

Internal shell structure of a supergiant on its last day

$M \lesssim 15 M_{\odot}$	$\mathrm{MS}(\mathrm{OB}) \rightarrow \mathrm{RSG}(\rightarrow \mathrm{BSG}$ in blue loop? $\rightarrow \mathrm{RSG}) \rightarrow \mathrm{SN}$ II mass loss is relatively unimportant, \lesssim few M_{\odot} is lost during entire evolution
$15 M_{\odot} \lesssim M \lesssim 25 M_{\odot}$	MS $(\mathrm{O}) \rightarrow \mathrm{BSG} \rightarrow \mathrm{RSG} \rightarrow \mathrm{SN}$ II mass loss is strong during the RSG phase, but not strong enough to remove the whole H -rich envelope
$25 M_{\odot} \lesssim M \lesssim 40 M_{\odot}$	$\mathrm{MS}(\mathrm{O}) \rightarrow \mathrm{BSG} \rightarrow \mathrm{RSG} \rightarrow \mathrm{WNL} \rightarrow \mathrm{WNE} \rightarrow \mathrm{WC} \rightarrow \mathrm{SN} \mathrm{Ib}$ the H-rich envelope is removed during the RSG stage, turning the star into a WR star
$M \gtrsim 40 M_{\odot}$	MS $(\mathrm{O}) \rightarrow \mathrm{BSG} \rightarrow \mathrm{LBV} \rightarrow \mathrm{WNL} \rightarrow \mathrm{WNE} \rightarrow \mathrm{WC} \rightarrow \mathrm{SN}$ Ib/c an LBV phase blows off the envelope before the RSG can be reached

a SMC

b LMC

C Milky way ($d<3 \mathrm{kpc}$)

Table 3. WC/WN ratio vs. metallicity for the Local Group Galaxies.

Region	$\boldsymbol{l o g}(\mathbf{O} / \mathbf{H})+\mathbf{1 2}$	\# WCs and WOs	\# WNs	WC/WN
SMC	8.13	1	11	0.09 ± 0.09
M33 outer	8.29	12	54	0.22 ± 0.06
LMC	8.37	28	124	0.23 ± 0.01
M33 middle	8.41	15	54	0.28 ± 0.07
Milky Way	8.70	46	53	0.83 ± 0.10
M33 inner	8.72	26	45	0.58 ± 0.09
M31	8.93	62	92	0.67 ± 0.11

Neugent \& Massey 2019

Table 15.1. Properties of nuclear burning stages in a $15 M_{\odot}$ star (from Woosley et al. 2002).

burning stage	$T\left(10^{9} \mathrm{~K}\right)$	$\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	fuel	main products	timescale
hydrogen	0.035	5.8	H	He	$1.1 \times 10^{7} \mathrm{yr}$
helium	0.18	1.4×10^{3}	He	C, O	$2.0 \times 10^{6} \mathrm{yr}$
carbon	0.83	2.4×10^{5}	C	O, Ne	$2.0 \times 10^{3} \mathrm{yr}$
neon	1.6	7.2×10^{6}	Ne	O, Mg	0.7 yr
oxygen	1.9	6.7×10^{6}	O, Mg	Si, S	2.6 yr
silicon	3.3	4.3×10^{7}	Si, S	Fe, Ni	18 d

Example of spectral analysis: hot stars

Pauldrach, Puls,
Kudritzki et al. 1994,
SSRev, 66, 105

complex atomic models for O-stars (Pauldrach et al., 2001)

Munichsolon echipse 1920

$\log \mathbf{n}(\mathrm{k})$

Massey 2003

