

Numerical Galaxy Formation & Cosmology

Lecture I: Motivation and Initial Conditions

Benjamin Moster

Ewald Puchwein

Outline of the lecture course

- Lecture I: Motivation & Initial conditions
- Lecture 2: Gravity algorithms & parallelization
- Lecture 3: Hydro schemes
- Lecture 4: Radiative cooling, photo heating & Subresolution physics

- Lecture 5: Halo and subhalo finders & Semi-analytic models
- Lecture 6: Getting started with Gadget
- Lecture 7: Example galaxy collision
- Lecture 8: Example cosmological box
- 2 Benjamin Moster Numerical Galaxy Formation & Cosmology

Outline of this lecture

- Motivation for simulations and semi-analytic models
 - Observations at high redshift (CMB) and low redshift (SDSS)
 - Linear density perturbations
- Initial conditions for cosmological simulations
 - Zel'dovich Approximation
 - Putting particles in a simulation box
 - Zoom simulations

3

- Initial conditions for disc galaxy simulations
 - Properties of disc galaxies
 - Creating a particle representation of a disc galaxy

Benjamin Moster Numerical Galaxy Formation & Cosmology

Observing large scale structure

- Cosmic structure can be observed at very high redshift (z>1000): CMB Very smooth, only small perturbations (10⁻⁵)
- At low redshift: galaxies are very clustered forming a 'cosmic web'.

Observing large scale structure

- Things to keep in mind:
 - Structure formation process is dominated by gravity
 - Galaxies are only tracers of cosmic structure (<3% of all mass)
 - Galaxy formation depends on 'baryonic physics'

5 Benjamin Moster

Numerical Galaxy Formation & Cosmology

What about linear perturbation theory?

- How far can we push it?
- A quick recap of cosmological perturbation theory: $\vec{r} = a\vec{x}$ \vec{x} comoving position $\vec{v} = \dot{\vec{r}} = \vec{u} + \frac{\dot{a}}{a}\vec{r}$ with $\vec{u} = a\dot{\vec{x}}$ \vec{u} peculiar velocity
 - momentum conservation: $\frac{\partial \vec{v}}{\partial t} + (\vec{v} \,\vec{\nabla}_{phys}) \vec{v} = -\vec{\nabla}_{phys} \phi$

continuity equation: $\frac{\partial \rho}{\partial t} + \vec{\nabla}_{phys}(\rho \vec{v}) = 0$

Poisson equation: $\vec{\nabla}_{phys}^2 \phi = 4\pi G \rho$ comoving (1st order):

$$\frac{\partial \vec{u}}{\partial t} + \frac{\dot{a}}{a}\vec{u} = -\frac{1}{a}\vec{\nabla}\phi$$

$$\frac{\partial \delta}{\partial t} + \frac{1}{a} \vec{\nabla} \vec{u} = 0 \qquad \qquad \delta = \frac{\rho - \bar{\rho}}{\bar{\rho}}$$

 $\vec{\nabla}^2 \phi = 4\pi G a^2 \bar{\rho} \delta$

6 Benjamin Moster

Numerical Galaxy Formation & Cosmology

loA, 13.01.2016

with

Linear growth of structures

- Combining this we get the evolution of the density contrast δ $\ddot{\delta} + 2\frac{\dot{a}}{a}\dot{\delta} = 4\pi G \frac{\bar{\rho_c}}{a^3}\delta$ solved by growth function D(a): $\delta(a) = \delta_0 D(a)$
- For a matter dominated universe we have $D(a) \sim a$
- Can be decomposed into waves: $\delta(\vec{x}) = \int \hat{\delta}(\vec{k}) e^{-i\vec{k}\vec{x}} d^3k$ Power spectrum is $P(k) = \langle |\hat{\delta}(k)|^2 \rangle$ (where $\langle \rangle$: ensemble average) and it grows like $P(k) = P_0 D^2(a)$
- Formalism works as long as $\ \delta \ll 1$
- Breaks down when $\delta \sim 1$ (negative densities)
- Either go to higher order (still no 'baryonic physics') or use simulations
- 7 Benjamin Moster Numerical Galaxy Formation & Cosmology IoA, 13.01.2016

From high to low redshift

Cosmological model + initial conditions + simulation code = galaxies

8 Benjamin Moster

Numerical Galaxy Formation & Cosmology

Outline of this lecture

- Motivation for simulations and semi-analytic models
 - Observations at high redshift (CMB) and low redshift (SDSS)
 - Linear density perturbations
- Initial conditions for cosmological simulations
 - Zel'dovich Approximation
 - Putting particles in a simulation box
 - Zoom simulations

9

- Initial conditions for disc galaxy simulations
 - Properties of disc galaxies
 - Creating a particle representation of a disc galaxy
 - Benjamin Moster Numerical Galaxy Formation & Cosmology

Cosmological Principle

- On large scales, the properties of the Universe are the same to all observers
- Homogeneity: Universe looks the same at every location
- Isotropy: Universe looks the same in every direction
- Discretize density field into particles

homogeneous & isotropic

10 Benjamin Moster

Numerical Galaxy Formation & Cosmology

Cosmological Principle

- On large scales, the properties of the Universe are the same to all observers
- Homogeneity: Universe looks the same at every location
- Isotropy: Universe looks the same in every direction
- Discretize density field into particles

infinite (periodic boundary conditions)

10 Benjamin Moster

Numerical Galaxy Formation & Cosmology

Perturbations

- Universe shows small density fluctuations already at high z (see CMB)
- Convert CMB fluctuations to density perturbations

homogeneous & isotropic

Perturbations

- Universe shows small density fluctuations already at high z (see CMB)
- Convert CMB fluctuations to density perturbations

perturbed density field

Numerical Galaxy Formation & Cosmology

The power spectrum

- Use the power spectrum to describe the density fluctuations
- From inflation: $P_i(k) = Ak^n$
- Temporal evolution (in the linear regime): $P(k,t) = P_0(k)D^2(t)$

• How to impose a spectrum of fluctuations on a particle distribution?

I2 Benjamin Moster

Numerical Galaxy Formation & Cosmology

The Zel'dovich Approximation

- Substitute $\delta(a) = \delta_0 D(a)$ into Poisson equation (with $\bar{\rho} = \bar{\rho}_0 / a^3$): $\vec{\nabla}^2 \phi = 4\pi G a^2 \bar{\rho} \delta = 4\pi G a^2 \frac{\bar{\rho}_0}{a^3} D(a) \delta_0 = \frac{D(a)}{a} \vec{\nabla}^2 \phi_0$
- So the potential also grows as $\phi(a) = \frac{D(a)}{a}\phi_0$
- In a matter dominated universe: $D(a) \sim a \rightarrow \phi(a) = \phi$
- Integrate continuity equation $\frac{\partial \vec{u}}{\partial t} + \frac{\dot{a}}{a}\vec{u} = -\frac{1}{a}\vec{\nabla}\phi$ or $\frac{\partial(a\vec{u})}{\partial t} = -\vec{\nabla}\phi$ $\vec{u} = -\frac{\vec{\nabla}\phi_0}{a}\int \frac{D}{a}dt$
- Growth function satisfies the growth equation: $\ddot{D} + 2\frac{\dot{a}}{a}\dot{D} = 4\pi G\frac{\bar{\rho_c}}{a^3}D$ or rewritten: $\frac{1}{a^2}\frac{\partial(a^2\dot{D})}{\partial t} = 4\pi G\frac{\bar{\rho_c}}{a^3}D$

I3Benjamin MosterNumerical Galaxy Formation & Cosmology

The Zel'dovich Approximation

Integrate this yields

$$\frac{a^2 \dot{D}}{4\pi G \bar{\rho_c}} = \int \frac{D}{a} dt$$

• Use this with the integrated continuity equation to get

$$\dot{\vec{x}} = \frac{\vec{u}}{a} = -\frac{\vec{\nabla}\phi_0}{a^2} \frac{a^2 \dot{D}}{4\pi G\bar{\rho}_c} = -\frac{\dot{D}\vec{\nabla}\phi_0}{4\pi G\bar{\rho}_c}$$

• Integrate this to get the Zel'dovich approximation:

$$\vec{x} - \vec{x}_0 = -\frac{D\vec{\nabla}\phi_0}{4\pi G\bar{\rho_c}} = -\frac{a\vec{\nabla}\phi(a)}{4\pi G\bar{\rho_c}}$$
 with the unperturbed position \vec{x}_0

IoA, 13.01.2016

• This formulation can be used to extrapolate the evolution of structures into the regime where displacements are no longer small

I4Benjamin MosterNumerical Galaxy Formation & Cosmology

Displacing particles on a grid

- How apply the Zel'dovich approximation to a grid?
- Define $\vec{\psi} = \vec{x} \vec{x}_0$ and its Fourier transform $\vec{\psi}_{\vec{k}} = -\frac{a(i\vec{k})\phi_{\vec{k}}}{4\pi G\bar{\sigma}}$
- With Poisson's equation $-k^2 \phi_{\vec{k}} = \frac{4\pi G \bar{\rho_c} \delta_{\vec{k}}}{a}$ we get $\vec{\psi_{\vec{k}}} = i\vec{k}\frac{\delta_{\vec{k}}}{k^2}$
- Use the power spectrum $P(k) = \langle |\hat{\delta}(k)|^2 \rangle$: $\delta_{\vec{k}} = \sqrt{P(k)}R_{\vec{k}}e^{i\phi_{\vec{k}}}$ with $R_{\vec{k}}e^{i\phi_{\vec{k}}} = R_1 + iR_2$ where R_1 and R_2 are drawn from Gaussian with standard deviation of I (P is only ensemble average)
- Initial velocities are given by $\dot{\vec{x}} = \frac{D}{D}\vec{\psi} \rightarrow \vec{v}_{\vec{k}} = a\frac{D}{D}\vec{\psi}_{\vec{k}}$

I5 Benjamin Moster

Numerical Galaxy Formation & Cosmology

Limitations of this method

- There are a number of parameters that have to be chosen:
 - Box size B
 - Number of particles N
 - Starting redshift z_i
- In practice there are several constraints on these:
 - Minimal modes that are included: $2B/\sqrt[3]{N}$
 - Largest mode has to stay linear: $B \ge 2\pi/k_{nl} \sim 20Mpc$
 - Starting redshift (typically 40 < z_i < 80):
 Too late: shell crossing not taken into account
 Too early: numerical noise is integrated

I6Benjamin MosterNumerical Galaxy Formation & Cosmology

Grid vs. Glass ICs

- Alternative to Grid ICs are Glass ICs
 - Start with random positions for particles in the box
 - Evolve box forward in time under gravity BUT with reversed sign
 - Use resulting particle positions for Zel'dovich approximation
- Just cosmetics?

17 Benjamin Moster

Numerical Galaxy Formation & Cosmology

Zoom simulations

- Increasing the resolution of the box becomes very expensive
- Alternative: just increase the resolution in the area of interest:
 - I) Run low resolution simulation and identify interesting object(s)
 - 2) trace back particles of that object to initial positions in ICs
 - 3) resample this area with more particles and rerun the simulation
- Disadvantage: only one system simulated no statistics

18 Benjamin Moster

Numerical Galaxy Formation & Cosmology

N-GenIC

Nmesh	128	% This is the size of the FFT grid
Nsample	128	% sets the maximum k that the code uses, % Ntot = Nsample^3, where Ntot is the
Box	15000	0.0 % Periodic box size of simulation
FileBase	ics	% Base-filename of output files
OutputDir	./ICs/	% Directory for output
GlassFile	glass.d	at % File with unperturbed glass or grid
TileFac	8	% Number of times the glass file is tiled
Omega	0.2	5 % Total matter density (at z=0)
OmegaLambo	la 0.7	' % Cosmological constant (at z=0)
OmegaBaryo	n 0.0	% Baryon density (at z=0)
HubbleParan	n 0.7	' % Hubble paramater
Redshift	63	% Starting redshift
Sigma8	0.9	% power spectrum normalization
19 Benjamin Moster		Numerical Galaxy Formation & Cosmology

N-GenIC

SphereMode	1	% if "1" only modes with k < k_Nyquist are used
WhichSpectrum	0	% "1" selects Eisenstein & Hu spectrum,
		% "2" selects a tabulated power spectrum
		% otherwise, Efstathiou parametrization is used

FileWithInputSpectrum spectrum.txt % tabulated input spectrum InputSpectrum_UnitLength_in_cm 3.085678e24 % defines length unit ReNormalizeInputSpectrum 1 % if zero, spectrum assumed to be normalized

ShapeGamma	0.21	% only needed for Efstathiou power spectrum
Primordialindex	1.0	% may be used to tilt the primordial index
Seed	123456	% seed for IC-generator
N.T. T.I.I. T.		
NumFiles WrittenIr	1Parallel 2	% limits the number of files that are written
UnitLength_in_cm	3.0856	878e21 % defines length unit (in cm/h)
UnitMass_in_g	1.989e43	3 % defines mass unit (in g/cm)
UnitVelocity_in_cn	n_per_s let	% defines velocity unit (in cm/sec)

20 Benjamin Moster Numerical Galaxy Formation & Cosmology

Outline of this lecture

- Motivation for simulations and semi-analytic models
 - Observations at high redshift (CMB) and low redshift (SDSS)
 - Linear density perturbations
- Initial conditions for cosmological simulations
 - Zel'dovich Approximation
 - Putting particles in a simulation box
 - Zoom simulations
- Initial conditions for disc galaxy simulations
 - Properties of disc galaxies
 - Creating a particle representation of a disc galaxy

21 Benjamin Moster Numerical Galaxy Formation & Cosmology

Why simulate isolated disc systems?

- Set up individual system(s) and simulate/study those
- Advantage: much higher resolution (more particles per system)
 'Nice' discs can be studied (often hard in cosmological runs)
- Disadvantage: Cosmological background is neglected (no infall, etc)

Disc Galaxies

- What does a disc galaxy system consist of?
- Stellar disc
- Gaseous disc
- Stellar bulge
- Hot gaseous halo
- Dark matter halo

23 Benjamin Moster

Numerical Galaxy Formation & Cosmology

The dark matter halo

• Size of the dark matter halo is given by the virial radius (with mean overdensity $200\rho_{crit}$) containing the virial mass: $M_{200} = 200\rho_{crit}\frac{4\pi}{3}R_{200}^3$

• The virial velocity is $v_{200}^2 = \frac{GM_{200}}{R_{200}}$ and we have: $M_{200} = \frac{v_{200}^3}{10GH(z)}$ and $R_{200} = \frac{v_{200}}{10H(z)}$

- The density profile is the NFW profile: $\rho(r) = \frac{\delta_c}{(r/r_s)(1 + r/r_s)^2}$
- Often the Hernquist profile is used: $\rho(r) = \frac{M_{dm}}{2\pi} \frac{a}{r(r+a)^3}$

24 Benjamin Moster

Numerical Galaxy Formation & Cosmology

The stellar components

• Disc has exponential radial profile: $\Sigma(R) = \frac{M_d}{2\pi R_d^2} \exp\left(-\frac{R}{R_d}\right)$

Disc scale length R_d is fixed by assuming the specific angular momentum of disc and dark matter halo are equal

- Vertical profile of the disc given by: $\rho(z) = \frac{M_d}{2z_0} \operatorname{sech}^2\left(\frac{z}{2z_0}\right)$
- For the bulge the spherical Hernquist profile is assumed:

$$\rho_b(r) = \frac{M_b}{2\pi} \frac{r_b}{r(r_b + r)^3}$$

• The bulge is typically assumed to be non-rotating

25 Benjamin Moster

Numerical Galaxy Formation & Cosmology

The gaseous components

- Like the stellar disc, the gaseous disc has exponential radial profile
- The vertical profile of the gas disc cannot be chosen freely because it depends on the temperature of the gas
- For a given surface density, the vertical structure of the gas disc arises as a result of self-gravity and pressure: $-\frac{1}{\rho_q}\frac{\partial P}{\partial z} = \frac{\partial \Phi}{\partial z}$
- Hot gaseous halo follows a beta-profile: $\rho(r) = \rho_0 \left[1 + \left(\frac{r}{r_c}\right)^2 \right]^{-\frac{3}{2}\beta}$
- The gas temperature is determined using hydrostatic equilibrium: $T(r) = \frac{\mu m_p}{k_B} \frac{1}{\rho_{\text{hot}}(r)} \int_r^{\infty} \rho_{\text{hot}}(r) \frac{GM(r)}{r^2} dr$

26 Benjamin Moster

Numerical Galaxy Formation & Cosmology

Creating a particle representation of a galaxy

- We know the density profiles of each component.
 How can we put the particles such that these are reproduced?
- First step compute mass profile: $M(r) = \int_0^r \rho(r') d^3 r'$
- Invert M(r), possibly analytically, otherwise numerically
- Draw random number q from uniform distribution between 0 and 1
- Radius is given by: $r = r(q \ M_{tot})$

For spherical distribution:
(with random
$$\theta$$
 and ϕ)
(with random θ and ϕ)
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = r \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{pmatrix}$

27 Benjamin Moster

Numerical Galaxy Formation & Cosmology

Velocity structure

- To get the velocities: solve the collisionless Boltzmann equation
- Alternative: assume that velocity distribution can be approximated by a multivariate Gaussian

 only Ist and 2nd moments needed
- For static + axisymmetric system: E and L_z are conserved along orbits If distribution function depends only on E and L_z the moments are: $\bar{v_R} = \bar{v_z} = \bar{v_R}\bar{v_z} = \bar{v_z}\bar{v_\phi} = \bar{v_R}\bar{v_\phi} = 0$ $\bar{v_R}^2 = \bar{v_z}^2 = \frac{1}{\rho} \int_z^{\infty} dz' \rho(R, z') \frac{\partial \Phi}{\partial z'}(R, z')$ $\bar{v_\phi}^2 = \bar{v_R}^2 + \frac{R}{\rho} \frac{\partial}{\partial R} (\rho \bar{v_R}^2) + R \frac{\partial \Phi}{\partial R}$
- Must be solved numerically
- 28 Benjamin Moster Numerical Galaxy Formation & Cosmology

The orbit of galaxy mergers

- For simulating galaxy mergers: put 2 systems on orbit.
- Parameters that specify the merger orbit:

29

- ▶ Initial separation R_{start} (typically around the virial radius R₂₀₀)
- Pericentric distance d_{min} (if galaxies were point masses)
- Orbital eccentricity e (usually parabolic orbits, i.e. e=1)
- Orientation of discs with respect to orbital plane: $\phi_1, \ \theta_1, \ \phi_2, \ \theta_2$

Final notes

- Text Books:
 - Cosmology: Galaxy Formation and Evolution (Mo, vdBosch, White)
 - Galactic Structure: Galactic Dynamics (Binney, Tremaine)
- Papers:
 - Bertschinger (2001), ApJS, 137, 1
 - Springel & White (1999), MNRAS, 307, 162
 - Springel et al. (2005), MNRAS, 62, 79
- Gadget and N-GenIC website: http://www.mpa-garching.mpg.de/gadget/

Up next

- Lecture I: Motivation & Initial conditions
- Lecture 2: Gravity algorithms & parallelization
- Lecture 3: Hydro schemes
- Lecture 4: Radiative cooling, photo heating & Subresolution physics
- Lecture 5: Halo and subhalo finders & Semi-analytic models
- Lecture 6: Getting started with Gadget
- Lecture 7: Example galaxy collision
- Lecture 8: Example cosmological box
- 31 Benjamin Moster Numerical Galaxy Formation & Cosmology