
M. Pettini: Structure and Evolution of Stars — Lecture 14

STELLAR REMNANTS. I: WHITE DWARFS

14.1 Introduction

We do not have to look very far to find a white dwarf. Sirius (α CMa) is
the brightest star in the sky, and the fifth closest to the Sun, at a distance
of only 2.6 pc. In 1862 the telescope maker Alvan Clark, while testing an
18-inch refractor lens, discovered that Sirius has a very faint companion:
Sirius B. Sirius B always appears very close to Sirius A but is 10 magnitudes
(10,000 times!) fainter. This makes it a very difficult object to recognise
visually (see Figure 14.1). Sirius B has the same mass as our Sun but only
one millionth its volume. That’s because Sirius B is a White Dwarf.

Its existence had been predicted nearly twenty years earlier by the German
astronomer Bessel (of Bessel functions fame), who correctly deduced the
orbital period of the binary star system to be ∼ 50 yr from observations
of the motion of Sirius A relative to fixed stars over a period of ten years
(Figure 14.2).

Figure 14.1: Sirius A and B, as seen by the 2.5 m Hubble Space Telescope (left) and a
ground-based 18-in Celestron (right).
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Figure 14.2: The orbits of Sirius A and B about the common centre of mass of the binary
system, and their projection on the sky.

The physical parameters of this binary system are collected in Table 14.1.
Sirius B has the mass of the Sun confined within a volume smaller than
the Earth! The acceleration due to gravity at the surface of Sirius B is
∼ 4 × 105 times greater than on Earth (where log g ' 3). Such strong
gravity is reflected in highly pressure-broadened (Lecture 6.5.2) H i Balmer
lines superposed on otherwise featureless blue continuum (see Figure 14.4).
White dwarf ‘material’ is so dense that a teaspoon would weight 16 tons
on Earth, and ∼ 6.4 million tons on the surface of the white dwarf. These
are extreme physical conditions indeed!

Table 14.1 Physical Parameters of the Sirius A B Binary System.

Property Sirius A Sirius B

Spectral type A1V DA2
MV (mag) 1.4 11.2
Mass (M�) 2.0 0.98
Radius (R�) 1.7 0.0084
Surface gravity (log g) 4.3 8.57
Luminosity (L�) 25 0.026
Temperature (K) 9940 25 200
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As we have already discussed in Lecture 13.7, white dwarfs are the stellar
remnants of low and intermediate mass stars. Their name is related to
the fact that they are hot and compact, occupying a narrow sliver in the
H-R diagram that is roughly parallel to and well below the Main Sequence
(Figure 14.3). The name itself is, however, something of a misnomer since
white dwarfs come in all colours, with surface temperatures ranging from
Teff < 5 000 K to Teff > 80 000 K.

The core of a white dwarf is mostly He, or C and O. Stars with M <∼ 0.5M�
do not have sufficient gravitational energy to heat up their core to the
temperature required to ignite He fusion, and they will end up as He white
dwarfs. However, since the lifetime of such stars is greater than the current
age of the Universe, such He white dwarfs should not exist yet! Another
channel for the creation of a He-core WD may be through binary evolution,
whereby the outer layers of a star in the process of becoming a red giant
may be stripped by the gravitational pull of its binary companion. If the
mass transfer happens before He ignition, further evolution of the star is
halted, leaving a white dwarf made up mostly of He.

Stars with masses M ' 1–8M� evolve through the stages outlined in Lec-
ture 13, leaving a white dwarf with a CO core of mass M ' 0.6M� (Fig-

Figure 14.3: Location of white dwarf stars in the H-R diagram.
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ure 13.11) following the ejection of the star’s outer layers in the planetary
nebula stage. In either case, without an internal source of energy, white
dwarfs simply cool off at an essentially constant radius as they slowly de-
plete their supply of thermal energy.

14.1.1 Spectral Classification of White Dwarfs

Although most white dwarfs are thought to be composed of carbon and
oxygen, spectroscopy typically shows that their emitted light comes from an
atmosphere which is observed to be either H-dominated or He-dominated.
(see Figure 14.4). The dominant element is usually at least 1000 times
more abundant than all other elements. The cause for this ‘purity’ is
thought to be the high surface gravity which leads to a stratification of the
atmosphere, with heavy elements on the bottom and lighter ones on top.
This vertical stratification takes only ∼ 100 years to become established.

Figure 14.4: Optical spectra of white dwarfs of spectral type DA. Note the blue continuum,
indicative of high effective temperatures (Teff > 10 000 K), and the pressure-broadened
(Lecture 6.5.2) H i Balmer absorption lines.
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The atmosphere, which is the only part of the white dwarf visible to us,
is thought to be the top of an envelope which is a residue of the star’s
envelope in the AGB phase and may also contain material accreted from
the interstellar medium. The envelope is believed to consist of a He-rich
layer with mass no more than 1/100 of the star’s total mass which, if
the atmosphere is H-dominated, is overlaid by a H-rich layer with mass
approximately 10−4 of the star’s total mass.

The current classification scheme uses the letter D, followed by another
letter to describe the primary spectral feature. The main classes are DA (H-
dominated spectrum) and DB (He-dominated spectrum), with DAs making
up ∼ 80% of all observed white dwarfs and DB ∼ 16%. The remainder
includes DC white dwarfs (continuum spectrum, no lines), DQ (carbon
lines present) and DZ (metal lines present).

14.2 Electron Degeneracy Pressure

Without an internal supply of energy, the pressure to support white dwarfs
against the pull of gravity is provided by electron degeneracy. We have
already introduced the general principle of electron degeneracy in Lecture
12.6; we will now calculate in detail the pressure that the electrons can
provide, Pe, as a function of their density ρe. We shall use some of the
concepts that you have already encountered in the Principles of Quantum
Mechanics and in the Statistical Mechanics Part II Astrophysics courses.

14.2.1 Density of States

To derive Pe = f(ρe), we start by considering the density of states for free
electrons: how many free-electron states fit into a box of volume V = L3.
We should think of this box as filling all space, via periodic replication.
This means that the wave vectors of the free-electron quantum states can
only take certain values. If the electron wave function is ψ ∝ exp(ik · x),
where k = (kx, ky, kz), then the requirement of periodicity implies:

kx = nx
2π

L
where nx = 1, 2, ... (14.1)
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The allowed states therefore lie on a lattice with spacing 2π/L, and the
density of states in k space is

dN = g
L3

(2π)3
d3k (d3k ≡ dkxdkydkz), (14.2)

where g is a degeneracy factor for spin.

The de Broglie relation between the electron’s momentum to its wave vec-
tor: p = h̄k allows us to convert the density of states in k space to that in
momentum space:

dN = g
L3

(2πh̄)3
d3p . (14.3)

The number density of particles (per unit volume) with momentum states
in the range of d3p is then:

dn = g
1

(2πh̄)3
f(p) d3p (14.4)

where f(p) is the occupation number of the mode, i.e. the number of
particles in the box with that particular wave function. For bosons (e.g.
photons), f(p) is unrestricted. But fermions (such as electrons with spin
angular momentum h̄/2) obey Pauli exclusion principle, which states that:

f(p) ≤ 1 .

This criterion immediately imposes a restriction on how dense an electron
gas can be before it has to be treated in a manner very different from the
classical one. Normally, the distribution of momenta of the particles would
be treated as a Maxwellian distribution, with each component of velocity
having a Gaussian distribution with standard deviation:

Ψ(v) =
1

(2πσ2)3/2
exp[−v2/2σ2] d3v , (14.5)

where v is the particle velocity. The dispersion in velocities, σ, is related to
the temperature by equipartition of energy: σ2 = kT/m. We can convert
this to a number density of particles in a given range of momentum space,
by multiplying by the total number density of particles, n, and using p =
mv:

dn =
n

(2πmkT )3/2
exp[−p2/2mkT ] d3p . (14.6)
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Comparing the Maxwellian distribution of particle momenta in eq. 14.6
with the general expression for the number density of particles in momen-
tum space given by eq. 14.4, we deduce that there is a critical density at
which the classical law would yield f(p) > 1 (at p = 0 which is where
eq. 14.6 peaks):

ncrit =
g

(2π)3/2

(mkT )3/2

h̄3 (14.7)

At a fixed density, the gas will be in the classical regime at high values of
T , but quantum effects become important as T → 0.

Integrating eq. 14.4 over all momentum states gives the total number den-
sity of particles:

n = g
1

(2πh̄)3

∫
f(p) d3p . (14.8)

In the limit of zero temperature, states are occupied only up to the Fermi
momentum, pF . Hence:

n = g
1

(2πh̄)3

∫ pF

0

d3p = g
1

(2πh̄)3

4π

3
p3
F . (14.9)

Figure 2: The occupation number for a gas of fermions as a function of their density relative to the
critical density, ranging from n/ncrit = 0.03 to n/ncrit = 30. For the lowest densities (or highest
temperatures), we have almost exactly the classical Maxwellian velocity distribution. For densities
well above critical, the occupation number tends to a ‘top-hat’ distribution: unity for momenta less
than the Fermi momentum, and zero otherwise.

The Fermi momentum is thus related to particle density by

pF = 2πh̄

(

3

4πg

)1/3

n1/3 (12)

As the density of the gas goes up, the Fermi momentum increases: the additional particles have to
fill higher momentum states because the lower momentum states are fully occupied. For very high
densities then the Fermi momentum can reach relativistic values (ie. some particles are forced into
momentum states in which they have velocities approaching the speed of light). For this reason, in
the sections below we consider the properties of both non-relativistic and relativistic gas.

2.2 Degeneracy pressure

The pressure of a degenerate electron gas can be worked out by using simple properties of each state,
plus symmetry. Microscopically, pressure arises from flux of momentum. If the number density of
electrons is ne, then the flux of electrons in the x direction is just the number of electrons crossing
unit area per unit time, or nevx. The pressure is then approximately

Pe ! px ne vx, (13)

where px is the momentum of the electrons.

The contribution to the total pressure in the x–direction from all of the electrons with momentum
px is thus given by (cf. Equation 13)

dPx = px vx dne,x (14)

5

Figure 14.5: The occupation number for a gas of fermions as a function of their density
relative to the critical density, ranging from n/ncrit = 0.03 to n/ncrit = 30. For the
lowest densities (or highest temperatures), we have almost exactly the classical Maxwellian
velocity distribution. For densities well above critical, the occupation number tends to
a ‘top-hat’ distribution: unity for momenta less than the Fermi momentum, and zero
otherwise.
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Thus, the Fermi momentum is related to the particle density by:

pF = 2πh̄

(
3

4πg

)1/3

n1/3 (14.10)

As the density of the gas goes up, the Fermi momentum increases: the
additional particles have to fill higher momentum states because the lower
momentum states are fully occupied (see Figure 14.5).

14.2.2 Degeneracy Pressure

We can use the above treatment to work out an expression for the pressure
exerted by degenerate electrons. Recall that pressure can be thought of
as a flux of momentum. If the number density of electrons is ne, then the
flux of electrons in the x-direction is just the number of electrons crossing
a unit area per unit time, or nevx. The pressure is then approximately:

Pe ' pxnevx . (14.11)

The contribution to the total pressure in the x-direction from all electrons
with momentum px is then just:

dPx = px vx dne,x (14.12)

where dne,x is the number density of electrons with x-momentum in the
range px to px + dpx. Using eq. 14.4, we obtain for the total pressure in
the x-direction (which by isotropy must be equal to the pressure in any
direction):

P = Px = g
1

(2πh̄)3

∫
pxvxf(p) d3p . (14.13)

Using spherical polar coordinates in momentum space:∫
pxvxdpxdpydpz =

1

3

∫
(pxvx + pyvy + pzvz) dpxdpydpz =

1

3

∫
p·v 4πp2dp ,

(14.14)
so that:

P =
g

3

1

(2πh̄)3

∫ ∞

0

p · v f(p) 4πp2 dp . (14.15)
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In the zero-temperature limit (eq. 14.9), if the electron speeds are non-
relativistic so that p · v = p2/me, we have:

Pe =
4πg

3(2πh̄)3

∫ pF

0

(
p2

me

)
p2 dp =

g

30π2h̄3me

p5
F . (14.16)

What we want is the pressure as a function of density ρe = mene. Re-
writing eq: 14.10 in terms of ρe:

pF =

(
6π2h̄3ρe
gme

)1/3

(14.17)

and substituting into (14.16), we finally arrive at the result stated in Lec-
ture 12.6.1:

Pe =
g

30π2h̄3

(
6π2h̄3

g

)5/3

ρ5/3
e m−8/3

e ≡ K1ρ
5/3
e (14.18)

with

K1 =
π2h̄2

5m
8/3
e

(
6

gπ

)2/3

.

Equation 14.10 implies that, at sufficiently high densities, the Fermi mo-
mentum can reach relativistic values, with some particles forced into mo-
mentum states with velocities approaching the speed of light. This leads
to the relativistic expression for Pe = f(ρe). With v = c and p · v = pc,
we have:

Pe =
4πg

3(2πh̄)3

∫ pF

0

pc p2 dp =
gc

24π2h̄3 p
4
F (14.19)

or

Pe =
gc

24π2h̄3

(
6π2h̄3ρe
gme

)4/3

≡ K2ρ
4/3
e (14.20)

with

K2 =
πh̄c

4m
4/3
e

(
6

gπ

)1/3

.

What eqs. 14.18 and 14.20 show us is a result that has been stated before:
in degenerate gas, the pressure depends only on density and is independent
of temperature. Of course, in partially degenerate gas there will be a
residual temperature dependence. Note also that the mass of the particle
appears on the denominator in these equations. Thus, while electrons may
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be degenerate, protons—with a mass mp/me = 1836 times larger—exert
negligible degeneracy pressure, justifying the fact that we have neglected
it in the above treatment.

14.3 The Chandrasekhar Limit to the Mass of a White

Dwarf

In July 1930, the bright, not-yet-twenty-year-old, indian student Subrah-
manyan Chandrasekhar who had obtained his B.Sc. degree in Physics the
previous month, was awarded a Government of India scholarship to pursue
graduate studies at the University of Cambridge, where he was admitted
to Trinity College and became a research student of R. H. Fowler. On his
journey from India to Cambridge, Chandrasekhar worked out that there
is a maximum mass for a white dwarf, now generally referred to as the
Chandrasekhar limit and estimated to be 1.44M�. To see how this limit
arises, consider the following.

We can estimate the energy density of degenerate gas as we did the pres-
sure: by integrating over momentum space and including a term, ε(p), to
denote the energy per mode:

U = g
1

(2πh̄)3

∫ ∞

0

ε(p) f(p) 4π p2dp . (14.21)

In the zero-temperature limit, f(p) = 1 up to the Fermi momentum and
f(p) = 0 at all other values. In the relativistic case, with ε(p) = pc,
integration of (14.21) gives:

Ue = g
1

(2πh̄)3

1

4
4πcp4

F . (14.22)

Using (14.10) to express Ue in terms of the number density of electrons,
we have:

Ue =
3

4

(
6π2

g

)1/3

h̄c n4/3
e . (14.23)

In the non-relativistic case, ε(p) = p2/2me, which results in:

Ue =
3h̄2

10me

(
6π2

g

)2/3

n5/3
e . (14.24)
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The total kinetic energy supplied by the degenerate electrons is propor-
tional to their energy density times the volume. In the relativistic case,
EK ∝ UeV ∝ n

4/3
e V ∝ M 4/3/R, where M is the mass and R is the radius.

On the other hand, the gravitational energy is proportional to −M 2/R.
The total energy is the sum of the two terms:

Etot =

(
AM 4/3 −BM 2

)
R

(14.25)

where A and B are constants.

Now we see that there is a critical mass for which the two terms in the
bracket are equal. If the mass is smaller than this limit, then the total
energy is positive and will be reduced by making the star expand until
the electrons reach the mildly relativistic regime and the star can exist
as a stable white dwarf (see next section). But, if the mass exceeds the
critical value, the binding energy increases without limit as the star shrinks:
gravitational collapse has become unstoppable. This is believed to be the
mechanism responsible for producing Type Ia supernovae which will be
discussed in a later lecture.

To find the exact limiting mass, we need to find the coefficients A and
B above, where the argument has implicitly assumed the star to be of
constant density. In this approximation, the kinetic and potential energies
are:

EK =

(
243π

128g

)1/3
h̄c

R

(
M

µmp

)4/3

(14.26)

where the mass per electron is µmp, and

EV = −3

5

GM 2

R
(14.27)

Equating the two terms, we have:

Mcrit =
3.7

µ2

(
2

g

)1/2 (
h̄c

G

)3/2

m−2
p '

7

µ2
M� (14.28)

for g = 2. In a star which has burnt most of its initial fuel into elements
heavier than Helium µ ' 2, giving Mcrit = 1.75M�. More precise calcula-
tions, which take into account the density profile within the white dwarf,
give Mcrit = 1.44M�.
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14.4 The Mass-Volume Relation of White Dwarfs

As explained in the introduction, white dwarfs are extremely compact ob-
jects. To find their radius, we consider the non-relativistic case in which
the energy density is Ue ∝ n

5/3
e (eq. 14.24), so that the total kinetic energy

is EK = CM 5/3/R2, where C is a constant. As before, the gravitational
potential energy is EV = −BM 2/R, and the total energy is the sum of
the two terms. The equilibrium radius is found by imposing the condition
dEtot/dr = 0, which gives:

R =
2C

B
M−1/3 (14.29)

This is a remarkable relation. Since V ∝ R3, we have:

MwdVwd = constant (14.30)

and more massive white dwarfs are actually smaller. This surprising result
is a consequence of the star deriving its support from electron degeneracy
pressure. The electrons must be more closely confined to generate the
larger degeneracy pressure required to support a more massive star. Thus,
the mass-volume relation implies that ρ ∝M 2

wd.

Note also that eq. 14.30 seemingly implies that the volume of a white
dwarf can get infinitely small for an arbitrarily large mass. This is another
way of recognising the existence of a critical mass; the former statement is
incorrect because it ignores relativistic effects.

We can put numerical values into eq. 14.29 considering the following:

ne =
M

µmp

(
4πR3

3

)−1

(14.31)

which, when combined with (14.24), gives:

C =
3h̄2

10me

(
6π2

g

)2/3 (
1

µmp

)5/3 (
4π

3

)−2/3

. (14.32)

Combined with our previous B = 3G/5, we get:

R =
3

2

(
6π2

g2

)1/3
h̄2

Gme(µmp)5/3
M−1/3 . (14.33)
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Expressed in terms of the Chandrasekhar mass, this is:

R = 3
√
π/5

h̄

µmpme

(
2h̄

gcG

)1/2 (
M

Mcrit

)−1/3

' 5975

(
M

Mcrit

)−1/3

km,

(14.34)
where again we have taken g = 2 and µ ' 2. In other words, a Chandrasekhar-
mass white dwarf is about the size of the Earth. This is an extremely high
density, which can be evaluated to be:

ρ =
M

4πR3/3
' 106.6

(
M

Mcrit

)2

g cm−3 (14.35)

This are only approximate expressions because they are based on the con-
stant density approximation. If we wanted to do better, we would need to
solve for the internal structure of a white dwarf.

In summary, non-relativistic white dwarfs are stable over a range of masses,
but as their mass increases, they shrink. This must force the electrons
closer and closer to becoming relativistic, and the limit of this is a star in
which the electrons are all relativistic, which has a unique mass. It appears
that electron degeneracy pressure has no way of supporting more massive
bodies.

14.5 Cooling and the Ages of White Dwarfs

With nuclear reactions over, a white dwarf will slowly cool over time, radi-
ating away its stored heat.1 Much effort has been directed at understanding
the process and timescale of white dwarf cooling, as it potentially provides
a chronology of the past history of star formation in our Galaxy.

Recalling the discussion in Lecture 8, in normal stars the mean free path
for photons is much greater than that of electrons or atoms; consequently
energy transport is mainly by radiative diffusion. This is not the case
in white dwarfs, where the degenerate electrons can travel long distances
before losing energy in a collision with a nucleus, since the vast majority of
lower-energy electron states are already occupied. Thus, in a white dwarf

1This idea was developed in 1952 by Leon Mestel, who had recently graduated from Cambridge (he
was at Trinity College) and was on hist first postdoctoral appointment at the University of Leeds. He
returned to Cambridge as a lecturer between 1955 and 1966.
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Figure 14.6: Temperature and degree of degeneracy in the interior of a model white
dwarf. The condition for degeneracy is defined as T/ρ2/3 < D, where D =
(h̄2/3mek)(3π2/µmp)

2/3. The smaller Tρ−2/3, the more degenerate the gas.

energy is carried by electron conduction (similar to conduction in metals),
rather than by radiation.

Electron conduction is so efficient that the interior of a white dwarf is
nearly isothermal, with the temperature dropping significantly only in the
non-degenerate surface layers (Figure 14.6). The thin (∼ 1% of the white
dwarf radius), non-degenerate envelope transfers heat less efficiently, and
acts as an insulating blanket, causing energy to leak out slowly. The steep
temperature gradient near the surface creates convection zones that can al-
ter the appearance of a white dwarf’s spectrum as it cools (Section 14.1.1).

We can calculate the initial temperature of a white dwarf by recalling
that it forms from the contraction of a thermally unsupported stellar core,
of mass M , down to the radius at which degeneracy pressure stops the
contraction. The virial theorem tells us that, just before reaching the final
point of equilibrium, the thermal energy will equal half of the potential
energy:

Eth ∼
1

2

GM 2

R
. (14.36)

For a pure He composition, the number of nuclei in the core is M/4mp,
and the number of electrons is M/2mp. The total thermal energy (which,
once degeneracy sets in, will no longer play a role in supporting the star
against gravity) is therefore:

Eth =
3

2
NkT =

3

2

M

mp

(
1

2
+

1

4

)
kT =

9

8

M

mp
kT , (14.37)
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so that:

kT ∼ 4

9

GMmp

R
. (14.38)

Substituting the equilibrium radius of a white dwarf from eq. 14.33, we
find:

kT ∝M 4/3 ' 1.1× 10−7 erg ∼ 70 keV (14.39)

for a 0.5M� white dwarf. With k = 1.38×10−16 erg K−1, the corresponding
temperature is T ∼ 8 × 108 K. Clearly, a just-formed degenerate core is a
very hot object, with thermal emission that peaks at X-ray wavelengths.
This is why, once the core becomes an exposed white dwarf, its radiation
ionises the layers of gas that were blown off during the AGB phase, giving
rise to a planetary nebula.

The energy radiated away from the surface of a white dwarf is the thermal
energy stored in the still classical gas of nuclei within the star’s volume.
(The degeneracy of the electron gas limits almost completely the ability of
the electrons to lose their kinetic energies). We can obtain an upper limit
to the cooling rate by neglecting the envelope and assuming a uniform
temperature throughout. The radiative energy loss is obtained by equating
the luminosity of the blackbody, given by the Stefan-Boltzmann law, to the
rate of change of thermal energy:

L = 4πR2
WDσT

4 ∼ dEth

dt
=

3

8

Mk

mp

dT

dt
(14.40)

where we have included only the contribution of nuclei to the thermal
energy from eq. 14.37.

Separating the variables T and t and integrating, the cooling time to a
temperature T is:

τcool ∼
3

8

Mk

mp

1

4πR2
WDσ

1

3

1

T 3
. (14.41)

Using as before eq. 14.33 for RWD and entering the numerical values, we
find:

τcool = 3× 109 yr

(
T

103 K

)−3

(14.42)

for a M = 0.5M� white dwarf. Writing the temperature as a function of
time:

T

103 K
∼
(

t

3× 109 yr
.

)−1/3

(14.43)
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Thus, even with the unrealistically efficient cooling we have assumed, it
would take a 0.5M� white dwarf several Gyr to cool to 103 K. In reality,
the insulation provided by the non-degenerate envelope results in an effec-
tive temperature that is significantly lower than the interior temperature
(Figure 14.6), and lowers the cooling rate. Furthermore, as a white dwarf
cools, it crystallises in a gradual process that starts at the centre and
moves outwards. The regular crystal structure is maintained by the mu-
tual electrostatic repulsion of the nuclei: it minimises their energy as they
vibrate about their average position in the lattice. As the nuclei undergo
this phase change, the latent heat that is released is added to the thermal
balance, further slowing down the decline in temperature.

Detailed models that include these and other processes for various masses
and chemical compositions of white dwarfs show that over a period of
10 Gyr, comparable to the age of the Universe, white dwarfs cannot cool
below ∼ 3000–4000 K. This explains why most white dwarfs are observed
to have high temperatures, and hence their blue to white colours. The
coolest white dwarfs known have effective temperatures Teff ' 3500 K.

14.5.1 White Dwarfs as Fossil Records of Star Formation

The interest in an accurate calculation of white dwarf cooling stems in
part from the fact that, with cooling times comparable to the age of the
Universe, it may be possible to use these fossil stars to uncover the history
of star formation in our Galaxy by modelling their luminosity function
as in Figure 14.7. The model luminosity function shown in the Figure
was calculated using the best available models of white dwarf cooling and
reproduces well the sudden drop in the population of white dwarfs with
luminosities logLwd/L� < −4.5. This decline can best be explained if
the first white dwarfs were formed and started cooling 9.0 ± 1.8 Gyr ago.
Including the pre-white dwarf evolutionary time, one would arrive at an
age of 9.3± 2.0 Gyr for the Galactic disk. The model shown in Figure 14.7
assumes that star formation proceeded at the same rate throughout this
time. This is an oversimplification, and more realistic models of the past
history of star formation in the Milky Way may result in better agreement
between calculated and observed luminosity functions.

As a final comment, it is interesting to note that the paper which first
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Figure 14.7: Observed (circles) and calculated (continuous line) luminosity function of
Galactic disk white dwarfs, reproduced from Winget et al. (1987).

made use of white dwarfs as ‘cosmic clocks’, by Winget et al. (1987, ApJ,
315, L77), was entitled: “ An Independent Method for Determining the Age
of the Universe”. This reflects the fact that the paper predates the cur-
rent era of ‘precision cosmology’, achieved primarily (but not exclusively)
through precise measurement of the spectrum of temperature anisotropies
of the cosmic microwave background, which encodes most fundamental
cosmological parameters. Today we know the age of the Universe to be
13.80± 0.02 Gyr, a precision far superior than any that could possibly be
achieved by modelling the luminosity function of white dwarfs. But, by
turning the argument around, we can now use this well determined age,
together with models of galaxy formation, to refine our understanding of
white dwarf cooling.
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