------------|---|-----|-----|-----|-----|

| Process                         | Species          | $\Lambda \qquad \begin{array}{c} \text{Rate}^{a} \\ \text{(ergs s}^{-1} \text{ cm}^{-3}) \end{array}$ |
|---------------------------------|------------------|-------------------------------------------------------------------------------------------------------|
| Collisional excitation          | H <sup>0</sup>   | $7.50 \times 10^{-19} e^{-118348.0/T} (1 + T_5^{1/2})^{-1} n_e n_{\rm Ho}$                            |
|                                 | He <sup>+</sup>  | $5.54 \times 10^{-17} T^{-0.397} e^{-473638.0/T} (1 + T_5^{1/2})^{-1} n_e n_{He_+}$                   |
| Collisional ionization          | Ho               | $1.27 \times 10^{-21} T^{1/2} e^{-157809.1/T} (1 + T_5^{1/2})^{-1} n_e n_{H_0}$                       |
|                                 | He <sup>o</sup>  | $9.38 \times 10^{-22} T^{1/2} e^{-285335.4/T} (1 + T_5^{1/2})^{-1} n_e n_{\text{Hee}}$                |
|                                 | He <sup>+</sup>  | $4.95 \times 10^{-22} T^{1/2} e^{-631515.0/T} (1 + T_5^{1/2})^{-1} n_e n_{\text{He}_+}$               |
| Recombination                   | $H^+$            | $8.70 \times 10^{-27} T^{1/2} T_3^{-0.2} (1 + T_6^{0.7})^{-1} n_e n_{\rm H_+}$                        |
|                                 | He <sup>+</sup>  | $1.55 \times 10^{-26} T^{0.3647} n_e n_{He+}$                                                         |
|                                 | He <sup>++</sup> | $3.48 \times 10^{-26} T^{1/2} T_3^{-0.2} (1 + T_6^{0.7})^{-1} n_e n_{\text{He}++}$                    |
| Dielectric recombination        | He <sup>+</sup>  | $1.24 \times 10^{-13} T^{-1.5} e^{470000.0/T} (1 + 0.3 e^{-94000.0/T}) n_e n_{He}$                    |
| Free-free                       | All ions         | $1.42 \times 10^{-27} g_{ff} T^{1/2} (n_{\rm H_{+}} + n_{\rm He_{+}} + 4n_{\rm He_{++}}) n_e$         |
| $T_{n} = T/10^{n}  \mathrm{K}.$ |                  | Katz+96                                                                                               |

22 Benjamin Moster

Numerical Galaxy Formation & Cosmology IV

### Change in thermal energy

- With the cooling rate  $\Lambda$  and the heating rate  $\mathscr{H}$ , we can compute the change in thermal energy:  $\frac{\mathrm{d}u_i}{\mathrm{d}t} = \frac{\mathcal{H}_i - \Lambda_i}{\rho_i}$
- Up to now, only primordial cooling
- In practice, cooling is computed on an element-by-element basis:  $\Lambda = \Lambda_{H,He} + \sum_{i>He} \Lambda_i$ where  $\Lambda_i$  is tabulated for n<sub>H</sub>, T, and z
- Need to follow the creation of elements in SNe (usually 11 elements are tracked)





23 Benjamin Moster

Numerical Galaxy Formation & Cosmology IV

### Star formation

- Stars should form in a gas cloud if:
  - the gas density is high enough (threshold density nmin)
  - the region is Jeans unstable
- The star formation rate is given by  $\frac{d\rho_*}{dt} = \epsilon \frac{\rho_g}{t_{sf}}$ where  $\epsilon$  is an efficiency and  $t_{sf}$  is a characteristic timescale
- Often the dynamical timescale is used for t<sub>sf</sub>
- Implemented in the code in a stochastic way:  $p = \frac{m_g}{m_*} \left(1 e^{-\epsilon \Delta t/t_{sf}}\right)$ Draw random number r: if r < p create new star particle
- No feedback 
   → gas can form stars on dynamical time 
   → overcooling

24 Benjamin Moster Numerical Galaxy Formation & Cosmology IV IoA, 03.02.2016

### Stellar feedback: Multiphase model

- Springel & Hernquist (2003) developed a multi-phase model
- Each gas particle is treated as a two-phase medium: cold and hot
- Gas density is  $\rho = \rho_c + \rho_h$  with specific energy  $\varepsilon = \varepsilon_c \rho_c + \varepsilon_h \rho_h$
- Star formation: cold clouds are converted to stars:  $\frac{d\rho_*}{dt} = (1 \beta)\frac{\rho_c}{t_*}$ where  $\beta$  is the fraction of short-lived stars and t\* is a timescale
- SNe release energy and move gas from cold to hot phase. Cloud mass evaporated proportional to SN mass:  $\frac{d\rho_c}{dt}\Big|_{FV} = A\beta \frac{\rho_c}{t}$

• Cold clouds grow via radiative cooling  $\frac{\mathrm{d}\rho_{c}}{\mathrm{d}t}\Big|_{\mathrm{RC}} = -\frac{\mathrm{d}\rho_{h}}{\mathrm{d}t}\Big|_{\mathrm{RC}} = \frac{\Lambda_{\mathrm{net}}(\rho_{h},\epsilon_{h})}{\epsilon_{h}-\epsilon_{c}}$ 

25 Benjamin Moster

Numerical Galaxy Formation & Cosmology IV IoA, 03.02.2016

### Stellar feedback: Multiphase model

• The rates at which the hot and the cold phases evolve are:

$$\frac{\mathrm{d}\rho_c}{\mathrm{d}t} = -\frac{\rho_c}{t_*} - A\beta \frac{\rho_c}{t_*} + \frac{\Lambda_{\mathrm{net}}(\rho_h, \epsilon_h)}{\epsilon_h - \epsilon_c}$$
$$\frac{\mathrm{d}\rho_h}{\mathrm{d}t} = \beta \frac{\rho_c}{t_*} + A\beta \frac{\rho_c}{t_*} - \frac{\Lambda_{\mathrm{net}}(\rho_h, \epsilon_h)}{\epsilon_h - \epsilon_c}$$

- The star formation timescale t\* is chosen to reproduce the observed Schmidt-Kennicutt relation:  $t_*(\rho) = t_0^* \left(\frac{\rho}{\rho_{th}}\right)^{-1/2}$
- Free parameters are chosen such that
  - KS-relation reproduced
  - threshold density  $\rho_{th}$  corresponds to observed one
- 26 Benjamin Moster Numerical Galaxy Formation & Cosmology IV



### Galactic winds

- Feedback is still very inefficient (overcooling)
- Introduce 'mechanical' feedback given by galactic winds
- The mass-loss rate is proportional to the SFR:  $\dot{M}_w = \eta \dot{M}_*$  $\eta$  is called 'mass loading factor', observations suggest  $\eta = 2$
- Wind carries fixed fraction of SN energy:  $\chi \epsilon_{\rm SN} M_*$ Set equal to the kinetic wind energy:  $v_w = \sqrt{\frac{2\beta\chi\epsilon_{\rm SN}}{n(1-\beta)}}$

• Particle added to the wind if random number is below  $p_w = 1 - \exp\left(-\frac{\eta(1-\beta)\rho_c\Delta t}{\rho t_*}\right)$  and  $\vec{v}' = \vec{v} + v_w \vec{n}$ 

Numerical trick: decouple winds from hydro for short amount of time

27 Benjamin Moster Numerical Galaxy Formation & Cosmology IV IoA, 03.02.2016

### Blastwave feedback

- Thermal feedback is usually quickly radiated away (in dense gas)
- Stinson et al. (2006) implemented feedback based on a SN blast wave
- In each SN explosion a fraction of the SN energy is added to the ISM
- Cooling is temporarily switched of in neighboring particles within a radius of: R<sub>E</sub> = 10<sup>1.74</sup> E<sup>0.32</sup><sub>SN</sub> n<sup>-0.16</sup> P<sup>-0.2</sup> pc for a time: t<sub>E</sub> = 10<sup>5.92</sup> E<sup>0.31</sup><sub>SN</sub> n<sup>0.27</sup> P<sup>-0.64</sup> yr based on work by Chevalier (1974) and McKee & Ostriker (1977)
- Neighboring particles will become hot, reducing the SFR
- High temperature leads to high pressure and drives a galactic wind

28Benjamin MosterNumerical Galaxy Formation & Cosmology IVIoA, 03.02.2016

### AGN feedback

- In massive haloes, SN feedback cannot reduce the SF efficiency Potential well too deep to drive massive winds
- Energy released from accretion of gas onto BHs can be considerable
- Relevant scales for the BH cannot be resolved, hence effective model:
- Accretion rate given by Bondi-Hoyle rate:  $\dot{M}_B = \frac{4\pi \alpha G^2 M_{BH}^2 \rho}{(c_s^2 + v^2)^{3/2}}$ limited by Eddington rate.
- Some fraction  $\varepsilon_f$  of the radiated luminosity can couple thermally to surrounding gas:  $\dot{E}_{FB} = \epsilon_f L_r = \epsilon_f \epsilon_r \dot{M}_{BH} c^2$  ( $\varepsilon_f$ : M-E conversion)
- Usually  $\varepsilon_f = 0.05 \rightarrow 0.5\%$  of the accreted rest mass energy is available
- 29Benjamin MosterNumerical Galaxy Formation & Cosmology IVIoA, 03.02.2016

### AGN feedback

- Implementation: BH particles are colissionless sink particles though compute gas density & temperature for each BH
- For each gas particle around BH compute:  $p = \frac{w M_{\rm BH} \Delta t}{\rho}$ with w = kernel weight. If random number < p absorb gas particle in BH (including momentum)
- Add energy kernel-weighted to the thermal energy of the surrounding gas particles.
- Merge BHs if they are within one smoothing length of each other and if the relative velocity is smaller than the sound speed

30 Benjamin Moster

Numerical Galaxy Formation & Cosmology IV IoA, 03.02.2016

### Results of feedback

- In low mass haloes SN feedback is very efficient
- In massive haloes AGN feedback can reduce the 'conversion efficiency'
- To simulate realistic massive galaxies, a combination of both is needed



31 Benjamin Moster

Numerical Galaxy Formation & Cosmology IV

### Final notes

- Text Books:
  - Cosmology: Galaxy Formation and Evolution (Mo, vdBosch, White)
- Papers:
  - Hopkins (2013), MNRAS, 428, 2840
  - ▶ Hu et al. (2014), MNRAS, 443, 1173
  - Springel & Hernquist (2003), MNRAS, 339, 289
  - Stinson et al. (2006), MNRAS, 373, 1074
  - Springel et al. (2005), MNRAS, 62, 79
- Gadget and N-GenIC website:

http://www.mpa-garching.mpg.de/gadget/

32 Benjamin Moster

Numerical Galaxy Formation & Cosmology IV

### Up next

- Lecture I: Motivation & Initial conditions
- Lecture 2: Gravity algorithms & parallelization
- Lecture 3: Hydro schemes
- Lecture 4: Radiative cooling, photo heating & Subresolution physics
- Lecture 5: Halo and subhalo finders & Semi-analytic models
- Lecture 6: Getting started with Gadget
- Lecture 7: Example cosmological box
- Lecture 8: Example galaxy collision
- 33 Benjamin Moster Numerical Galaxy Formation & Cosmology IV IoA, 03.02.2016