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Structure and Evolution of Stars
Lecture 23: (i) Binary stars and mass 
transfer, (ii) Shell Burning Instability

• Binary stars and mass transfer – SN Ia and compact objects

•Thermal Stability for Stars in Hydrostatic Equilibrium

• Thermal Stability for Nuclear Burning in Thin Shells

• Double Shell-Burning and Thermal Pulses in AGN Stars

• Dependence of mass-loss on stellar luminosity
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• Binary system, masses M1 & M2, separation a, in 
circular orbit in X-Y plane
• Angular rotation velocity Ω
• Potential at (x,y,z) = Φ(x,y,z)

• Centrifugal potential from rotation
• Φ = Potential Star#1 + Potential Star#2

+ Centrifugal Potential
Star coordinates (0,0,0) and (a,0,0)

Binary Star System



• Φ= Effective gravitational 
potential
• Consider “equipotentials” 
in X-Y plane where 
Φ=constant
• Close to  a star; star 
dominates & equipotentials
~circles
• Intermediate distances; 
two distinct equipotentials
• Large distances; rotation 
dominates & equipotentials
~circles

• Topology of equipotentials changes with distance
• Equipotential where the two distinct surfaces touch; a distorted 
“Figure of 8”-shape – “Roche Lobes”



• Cross-section along 
line joining the 
binary stars 
• Three Lagrangian
points – equilibrium 
locations BUT 
unstable and small 
displacement moves 
particle into region 
dominated by one of 
the three 
components that 
make up the 
effective potential Figures on Slides 3,4,5 from Pringle and Wade,  

1985 CUP: Interacting Binary Stars



• Three classes of binary star:

- Detached binary with no 
transfer of material from 
photospheres

- Semi-detached binary where 
one star fills its Roche Lobe

- Contact-binary where stars 
overfill Roche Lobes and exist 
within a common envelope

• Most binaries are “detached” 
but small separations or phases 
of stellar evolution with large 
Rstar can result in mass transfer





3D view of 
semi-detached 
binary with one 
star filling 
Roche Lobe



3D view of 
common-envelope 
binary 



Binary Star Mass Transfer: Angular Momentum

• Binary system
• Neglect angular 
momentum of individual 
stars
Know 𝑀𝑀1𝑎𝑎1 = 𝑀𝑀2𝑎𝑎2; 𝑎𝑎1+𝑎𝑎1 = 𝑎𝑎;  𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑀𝑀1 + 𝑀𝑀2

Angular momentum J=(𝑀𝑀1𝑎𝑎12+𝑀𝑀2𝑎𝑎22)Ω

⇒ 𝐽𝐽 =
𝑀𝑀1𝑀𝑀2

(𝑀𝑀1 + 𝑀𝑀2)
𝑎𝑎2Ω

Suppose, angular momentum conserved   ̇𝐽𝐽 = 0
And no mass loss  �̇�𝑀𝑇𝑇𝑇𝑇𝑇𝑇= 0



⇒ ̇𝐽𝐽 = �̇�𝑀1𝑀𝑀2𝑎𝑎2Ω+𝑀𝑀1�̇�𝑀2𝑎𝑎2Ω+2𝑀𝑀1𝑀𝑀2𝑎𝑎�̇�𝑎Ω+𝑀𝑀1𝑀𝑀2𝑎𝑎2Ω̇
(𝑀𝑀1+𝑀𝑀2)
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differentiate

Kepler’s 3rd law:

Substitute in 
Expression for ̇𝐽𝐽

Can now relate 𝑀𝑀1,𝑀𝑀2, �̇�𝑀1 to the period and change in period 

Clearly �̇�𝑃 ∝ |�̇�𝑀| but what happens?

Binary Star Mass Transfer: Angular Momentum



If star 𝑀𝑀1 losing mass (�̇�𝑀1 < 0):

𝑀𝑀1 < 𝑀𝑀2 then �̇�𝑃 > 0 and orbit radius increases

𝑀𝑀1 > 𝑀𝑀2 ⇒ �̇�𝑃 < 0 and orbit radius decreases

For case �̇�𝑃 > 0 mass-transfer is stable BUT
where �̇�𝑃 < 0 mass-transfer is unstable
Orbit shrinks, mass-transfer increases…

● Significant changes to period of orbit and masses of the two 
stars. For case of normal stars with 𝑀𝑀1 > 𝑀𝑀2 rapid transfer of 
mass occurs until 𝑀𝑀1 ≈ 𝑀𝑀2 when a more stable configuration 
achieved.
● For pairs of normal stars with 𝑀𝑀1 > 𝑀𝑀2 rapid transfer of mass 
until 𝑀𝑀1~𝑀𝑀2 - more massive star evolves fastest

Binary Star Mass Transfer: Angular Momentum







● All is not simple! Empirical transformation of SNIa –lightcurves to 
allow determination of individual peak absolute magnitudes 



● Suppose: material from star 1 falls to surface of star 2
Consider: spherical accretion with energy thermalized on impact

Energy ~ PE ≈ 𝐺𝐺𝑀𝑀2
𝑅𝑅2

per unit mass

Luminosity ≈
𝐺𝐺𝑀𝑀2�̇�𝑀
𝑅𝑅2

~ 4𝜋𝜋𝑅𝑅22𝜎𝜎𝑇𝑇4 blackbody radiation from star 2 

surface

Accretion onto a normal star or even a white dwarf generates 
relatively little energy

For small R, neutron star with 𝑅𝑅 ≈ 104m and 𝑀𝑀 ≈ 1.5MSun then 
20% of rest-mass (𝑚𝑚𝑐𝑐2) liberated as material reaches neutron star 
surface, cf energy from nuclear fusion, ≈1% of rest-mass

Energetics once material has escaped 𝑀𝑀1



● Accretion is actually via an accretion-disk [angular momentum]



● Energetics very similar to spherical accretion. Large luminosity due 
to enormous gravitational PE, hence very high Temperature → X-rays



• Looked at Eddington luminosity in Lecture 12. Consider 
competition between gravity (due to the compact object) and the 
radiation pressure (due to the luminosity generated from infalling
material) 
• Infalling material is ionized, so the Thomson cross-section of the 
electrons dominates the radiation-matter interaction cross-section. 
So, for balance between gravity and radiation momentum transfer, 
have:

𝐺𝐺𝑀𝑀𝑚𝑚𝑝𝑝 −
𝐿𝐿𝜎𝜎𝑇𝑇
4𝜋𝜋𝜋𝜋

1
𝑟𝑟2

=0

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸 = 4𝜋𝜋𝐺𝐺𝑀𝑀𝑚𝑚𝑝𝑝𝜋𝜋
𝜎𝜎𝑇𝑇

≈ 1.3 × 1031 𝑀𝑀
𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆

Watts 

● For neutron star can obtain luminosity 𝐿𝐿~105𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆

Eddington Limit for Accretion
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• For a star in hydrostatic 
equilibrium, the Virial Theorem 
applies: 

and in the case of a perfect gas with 
negligible radiation pressure:

giving the familiar expression for the 
total energy of the system:
(where U is the internal energy of the 
star)

Thermal Stability in Stars
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Thermal Stability in Stars
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• In the case of significant radiation 
pressure there are two 
contributions to the total pressure:

• Incorporate into the Virial 
Theorem to give:

where the radiation pressure leads 
to a reduction in the gravitational 
attraction
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Thermal Stability in Stars
• In either case, a contraction of the star leads to an increase in 
Ugas, and hence T, while expansion leads to cooling

• Change in energy of star is determined by the difference in the 
nuclear energy production rate and the rate of emission of 
radiation: LLE nuctot −=

• Thermal equilibrium achieved when energy change is zero

• If there is an imbalance, say Lnuc increases, then total energy 
becomes less negative and thus T decreases (using either relation 
at bottom of previous two Slides). Energy generation then 
decreases and thermal equilibrium is restored

• Virial Theorem provides stability via thermostatic control
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Thermal Stability in Thin Shells

• Nuclear burning in post-main sequence stars occurs in shells. Are 
such shells always in stable thermal equilibrium?

• Consider a thin shell, mass Δm, temperature T, density ρ, in a star, 
radius R with shell boundaries r0 and r, such that l=r-r0<<R

ρεπ 24 r
dr
dL

=
• If shell is in thermal equilibrium, then 
the energy produced within the shell 
equals the energy flow out of the shell

• Now suppose that the energy generation rate exceeds the rate at 
which energy can escape from the shell. The shell will expand, 
pushing the overlying material in the star out to larger radii



Structure & Evolution of Stars 26

Thermal Stability in Thin Shells
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• Equation of hydrostatic equilibrium 
determines change in pressure as the 
radius changes:

• Mass of shell (=constant) determines 
relation between thickness and density:

• Substitute for dr/r in 2nd equation 
from top to give:
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Thermal Stability in Thin Shells
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• Take equation of state including gas and 
radiation pressure:

take log and differentiate:

combine the two expressions for dP/P to 
eliminate pressure:

rearrange to give:

constant on rhs is positive and thus there 
is a constraint on l/r in terms of the 
constant on lhs. Violated as l→0
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Shell Burning: Thermal Pulses
• Analysis shows shell burning must be unstable at some thickness

• Consequence of nuclear energy generation in two thin shells, with 
very different dependencies on T and ρ – stars on the asymptotic 
giant branch

• Outer shell burns H to He via p-p chain or CNO cycle

• Inner shell burns He to Carbon and Oxygen via triple-α reaction

• In principle, the configuration could be stable if the nuclear 
burning fronts advanced outwards at the same rate

• Not true in practice and the result is cyclic behaviour that involves 
large changes in the energy generation rate – thermal pulses
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Shell Burning: Thermal Pulses
• Cycle involves H-burning in the outer shell for much of the time

• No burning in the inner shell to begin (T not high enough)

• He-shell grows in mass as H-burning produces more He

• He-shell contracts, T at base of shell increases and He-burning 
ignites. Similar to the ignition of Helium burning in stellar core at 
the tip of the giant branch and sometimes termed shell flash

• Energy generation rate huge, heat flow cannot keep pace, He-
shell and overlying layers (including H-burning shell) expand and 
cool and H-burning essentially stops

• He-burning front moves out rapidly through the He-shell until 
reaches H-shell, which reignites
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Shell Burning: Thermal Pulses
• The high T achieved in the cycles of burning in the He-shell lead to 
the production of many neutrons and the bombardment of metals 
in the surrounding layers in the star is the primary location where 
the build-up of elements via the s-process (Lecture 22) takes place 

• Temperature in the He-burning shell drops below the point 
necessary to maintain burning and the He-burning ceases

• The C+O core has grown in mass, following the He-burning, and 
the cycle now repeats with H-burning in the outer shell continuing 
until the build-up of He is sufficient for the ignition of burning in the 
innershell

• Period of the cycle ~100s to 1000s of years
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AGB: Dredge Up and Mass Loss
• The extensive changes to the location of the interface between 
the nuclear burning regions and the convective envelope of the star 
lead to dredge up during which processed material, notably Carbon, 
is transported from the outer regions of the core to the stellar 
surface. Leads to overabundance of Carbon in the photospheres –
carbon stars

• The presence of heavy elements in the photosphere exacerbates 
the rate of mass-loss from the surfaces of the enormously distended 
AGB stars. Creation of molecules and dust grains at the low 
photospheric temperatures (Teff<3000K)

• Straightforward to estimate the mass-loss rate as a function of the 
main properties of a star
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Mass Loss
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δ• Mass loss rate in time interval δt:

• Radiation pressure due to transfer of 
momentum by photons:

• Suppose that a fraction, f, of the total L
is absorbed by material that is to escape. 
Material must reach the escape velocity 
to leave gravitational field of the star:

• Substitute for the escape velocity to 
produce dependence of the mass loss rate 
on L, M and R
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Mass Loss
• In the case of the giant and AGB stars the key factor is the value 
of f, which is very difficult to calculate
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• On the main sequence, 
composition is uniform and writing 
the dependence on L, M and R, 
combined with the Homology 
scalings of L, M and R for the 
uppermain sequence where n≈18 
(CNO cycle), shows that the mass 
loss rate is almost linearly 
dependent on L
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Lecture 23: Summary
• Mass-transfer in binary systems has significant impact on 
evolution of component stars and can result in very high 
luminosities for binaries containing a compact object (e.g. neutron 
star). Type Ia supernovae result when the mass of a white dwarf 
approaches the Chandrasekhar Limit

•For a star in hydrostatic equilibrium the Virial Theorem means that 
there is a thermostatic control that maintains the system in thermal 
equilibrium

• Once burning is confined to shells it is possible to show that the 
system is thermally unstable once the shell becomes thinner than a 
critical thickness. Explains cyclic thermal pulses that are 
characteristic of stars on the AGB. 
• Can obtain approximate dependence of mass-loss rate on stellar 
parameters using homology and simple arguments
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Picture Credits
• Slide 16 © Ostlie and Carroll
• Slide 36 © Green and Jones, CUP
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