



























| $M \lesssim 15 \ M_{\odot}$                     | MS (OB) $\rightarrow$ RSG ( $\rightarrow$ BSG in blue loop? $\rightarrow$ RSG) $\rightarrow$ SN II<br>mass loss is relatively unimportant, $\leq$ few $M_{\odot}$ is lost during entire evolution                                     |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $15 M_{\odot} \lesssim M \lesssim 25 M_{\odot}$ | $\begin{array}{l} MS \ (O) \rightarrow BSG \rightarrow RSG \rightarrow SN \ II \\ mass \ loss \ is \ strong \ during \ the \ RSG \ phase, \ but \ not \ strong \ enough \ to \ remove \\ the \ whole \ H-rich \ envelope \end{array}$ |
| $25 M_{\odot} \lesssim M \lesssim 40 M_{\odot}$ | MS (O) $\rightarrow$ BSG $\rightarrow$ RSG $\rightarrow$ WNL $\rightarrow$ WNE $\rightarrow$ WC $\rightarrow$ SN Ib<br>the H-rich envelope is removed during the RSG stage, turning the star into a<br>WR star                        |
| $M\gtrsim 40~M_{\odot}$                         | MS (O) $\rightarrow$ BSG $\rightarrow$ LBV $\rightarrow$ WNL $\rightarrow$ WNE $\rightarrow$ WC $\rightarrow$ SN Ib/c<br>an LBV phase blows off the envelope before the RSG can be reached                                            |

a SMC















| Table 3. | WC | /WN ratio | vs. | metallicity | for | the | Local | Group | Galaxies |
|----------|----|-----------|-----|-------------|-----|-----|-------|-------|----------|
|----------|----|-----------|-----|-------------|-----|-----|-------|-------|----------|

| Region     | log(O/H) + 12 | <b>#</b> WCs and WOs | # WNs | WC/WN         |
|------------|---------------|----------------------|-------|---------------|
| SMC        | 8.13          | 1                    | 11    | $0.09\pm0.09$ |
| M33 outer  | 8.29          | 12                   | 54    | $0.22\pm0.06$ |
| LMC        | 8.37          | 28                   | 124   | $0.23\pm0.01$ |
| M33 middle | 8.41          | 15                   | 54    | $0.28\pm0.07$ |
| Milky Way  | 8.70          | 46                   | 53    | $0.83\pm0.10$ |
| M33 inner  | 8.72          | 26                   | 45    | $0.58\pm0.09$ |
| M31        | 8.93          | 62                   | 92    | $0.67\pm0.11$ |

## Neugent & Massey 2019

| burning stage | $T (10^9 \mathrm{K})$ | ho (g/cm <sup>3</sup> ) | fuel  | main products | timescale                          |
|---------------|-----------------------|-------------------------|-------|---------------|------------------------------------|
| hydrogen      | 0.035                 | 5.8                     | H     | He            | $1.1 \times 10^7 \text{ yr}$       |
| helium        | 0.18                  | $1.4 \times 10^{3}$     | He    | С, О          | $2.0 \times 10^{\circ} \text{ yr}$ |
| carbon        | 0.83                  | $2.4 \times 10^{5}$     | С     | O, Ne         | $2.0 \times 10^3 \text{ yr}$       |
| neon          | 1.6                   | $7.2 \times 10^{6}$     | Ne    | O, Mg         | 0.7 yr                             |
| oxygen        | 1.9                   | $6.7 \times 10^{6}$     | O, Mg | Si, S         | 2.6 yr                             |
| silicon       | 3.3                   | $4.3 \times 10^{7}$     | Si, S | Fe, Ni        | 18 d                               |

**Table 15.1.** Properties of nuclear burning stages in a 15  $M_{\odot}$  star (from Woosley et al. 2002).



## Example of spectral analysis: hot stars











## complex atomic models for O-stars (Pauldrach et al., 2001)



## Munich solar eclipse, 1999













Massey 2003

