Structure and Evolution of Stars

Lecture 23: (1) Binary stars and mass
transfer, (11) Shell Burning Instability

e Binary stars and mass transfer — SN la and compact objects
eThermal Stability for Stars in Hydrostatic Equilibrium

e Thermal Stability for Nuclear Burning in Thin Shells

e Double Shell-Burning and Thermal Pulses in AGN Stars

e Dependence of mass-loss on stellar luminosity

Structure & Evolution of Stars



Binary Star System

* Binary system, masses M; & M,, separation a, in
circular orbit in X-Y plane
e Angular rotation velocity O

e Potential at (x,y,z) = O(x,y,z)

e Centrifugal potential from rotation

e O = Potential Star#1 + Potential Star#2
+ Centrifugal Potential

Star coordinates (0,0,0) and (a,0,0)

GM, GM,
(xz _|_y2 + 22)1/2 ((x _ a)2_|_y2 + Z2)1/2
0%((x — pa)? + y?)
2

b =




Fig. 1.2. Roche equipotentials. The centres of the stars are for star 1 at
° = I i I O (also the origin of the coordinates) and for star 2 at S. Thf? centre of
CD EffeCtlve graV|tat|0na| mass is at G. The mass ratio is M{/M, = 2. The plane shown is in the
pote ntial orbital plane of the binary system. The inner Lagrangian point L; and
' the outer Lagrangian point L, are alsd marked.

e Consider “equipotentials”
in X-Y plane where
®=constant

® Close to a star; star
dominates & equipotentials
~circles |
e Intermediate distances;
two distinct equipotentials
e Large distances; rotation
dominates & equipotentials
~circles

e Topology of equipotentials changes with distance
e Equipotential where the two distinct surfaces touch; a distorted
“Figure of 8”-shape — “Roche Lobes”




e Cross-section along
line joining the |
binary stars

e Three Lagrangian
points — equilibrium -2o0
locations BUT

unstable and small
displacement moves
particle into region

—-1.b

d

—-25

dominated by one of ™°|

the three
components that
make up the
effective potential

Fig. 1.3. The value of the Roche potential ® is shown as a function of
distance along the line joining the two stars. Deep potential wells
surround star 1 at O and star 2 at §, and between them the potential
maximum occurs at L. At the edges additional maxima occur at L,
and L3 as the centrifugal potential dominates at large distances.,
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Figures on Slides 3,4,5 from Pringle and Wade,
1985 CUP: Interacting Binary Stars



Fig. 1.4. The potential is shown as in Figure 1.3. (¢) In a detached
binary neither star is large enough that its surface potential approaches
. the value at L;. (b) In a semi-detached binary one of the stars is large

o Th ree C I a SSGS Of b | n a ry Sta r: enough that its surface potential reaches the value at L;. Then matter
on the surface is able to flow through the L;-point down the potential
well onto the other star. (¢) In a contact binary both stars have expanded
beyond the L,-point and have a common envelope. A contact binary
cannot expand beyond the L,-point and still rotate in a uniform manner.

- Detached binary with no
transfer of material from
photospheres

- Semi-detached binary where
one star fills its Roche Lobe

- Contact-binary where stars
overfill Roche Lobes and exist
within a common envelope

e Most binaries are “detached”

but small separations or phases

of stellar evolution with large

R.... can result in mass transfer

star




(a) @ Detached
Secondary
Primary
(b) @ Semidetached
(c) o Contact



3D view of
semi-detached
binary with one
star filling
Roche Lobe
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Binary Star Mass Transfer: Angular Momentum

e Binary system

e Neglect angular
momentum of individual
stars

Know M1a1 — Mzaz; aq +a1 = da, MTOt — M1 + MZ
Angular momentum /=(M;a%+M,a5)Q

M1 M,
a
(M + M) |
Suppose, angular momentum conserved |/ =0
And no mass loss My,.= 0

Q)

=] =



Binary Star Mass Transfer: Angular Momentum

M1M2GZQ+M1M2CLZQ+2M1M2adQ+M1M2aZQ_

differentiate = | = L) 0
1 2
' o 5 4mca’ P QO 3a
Kepler’s 3™ [aw: = GOV, £ ) = 5= 0" 22
Substitute in - 3M, (M, — M) _ _4 _7r
Expression for J M, M, Q P

Can now relate My, M,, M, to the period and change in period

Clearly P o« |M| but what happens?



Binary Star Mass Transfer: Angular Momentum
If star M, losing mass (M, < 0):

M, < M, then P > 0 and orbit radius increases
M; > M, = P < 0 and orbit radius decreases

For case P > 0 mass-transfer is stable BUT
where P < 0 mass-transfer is unstable
Orbit shrinks, mass-transfer increases...

® Significant changes to period of orbit and masses of the two
stars. For case of normal stars with M; > M, rapid transfer of
mass occurs until M; = M, when a more stable configuration
achieved.

® For pairs of normal stars with M; > M, rapid transfer of mass
until M;~M, - more massive star evolves fastest



The progenitor of a Type Ia supernova

o0 @@=

...which spills gas onto the
Two normal stars The more massive secondary star, causing it to
are in a binary pair. star becomes a giant... expand and become engulfed.

The secondary, lighter star

and the core of the giant The remaining core of
star spiral toward within between the core an the giant collapses and
a common envelope. secondary star decreases. becomes a white dwarf.

The aging companion The whil gl T
star starts swelling, spilling tnereases uudil 1 ...causing the companion
gas onto the white dwarf. critical mass anc star to be ejected away.



Typical lightcurve for Type la SNe
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_ I Low Redshift Type la
Redshifts Template Lightcurves

V Band

as measured

Dec. 1995 SNe

2 - s
(hi6s

o
Z |
I “é % <
8 & A8 e
. = 120"
10 — N, L
E = N
=
9 Calan/Tclolo SNe la 1 8 . e
-17! °
] 20 o 20 40 60
day
2 2
s}
i
6 —— R - light-curve timescale
= Ll *"‘p “stretch-factor” corrected
i 1 1
< \e
4 —— s .':.
___ |- iy %
< oF &
& =
) -18 ~
- %
Dec. 1 . .
! — — — : A 5
A A N A 3
‘ P | P 1 X |P A7 ?
" : 20 0 20 a0 €0
{ a1 i 0= e
Redshilt

e All is not simple! Empirical transformation of SNla —lightcurves to
allow determination of individual peak absolute magnitudes



Energetics once material has escaped M,

e Suppose: material from star 1 falls to surface of star 2
Consider: spherical accretion with energy thermalized on impact

GM,

Energy ¥ PE = per unit mass

2

GM,M

Luminosity = ~4wR50T* blackbody radiation from star 2

R,
surface

Accretion onto a normal star or even a white dwarf generates
relatively little energy

For small R, neutron star with R ~ 10*m and M =~ 1.5M_, then
20% of rest-mass (mc?) liberated as material reaches neutron star
surface, cf energy from nuclear fusion, =1% of rest-mass



® Accretion is actually via an accretion-disk [angular momentum]




® Energetics very similar to spherical accretion. Large luminosity due
to enormous gravitational PE, hence very high Temperature - X-rays




Eddington Limit for Accretion

e Looked at Eddington luminosity in Lecture 12. Consider
competition between gravity (due to the compact object) and the
radiation pressure (due to the luminosity generated from infalling
material)

e |[nfalling material is ionized, so the Thomson cross-section of the
electrons dominates the radiation-matter interaction cross-section.
So, for balance between gravity and radiation momentum transfer,
have:

(6Mm,, —222) =0

4mc) r2
ATTGM M
Lpgqg = ——2° ~ 1.3 X 1031( )Watts
or sun

® For neutron star can obtain luminosity L~10°Lg,,,,



The Black Hole Binary Census
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Thermal Stability in Stars

e For a star in hydrostatic

equilibrium, the Virial Theorem 3 ) Edm =-E,
applies: 0 p i

1

and in the case of a perfect gaswith p < P.. >U=-=E
2

o L rad Grav
negligible radiation pressure:

1

giving the familiar expression forthe = E,, =—E;,, =-U
total energy of the system: 2

(where U is the internal energy of the

star)



Thermal Stability in Stars

* |n the case of significant radiation p P P
gas

pressure there are two —

contributions to the total pressure: © P P

k aT*
=—T +——
HM 3p
e [ncorporate into the Virial
Theorem to give: 1
U gas _E(EGrav +U rad)

where the radiation pressure leads
to a reduction in the gravitational .

attraction = E,, :E(E

Grav

+Urad) :_Ugas



Thermal Stability in Stars

e In either case, a contraction of the star leads to an increase in
U__., and hence T, while expansion leads to cooling

gas’

e Change in energy of star is determined by the difference in the
nuclear energy production rate and the rate of emission of

radiation: E =L —L
nuc

e Thermal equilibrium achieved when energy change is zero

tot

e If there is an imbalance, say L, increases, then total energy
becomes less negative and thus T decreases (using either relation
at bottom of previous two Slides). Energy generation then
decreases and thermal equilibrium is restored

e Virial Theorem provides stability via thermostatic control
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Close-up of core region fora 1 Mi
Asymptotic Giant Branch star

Hydrogen-burning
shell

Helium layer

Helium-burning
shell

Carbon-oxygen core
(no fusion) (not to scale)



Thermal Stability in Thin Shells

e Nuclear burning in post-main sequence stars occurs in shells. Are
such shells always in stable thermal equilibrium?

e Consider a thin shell, mass Am, temperature T, density p, in a star,
radius R with shell boundaries ry and r, such that /=r-r,<<R

e |[f shell is in thermal equilibrium, then dL

L 2
the energy produced within the shell — =4 PE
equals the energy flow out of the shell r

e Now suppose that the energy generation rate exceeds the rate at
which energy can escape from the shell. The shell will expand,
pushing the overlying material in the star out to larger radii



Thermal Stability in Thin Shells

e Equation of hydrostatic equilibrium dp Gm ,
determines change in pressure as the dm 4’ = Pocr
radius changes:
— d_P — _4&
P r
Am = 47x1llp

e Mass of shell (=constant) determines

relation between thickness and density:
do dl  dr drr

o 1 1 rl

e Substitute for dr/rin 2"? equation dp | dp
from top to give: P r p



Thermal Stability in Thin Shells

e Take equation of state includinggasand p__K oT S L

radiation pressure: A,
take log and differentiate: dP dp dT
= —=C¢—+C,—
combine the two expressions for dP/P to | dp dp dT
eliminate pressure: 34?7201— C,—
rearrange to give: —_— (41 — cljd_p =, ar
r yo, T

constant on rhs is positive and thus there
is a constraint on I/r in terms of the c,>0 - 41 >,
constant on lhs. Violated as /-0 r



Close-up of core region fora 1 Mi
Asymptotic Giant Branch star

Hydrogen-burning
shell

Helium layer

Helium-burning
shell

Carbon-oxygen core
(no fusion) (not to scale)



Shell Burning: Thermal Pulses

e Analysis shows shell burning must be unstable at some thickness
e Consequence of nuclear energy generation in two thin shells, with
very different dependencies on T and p — stars on the asymptotic
giant branch

e Outer shell burns H to He via p-p chain or CNO cycle

e Inner shell burns He to Carbon and Oxygen via triple-a reaction

* |n principle, the configuration could be stable if the nuclear
burning fronts advanced outwards at the same rate

e Not true in practice and the result is cyclic behaviour that involves
large changes in the energy generation rate — thermal pulses



Shell Burning: Thermal Pulses
e Cycle involves H-burning in the outer shell for much of the time

e No burning in the inner shell to begin (T not high enough)

e He-shell grows in mass as H-burning produces more He

e He-shell contracts, T at base of shell increases and He-burning

ignites. Similar to the ignition of Helium burning in stellar core at
the tip of the giant branch and sometimes termed shell flash

e Energy generation rate huge, heat flow cannot keep pace, He-

shell and overlying layers (including H-burning shell) expand and

cool and H-burning essentially stops

e He-burning front moves out rapidly through the He-shell until
reaches H-shell, which reignites



Shell Burning: Thermal Pulses

e The high T achieved in the cycles of burning in the He-shell lead to
the production of many neutrons and the bombardment of metals
in the surrounding layers in the star is the primary location where
the build-up of elements via the s-process (Lecture 22) takes place

e Temperature in the He-burning shell drops below the point
necessary to maintain burning and the He-burning ceases

e The C+0O core has grown in mass, following the He-burning, and
the cycle now repeats with H-burning in the outer shell continuing

until the build-up of He is sufficient for the ignition of burning in the
innershell

e Period of the cycle ~100s to 1000s of years
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AGB: Dredge Up and Mass Loss

e The extensive changes to the location of the interface between
the nuclear burning regions and the convective envelope of the star
lead to dredge up during which processed material, notably Carbon,
is transported from the outer regions of the core to the stellar
surface. Leads to overabundance of Carbon in the photospheres —
carbon stars

e The presence of heavy elements in the photosphere exacerbates
the rate of mass-loss from the surfaces of the enormously distended
AGB stars. Creation of molecules and dust grains at the low
photospheric temperatures (T_+<3000K)

e Straightforward to estimate the mass-loss rate as a function of the
main properties of a star



Mass Loss

e Mass loss rate in time interval 6t: M &t

e Radiation pressure due to transfer of (L/c)&
momentum by photons:

e Suppose that a fraction, f, of the total L — Mé’[\/esc = f(L/c)&
is absorbed by material that is to escape.
Material must reach the escape velocity

to leave gravitational field of the star: V2 = 2GM

R
e Substitute for the escape velocity to . fv,_ LR
produce dependence of the mass loss rate = VI = > ¢ GM

onl, MandR



Mass Loss

e |n the case of the giant and AGB stars the key factor is the value
of f, which is very difficult to calculate

e On the main sequence, : 1

composition is uniform and writing M oc LRM

the dependence on L, M and R,

combined with the Homology

scalings of L, M and R for the Loc M3 Roc M D)
uppermain sequence where n=18

(CNO cycle), shows that the mass

loss rate is almost linearly — M oc | 122126 o |
dependenton L



Figure 4.5 The H-R diagram in
Figure 4.3, with the addition of
stellar radii, and other information.
(Adapted from Seeds, 1984)
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Lecture 23: Summary

e Mass-transfer in binary systems has significant impact on
evolution of component stars and can result in very high
luminosities for binaries containing a compact object (e.g. neutron
star). Type la supernovae result when the mass of a white dwarf
approaches the Chandrasekhar Limit

eFor a star in hydrostatic equilibrium the Virial Theorem means that
there is a thermostatic control that maintains the system in thermal
equilibrium

e Once burning is confined to shells it is possible to show that the
system is thermally unstable once the shell becomes thinner than a
critical thickness. Explains cyclic thermal pulses that are
characteristic of stars on the AGB.

e Can obtain approximate dependence of mass-loss rate on stellar
parameters using homology and simple arguments



Picture Credits

e Slide 16 © Ostlie and Carroll
e Slide 36 © Green and Jones, CUP
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