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• Pre-Main Sequence Evolution
– Jeans’ Mass for collapse
– Estimate radius and temperature for fully ionised 

protostar
– Calculate timescale for collapse
– Importance of convection

• Polytropic solution for convective star

• Hayashi Track of a protostar in the HR-diagram

Structure and Evolution of Stars
Lecture 15: Protostars and Reaching the 

ZAMS
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Pre-Main Sequence Evolution
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• Gravitational PE and thermal KE for 
gas cloud:

• Gravitational PE must exceed pressure 
due to thermal motion:

• Gives condition for mass of cloud of 
radius R that can collapse – Jeans Mass:

• Also provides value for critical density 
for cloud of mass M for collapse to take 
place:
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Pre-Main Sequence Evolution

• Interstellar medium includes many diffuse clouds consisting 
predominantly of Hydrogen and Helium, T~30K, n~5×108m-3, with 
masses up to M~100Msun

• For any reasonable composition of H and He the Jeans Mass is an 
order of magnitude larger than the maximum cloud mass, so no 
collapse

• Giant molecular clouds, T~30K, n~1014m-3, with masses 
extending over range M≈10-3000Msun also exist and the Jeans 
Mass is ~5Msun

• Giant molecular clouds are unstable to gravitational collapse and 
constitute the principal regions where star formation can occur
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Carina nebula: 2.5kpc distant, 100pc across. Sequence of SF with time
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Chandra X-ray colour 
composite RGB (from 
0.6/0.8/0.9keV X-rays)
Image 1.1 deg on a side

Star-formation 
propagating from 
North-west (top right –
slide 6; top left here) 
towards the south-east 
at ~30kms-1

X-rays from very 
hottest young stars and 
SN remnants
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Pre-Main Sequence Evolution

• Initially, radius of cloud R>>Rps, and, given low T, kinetic energy 
is not significant. Thus, can consider cloud contracting from 
infinity with gravitational PE so liberated available to generate 
luminosity (energy radiated away) or ionise the material in the 
cloud
• Initially, collapse proceeds on a dynamical timescale, τdyn~1/√Gρ
as density of material is low and no significant pressure to resist 
collapse and timescales are much longer than τdyn for stars, where 
density is many orders of magnitude higher
• The fraction of the gravitational PE liberated as radiation is small 
and majority of the energy is available to, first, break the H2
molecules into H atoms, and then ionise the H and He atoms
• With these well-founded assumptions, can estimate key physical 
properties of collapsing cloud producing a proto-star
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Pre-Main Sequence Evolution

K60000
3

7.0         ;
2.01

50

eV)79eV;6.13 eV;5.4(
energy disruption   ;5.0  ;1

42

2

2

2

≈=

=
−

≈

===
=≈−≈







 ++≈=

ps

H

sunsun

ps

HeHH

HeHH
H

grav

R
GMm

k
T

X
M
M

XR
R

XY

YXX
m
M

R
GME

µα

χχχ
χα

χχχα
• Obtain upper limit to radius 
of protostar by assuming 
collapse from infinity with 
energy liberated all into 
ionising material (i.e. assume 
no energy radiated away –
pretty good approximation)

• Radius is large (≈60Rsun for 
Solar mass object):

• Estimate average T using 
Virial Theorem just as in 
Lecture 6 T is independent of object mass
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Pre-Main Sequence Evolution

thermal
ps

ps
pms

ps

ps
effps

grav
effps

LR
GM

dtdR
R

dt
dR

R
GMTRL

dt
dE

LTRL

ττ

σπ

σπ

≈=≈

−==⇒

−==

**

2
*

2

2
42

42

2/

2
4

2
1   ;4

• Once cloud collapsing in 
hydrostatic equilibrium, half of 
energy is radiated away while 
half heats up constituent 
material

Equate surface luminosity with 
gravitational energy liberated 
during collapse

Estimate timescale from initial 
radius divided by rate of 
collapse and obtain familiar 
thermal (Kelvin-Helmholtz 
timescale) 
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Pre-Main Sequence Evolution

• Radius of protostellar object is large

• Low T means opacity is very high with 
contribution from H- ions important

• Luminosity is high because of large 
surface area

• Radiative diffusion incapable of 
transporting energy liberated to surface

• Protostar is essentially fully convective 
with just a thin outer radiative layer γ
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Hayashi Tracks
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ρ• Model protostar as fully convective 
(r=0→R) with thin radiative envelope. At 
r=R Hydrostatic Equilibrium implies:

• Integrate to find pressure at R:

• Photons escape from where optical depth is 
approximately unity (sets thickness of 
radiative envelope):

• Approximate mean (ie Rosseland Mean 
type) opacity as power-laws of density and T:
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Hayashi Tracks
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Also know:

logarithmically:

and 

logarithmically:

• Have 3 logarithmic equations relating P,M,R,ρ and T – need a 4th
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Polytropes
• It is possible to take the first two stellar structure equations –
hydrostatic equilibrium and mass conservation – and, if the pressure 
is independent of temperature, derive analytic solutions

• Equations of state of the form:

are termed polytropic equations of state, with K, n (the polytropic 
index) and γ all constants

• Can obtain polytropic solutions because either, pressure is 
independent of T (e.g. degenerate matter) and K is not model 
dependent, or, if pressure does have a T dependence but a second 
relation between density and T means that in combination an 
effective  polytropic equation state exists but K is model dependent

)/11( nKKP +== ρργ



Structure & Evolution of Stars 14

Polytropes
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is a perfect gas:

where energy transport is via 
convection so that the condition 
on the temperature gradient is: 
(Lecture 12)

Gives relation between P and T

Equate 2 expressions for P and 
write T in terms of the density:

Substitute for T in 1st equation:
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Polytropic Solutions
• Equation of hydrostatic 
equilibrium: 

second stellar structure equation:

(Poisson’s equation)

take equation of state of form: 
where K, n, and hence γ, constants nKP
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Polytropes
• You will be expected to be able to manipulate the equations of 
stellar structure for cases where pressure is a simple power-law of 
density, i.e. satisfy a polytropic equation of state

• Analytic solutions [of the Lane-Emden equation] exist only for 
n=0, 1, 5 with the last corresponding to a star of essentially infinite 
size. As n becomes smaller the mass distribution is more centrally 
complicated

• A model with n=3 does have some connection to the actual 
physical structure of certain stars

• Derivation and use of the Lane-Emden equation is not examinable 
– next four slides provided for completeness [mathematicians may 
like!]
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Polytropic Solutions
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Kn• Substituting the polytropic equation 

of state gives a 2nd order differential 
equation

• Define dimensionless variable θ:

• Allows equation to be expressed in 
a simpler form:

• Where coefficient in square brackets 
is a constant with dimensions length 
squared:
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Polytropic Solutions
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Can replace r by a dimensionless 
variable ξ

Allowing simplification of the 
penultimate equation on previous 
slide to give the Lane-Emden 
equation of index n:

with boundary conditions:

Solutions θ(ξ) decrease 
monotonically, reaching zero at ξ=ξ1, 
corresponding to the stellar radius 
R=αξ1
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Polytropic Solutions
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Polytropic Solutions
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• Appears singularly un-
illuminating at first sight but 
the key point is that for a 
system that can be modelled 
as a polytrope we now have a 
relationship between P, M, R
and ρ. Thus, for our fully 
convective protostar we can 
derive a 4th logarithmic 
relation between variables
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Hayashi Tracks

• Can now take the 3 logarithmic equations from Slide 10 that were 
derived using the properties of the thin radiative protostar 
atmosphere
• Combine with the 4th logarithmic equation derived from the 
polytropic model of the convective protostar and eliminate log R, 
log ρR and log PR to obtain a relation between L, Teff and M:
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• Can now place track of protostar, mass M, in the HR-diagram. 
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Hayashi Tracks

• Taking a=1 – a good approximation –
which simplifies the expressions for A and 
B
• The T-dependence of the opacity has 
values of b≈4 at low T and polytropic 
index for fully convective star is n=1.5 and 
A=20 – an almost vertical track in the HR-
diagram
• As the mass of the protostar increases the 
tracks lie further to the left on the HR-
diagram

n
nB

n
bnA

−
−

=

−
+−

=

2
12

2
29



Structure & Evolution of Stars 23

Hayashi tracks on 
the HR-diagram 
for stars of 
different mass. 
Note near vertical 
form of tracks 
when protostars in 
convective stage. 
As radiative 
diffusion becomes 
important the 
tracks move to the 
right onto the 
ZAMS
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• The derivation of the behaviour in the L-T plane has made the 
most extreme assumptions and the Hayashi Tracks for a given M
and represent the limiting case where the protostar is radiating the 
gravitational energy released by contraction as efficiently as 
possible (via convection)
• Regions to the right of the tracks represent objects that are 
unstable, no longer in hydrostatic equilibrium, and this portion of 
the HR-diagram is thus a forbidden zone. Energy transport would 
be taking place with a superadiabatic temperature gradient

• Explains why one cannot have stars with extremely low surface 
temperatures

• At high masses, stars increasingly radiative as they contract and 
motion in HR-diagram is almost horizontal – Henyey Track

Hayashi Tracks
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Lecture 15: Summary

• Have examined basic physical properties of collapsing gas cloud 
that will form a star on the zero-age-main sequence
• Large radii, high luminosity and high opacity at low T results in 
convective energy transport in order for luminosity to reach stellar 
surface

• Can use polytropic model for fully convective star to provide 
relationship between P, M, R and ρ that enables behaviour of 
contracting protostar in the HR-diagram to be defined. 

• Hayashi Track of a protostar in the HR-diagram is an almost 
vertical track that defines the limiting locus for an object in 
hydrostatic equilibrium. Regions to the right of the Hayashi Track 
for a given mass are forbidden
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Picture Credits

• Slide 6 © http://www.robgendlerastropics.com 
• Slide 24 © Green & Jones, CUP
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