
M. Pettini: Structure and Evolution of Stars — Lecture 11

HOW DO STARS FORM?

11.1 Introduction

The last decades have seen great strides forward in our understanding of
the processes that govern the formation and evolution of stars. Progress
has been made on both observational and theoretical fronts, driven by im-
provements in instrumentation (primarily infrared) and in computational
resources. Indeed, it is now possible to ‘follow’ the process of star formation
in sophisticated numerical simulations of increasing spatial resolution.

Figure 11.1: At a distance of 7.4 Mpc from the Milky Way, M101 (the Pinwheel galaxy)
is a ‘grand-design’ spiral galaxy seen nearly face on (i = 18◦). This picture is a composite
of three images, each taken with one of the NASA’s ‘Great Observatories’. Visible light
(yellow) captured by the Hubble Space Telescope traces the general stellar population.
Infrared light (red) recorded with the Spitzer Space Telescope is emitted by hot dust
in molecular clouds. X-ray light (blue) seen by the Chandra X-ray Observatory marks
the locations of high-energy gas in the vicinity of young, massive stars. Note the close
correspondence between X-ray emitting regions of recent star formation and dust clouds.
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Despite such advances, star formation is still considered to be a poorly-
understood problem in astrophysics. The reason is that we do not yet have
a predictive theory of star formation; for example, given a set of initial
conditions, we do not yet have the means to predict reliably important
properties, such as the star formation efficiency (that is, what fraction of
the gas is turned into stars), or the Initial Mass Function which describes
the relative numbers of stars of different masses. On the other hand, once
a star has formed and nuclear burning starts, all the uncertain details of
the star formation process are no longer relevant to its evolution. In this
lecture, we explore some of the basic ideas concerning the way stars form.

Observationally, we know that there is a strong spatial association between
clusters of newly formed stars and interstellar gas. Both are concentrated
in spiral arms in external galaxies (see Figure 11.1 for an example); in
the Milky Way, regions of recent star formation such as the Great Carina
Nebula (Figure 11.2) are also some of most spectacular visualisations of
the interstellar medium.
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Figure 11.2: Located ∼ 2.5 kpc from the Sun, the Giant Carina Nebula is one of the
Galaxy’s largest star-forming regions. It is rich is clusters of newly formed O and B stars,
harbouring a significant fraction of the most massive stars known in the Milky Way,
including several O3 V stars and the LBV ηCarinae. The picture on the left highlights
the interstellar matter in the nebula, some glowing in the light of newly-formed stars,
while other regions are dense clouds of molecules and dust. The sketch on the right,
reproduced from Turner et al. (1980), shows the locations and ages (in millions of years)
of the most prominent star clusters. Star formation is propagating from the north-west
to the south-east of the region at a speed of ∼ 30 km s−1, attesting to the interaction
between massive stars and the ambient interstellar medium. The continuous line is the
Galactic equator with intervals of Galactic longitude marked.
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The interstellar medium is a complex environment, worthy of its own lec-
ture course. For our present purposes, suffice to say that among the various
components of the ISM, it is the Giant Molecular Clouds that are associated
with sites of star formation. Images taken at near-infrared wavelengths
(λ = 1–2.2µm), show very young clusters and protostellar objects still em-
bedded deep into such clouds, before the ultraviolet radiation emitted by
the most massive stars evaporates the cloud away.

Giant molecular clouds, of which there are thousands in the Milky Way, are
enormous complexes of dust and gas, sufficiently dense to be self-shielding
from the diffuse interstellar ultraviolet radiation field. Typical parame-
ters are temperatures T ∼ 15 K, volume densities n = 100–300 cm−3, and
masses M = 105–106M�. The low temperatures and high densities (and
the presence of solid particles known as interstellar dust which acts as
a catalyst) favour the formation of molecules; thus most of hydrogen in
GMCs is in the form of H2 rather than H i. Dust makes up about 1% of
the material, and it is the dust that renders the clouds very opaque at
visual wavelengths.

With typical sizes of 10s of parsecs, GMCs show considerable structure
on a variety of scales. On scales of 10 pc, M ∼ 104M�, densities can be
n ∼ 500 cm−3 and the extinction at visible wavelengths is AV ∼ 5 mag;
such regions are sometimes referred to as Dark Cloud Complexes. Smaller
clumps on scales of 1–2 pc with M ∼ 30M� can have n ∼ 1000 cm−3,
AV ∼ 10 mag, and T ∼ 10 K. Dense Cores on scales of 0.1 pc, can have
M ∼ 10M�, n ∼ 10 000 cm−3, and AV > 10 mag. Finally, in some
localised regions of GMCs observations have revealed ‘Hot Cores’ with
T = 100–300 K, and extreme values of density and extinction, as high as
n ∼ 109 cm−3 and AV ∼ 50; masses can be in the range 10–3000M�. It
is in these hot cores that near-IR imaging1 has revealed the presence of
embedded young O and B-type stars, strongly suggesting a causal connec-
tion. As we shall see presently, giant molecular clouds are indeed unstable
to gravitational collapse.

1Recalling that AV = 10 mag corresponds to a dimming of the visible light by a factor of 10 000, it
can be easily appreciated that these dense regions are opaque to light of visible wavelengths. Longer
wavelength light, in the near-IR regime, suffers considerably less extinction.
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11.2 Brief Overview

It is useful to distinguish six stages in the star formation process:

1. The initial free-fall collapse of the parent interstellar cloud.

2. Cloud fragmentation, leading to a range of stellar masses.

3. Formation of a protostellar core. The star appears on the H-R dia-
gram.

4. Accretion of the surrounding gas, generally through an accretion disk.

5. Dissociation of molecules and ionisation of H and He.

6. Pre-main sequence phase.

7. Star formation is considered to be completed once the star appears on
the “Zero Age Main Sequence” (ZAMS).

In the following sections we shall consider these different stages in turn.

11.3 The Jeans Criterion for Gravitational Collapse

The condition for a cloud of interstellar gas to collapse and form stars was
first formulated by James Jeans in 1902 while working at Trinity College,
Cambridge. His treatment considers only gravitation and thermodynamics
and ignores other important effects such as rotation, turbulence and mag-
netic fields. Nevertheless, it provides a useful insight into the development
of protostars.

As we saw in Lecture 7.1, the condition for equilibrium of a stable, gravi-
tationally bound system is given by the virial theorem:

2K + U = 0 (11.1)

where K is the kinetic energy and U is the potential energy. Consider
now what happens if such a system is perturbed from equilibrium. If
2K > |U |, the force due to gas pressure will dominate the force of gravity
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and the cloud will expand. On the other hand, if 2K < |U |, the reverse
will be true and the cloud will collapse under the force of gravity.

We showed in Lecture 7.1 (eqs. 7.1–7.8) that the gravitational potential
energy can be written as:

U ' −3

5

GM 2
c

Rc
, (11.2)

where Mc and Rc are, respectively, the mass and the radius of the cloud
under consideration.

We also saw (eqs. 7.9–7.11) that the average kinetic energy per particle is

K =
3

2
kT (11.3)

where k is Boltmann constant. Thus, the total internal kinetic energy of
the cloud is just:

K =
3

2
NkT (11.4)

where N is the total number of particles. We can write N in terms of the
mass and the mean molecular weight (Lecture 9.2.1):

N =
Mc

µmH
(11.5)

We can therefore rewrite the condition for gravitational collapse (2K <
|U |) as:

3MckT

µmH
<

3

5

GM 2
c

Rc
(11.6)

We can eliminate the radius Rc from the above equation using:

Rc =

(
3

4

Mc

πρ0

)1/3

(11.7)

where ρ0 is the initial density of the cloud prior to collapse, with the as-
sumption that the cloud is a sphere of constant density.

Substituting the above expression into eq. 11.6, we obtain the important
concept of the Jeans mass :

MJ '
(

5kT

GµmH

)3/2 (
3

4πρ0

)1/2

. (11.8)
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If the mass of a cloud exceeds the Jeans mass, the cloud will be unstable
against gravitational collapse.

Note that for a given chemical composition (i.e. for a given µ), the Jeans
mass depends only on temperature and density: the lower the temperature
and the higher the density, the smaller the cloud mass which is unstable
against gravitational collapse. Note also that this is an oversemplification
of the real situation, not only because we have ignored rotation, internal
macroscopic velocity gradients and magnetic fields, but also because we
have neglected any external pressure on the cloud (such as the external
pressure of an encompassing GMC on an embedded dense core).

The same criterion for gravitational collapse can also be expressed in terms
of the Jeans length:

RJ '
(

15kT

4πGµmHρ0

)1/2

, (11.9)

where the condition for gravitational collapse is Rc > RJ , or the Jeans
density:

ρJ '
3

4πM 2
c

(
5kT

GµmH

)3

, (11.10)

where the condition for gravitational collapse is ρc > ρJ .

Let us consider the Jeans mass of some interstellar structures. In diffuse
hydrogen clouds, typical values of temperature and density are T ∼ 100 K
and nH I ∼ 107 m−3. Thus, ρ0 = nH ImH ∼ 1 × 107 · 1.7 × 10−27 ∼ 1.7 ×
10−20 kg m−3. With the gas fully neutral, µ = 1. Entering these values in
eq. 11.8, we have (using S.I. units throughout):

MJ '
(

5 · 1.4× 10−23 · 100

6.7× 10−11 · 1 · 1.7× 10−27

)3/2 (
3

4 · 3.14 · 1.7× 10−20

)1/2

(11.11)

or
MJ '

(
6.1× 1016

)3/2 (
1.4× 1019

)1/2
(11.12)

MJ ' 5.7× 1034 kg ∼ 30 000M� (11.13)

6



This value of the Jeans mass is two orders of magnitude higher than the
typical mass of diffuse interstellar clouds, which are therefore very stable
against gravitational collapse.

On the other hand, in the dense core of a giant molecular cloud, typical
values are T ∼ 10 K, and nH2

∼ 1010 m−3. The density is thus ρ0 ∼
2nH2

mH ∼ 2 × 1010 · 1.7 × 10−27 ∼ 3.4 × 10−17 kg m−3, a factor of 2000
greater than in a diffuse hydrogen cloud. With µ = 2, the Jeans mass will
therefore be lower by a factor of (10·2)3/2·

√
2000 = 4000, i.e. MJ ' 7.5M�.

Now we see that, with typical masses M ∼ 10M�, the dense cores of GMCs
are indeed unstable to gravitational collapse, consistent with being the sites
of star formation. While a GMC may originally be in pressure equilibrium
with the surrounding interstellar medium, a small perturbation can initiate
its contraction and trigger gravitational collapse. Such a perturbation can
be provided by cloud-cloud collisions, or by a passing interstellar shock
wave originating from a nearby region of star formation, where some of the
most massive stars have already exploded as supernovae. This can lead to
a ‘forest fire’ type of star formation, as has been suggested for the Carina
nebula (see Figure 11.2), whereby star formation propagates from one side
of a giant molecular cloud complex. Galaxy interactions are another type
of process that can trigger star formation by tipping GMCs past the Jeans
mass limit.

11.4 Free-fall Timescale

Although the Jeans criterion provides the necessary condition for the on-
set of collapse of a gas cloud, such collapse involves the release of gravita-
tional energy. If this energy were converted directly to thermal energy, the
temperature would rise and, according to eq. 11.8, the Jeans mass would
increase, halting the collapse. However, in the early stages of collapse, the
cloud is transparent to far-infrared radiation and can cool efficiently by
converting kinetic energy of its molecules and atoms into infrared photons
which can escape the cloud. Thus, the early stages of the collapse are
isothermal and the cloud is essentially in free-fall collapse.

We can obtain an estimate of the free-fall timescale as follows. We begin
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by writing the equation of gravitational acceleration:

d2r

dt2
= −GMr

r2
(11.14)

where as usual Mr denotes the mass enclosed within radius r (assuming
spherical symmetry). Writing the mass in terms of the initial density and
radius, and multiplying both sides by the velocity at the surface of the
spherical cloud, we have:

dr

dt

d2r

dt2
= −

(
4π

3
Gρ0r

3
0

)
1

r2

dr

dt
(11.15)

which can be integrated with respect to time to give:

1

2

(
dr

dt

)2

=

(
4π

3
Gρ0r

3
0

)
1

r
+ C1 . (11.16)

The integration constant C1 can be evaluated with the boundary condition
that the infall velocity be zero at the onset of collapse, that is dr/dt = 0
when r = r0. This gives:

C1 = −4π

3
Gρ0r

2
0 . (11.17)

Substituting 11.17 into 11.16 and solving for the velocity at the surface,
we have:

dr

dt
= −

[
8π

3
Gρ0r

2
0

(r0

r
− 1
)]1/2

, (11.18)

where we have chosen the negative root because the cloud is collapsing. In
order to obtain an expression for the position of the spherical cloud surface
as a function of time we need to integrate 11.18. With the substitutions:

θ ≡ r

r0

and

χ ≡
(

8π

3
Gρ0

)1/2

eq. 11.18 can be re-written as:

dθ

dt
= −χ

(
1

θ
− 1

)1/2

. (11.19)
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With the further substitution:

θ ≡ cos2 ξ ,

eq. 11.19 can in turn be re-written as

cos2 ξ
dξ

dt
=
χ

2
(11.20)

which can now be integrated with respect to time to give:

ξ

2
+

1

4
sin 2ξ =

χ

2
t+ C2 (11.21)

Again, we can evaluate the constant of integration C2 by considering that
at t = 0, r = r0. Hence, θ = 1 and ξ = 0. Therefore, C2 = 0. We thus
arrive at the equation of motion for the gravitational collapse of the cloud:

ξ +
1

2
sin 2ξ = χt (11.22)

We define the free-fall timescale as the time taken by a cloud in free-fall to
collapse from r = r0 to r = 0. (In reality, of course, this final condition is
never reached, but the concept is still valid so long as rfinal � r0). When
r = 0, θ = 0 and ξ = π/2. Then, from 11.22 we have:

tff =
π

2χ
(11.23)

or

tff =

(
3π

32

1

Gρ0

)1/2

. (11.24)

Note that the free-fall timescale is independent of the initial radius of the
sphere, and depends only on the initial density ρ0. Thus, in a spherical
molecular cloud of uniform density (admittedly a rather implausible sim-
plification!), all parts of the cloud will take the same length of time to
collapse and the density will increase at the same rate everywhere within
the cloud. This behaviour is known as homologous collapse.

11.5 Cloud Fragmentation

From the above treatment, one would be justified in concluding that the
entire mass of GMC exceeding the Jeans limit would collapse to form a
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single star. This is clearly not the case: most early-type (i.e. young) stars
are found in clusters, and maybe as many as three quarters of all stars are
in binary or multiple systems.

During the free-fall collapse phase, the density within the cloud increases
by many orders of magnitude. If the temperature remains approximately
constant, then the Jeans mass criterion (eq.11.8) implies that the mass limit
for instability decreases dramatically. Any initial density inhomogeneities
which may have been present within the cloud will cause individual regions
within the GMC to cross the instability threshold independently and col-
lapse locally. This could lead to the formation of a large number of smaller
objects.

This is still only part of the story, however. The fragmentation process
must stop at some point because: (i) the process of star formation is not
100% efficient—it is actually rather inefficient, with only about 1% of the
gas mass of the parent cloud being turned into stars; and (ii) the most
common type of star in the Galaxy has a mass of ∼ 1M�, and lower mass
stars are actually less common. Something must intervene to limit the
fragmentation process.

Fragmentation stops when the assumption of isothermal contraction breaks
down. The increasing density of the collapsing cloud fragment eventually
renders the gas opaque even to infrared photons. As a result, radiation is
trapped within the central part of the collapsing cloud, leading to heating
and an increase in gas pressure. When radiation can no longer escape
the cloud, the collapse turns from isothermal to adiabatic. (Of course, in
reality the collapse is never totally isothermal nor adiabatic, but somewhere
between these two limits. As is often the case, we can gain insight into the
relevant physical processes by considering the two limiting cases.)

We can appreciate the transition from isothermal to adiabatic collapse
by recalling (Lecture 8) the adiabatic relationship between pressure and
density:

P = Kργ

where γ is the ratio of specific heats and K is a constant. Combined with
the ideal gas law

P =
ρkT

µmH
,

10



it implies an adiabatic relationship between temperature and density:

T = K ′ργ−1 . (11.25)

Substituting 11.25 into the expression for the Jeans mass (eq. 11.8), we
have:

MJ ∝ ρ(3γ−4)/2 . (11.26)

For atomic hydrogen2 γ = 5/3, giving MJ ∝ ρ1/2; in other words, the Jeans
mass increases as the density increases (for a perfectly adiabatic collapse).
This behaviour results in a minimum fragment mass determined by the
transition from a predominantly isothermal to a predominantly adiabatic
collapse. In turn, the transition is driven by the opacity of the interstellar
mix of molecules, gas and dust to infrared radiation.

We can have a stab at estimating the lower mass limit of the fragmentation
process as follows. As we have already seen in lecture 7.11, the energy
released during the collapse of a protostellar cloud is half its potential
energy:

∆Eg '
3

10

GM 2
J

RJ
(11.27)

for a spherical cloud satisfying the Jeans instability criterion. Averaged
over the free-fall time, the luminosity produced in the collapse is:

Lff =
∆Eg

tff
' 3

10

GM 2
J

RJ
·
(

3π

32

1

Gρ0

)−1/2

(11.28)

Using ρ0 = MJ/(
4
3πR

3
J), we have:

Lff ∼ G3/2

(
MJ

RJ

)5/2

. (11.29)

Now, if the cloud were optically thick and in thermodynamic equilibrium,
this energy would be emitted as blackbody radiation, with its luminosity
given by the familiar expression:

Lbb = 4πR2σT 4 .
2At the low temperatures of interstellar clouds, molecular hydrogen behaves like a monoatomic gas.

This observation was extremely puzzling in the early part of the twentieth century and engaged the minds
of some of the most prominent physicists of the time. It took the development of the quantum theory to
show that diatomic hydrogen, with its tiny rotational inertia, requires a large amount of energy to excite
its first excited molecular rotation quantum state. Since it can not get that amount of energy at low
temperatures, it acts like a monoatomic gas.
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However, the collapsing cloud is not in thermodynamic equilibrium, so we
introduce an efficiency factor e (0 < e < 1) into the above equation to give:

Lrad = 4πR2eσT 4 . (11.30)

Equating the two expressions for the cloud luminosity, we have:

M
5/2
J =

4π

G3/2
R

9/2
J eσT 4 . (11.31)

Expressing the radius in terms of the mass and density (eq. 11.7), and then
the density in terms of the Jeans mass (eq. 11.8), we finally arrive at an
expression for the minimum obtainable Jeans mass corresponding to when
adiabatic effects become important:

MJmin
= 0.03

(
T 1/4

e1/2µ9/4

)
M� (11.32)

where T is in kelvins. With µ ∼ 1, e ∼ 0.1, and T ∼ 1000 K at the time
when adiabatic effects may start to become significant, we have MJmin

∼
0.5M�; that is, fragmentation ceases when individual fragments are ap-
proximately solar mass objects. Note that the parameters which determine
MJmin

in eq. 11.32 are all to relatively low powers. Thus the conclusion that
fragmentation does not continue much beyond masses comparable to a so-
lar mass is not highly dependent on the values of e and T . For example, if
e = 1 (fully adiabatic), then MJmin

∼ 0.2M�.

11.6 Protostars

Once the density of a collapsing fragment has increased sufficiently for
the gas to become opaque to infrared photons, radiation is trapped within
the central part of the cloud, leading to heating and an increase in gas
pressure. As a result the cloud core is nearly in hydrostatic equilibrium
and the dynamical collapse is slowed to a quasistatic contraction. At this
stage we may start to speak of a protostar.

The mass of such a ‘protostar’ is still only a small fraction of the mass it will
have once it reaches the Main Sequence. The surrounding gas continues to
free-fall onto the protostellar core, so that the next phase is dominated by
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accretion. In general, the infalling gas will form an accretion disk around
the protostar, reflecting the fact that the contracting gas cloud has a net
angular momentum. Such accretion disks are commonly seen around very
young stars.

The accretion of gas generates gravitational energy, part of which goes into
further heating of the core and part of which is radiated away, providing
the luminosity of the protostar:

L ∼ Lacc =
1

2

GMṀ

R
(11.33)

where Ṁ is the mass accretion rate. The core heats up almost adiabat-
ically since the accretion timescale tff is much smaller than the thermal
timescale, which is just the Kelvin-Helmholtz timescale, tKH, we have al-
ready encountered in Lecture 7.1.

11.6.1 Dissociation and Ionisation

When the temperature of the core reaches T ∼ 2000 K, the average par-
ticle energy is comparable to the dissociation energy of molecular hydro-
gen. The energy produced by contraction is now absorbed by this process,
rather than providing the pressure gradient necessary to maintain hydro-
static equilibrium. As a result, the core becomes dynamically unstable,
and a second collapse occurs during which the gravitational energy re-
leased is absorbed by the dissociating molecules without a significant rise
in temperature. When H2 is completely dissociated into atomic hydrogen,
hydrostatic equilibrium is restored and the temperature rises again. Some-
what later, further dynamical collapse phases follow when first H and then
He are ionised at temperatures T ∼ 104 K.

When ionization of the protostar is complete, it settles back into hydro-
static equilibrium at a much reduced radius. We can estimate the radius
Rp of a protostar after the dynamical collapse phase is over by equating the
change in potential energy to the sum of the energies of: (i) dissociation
of molecular hydrogen (χH2

= 4.48 eV per H2 molecule), (ii) ionisation of
atomic hydrogen (χHi = 13.6 eV per H atom), and (iii) ionisation of helium
(χHe = 79 eV per He atom: 24.6 eV for He0 → He+ and 54.4 eV for He+ →
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He++). Thus we have:

∆Eg '
3

10

GM 2

Rp
≈ M

mH

(
X

2
χH2

+XχH +
Y

4
χHe

)
≡ M

mH
χ , (11.34)

where we have taken the collapse to start from infinity because Rp � Rinit.
With X = 0.74 and Y = 1 − X (ignoring the metals), χ = 16.9 eV per
baryon. Therefore we have:

Rp ≈
3

10

GMmH

χ
≈ 35R�

(
M

M�

)
. (11.35)

We can use the virial theorem to estimate the average temperature of the
protostar, 〈Tp〉. Following the same steps as in Lecture 7.1.1 (eqs. 7.9–7.13),
we find:

〈Tp〉 =
1

5

µmH

k

GM

Rp
=

2

3

µ

k
χ ≈ 8× 104 K , (11.36)

for µ ' 0.6 appropriate to a fully ionised plasma (Lecture 9.2.1). There are
two things of note about eq. 11.36. First, the temperature is independent of
the mass of the protostar. Second, the temperature reached once the pro-
tostar settles back into hydrostatic equilibrium (following H2 dissociation
and He and He ionisation) is still much lower than the temperature neces-
sary to ignite nuclear reactions. At these ‘low’ temperatures, the opacity
is very high and is dominated by the H− ion (Lecture 5.4.1). Under these
circumstances, radiative energy transport is very inefficient, making the
protostar convective throughout, except for the outermost layer (photo-
sphere). Thus a new star is chemically homogeneous. This will change as
the star ages.

11.7 The Hayashi Track and the Final Approach to

the Main Sequence

Fully convective stars of a given mass occupy an almost vertical line in the
H-R diagram. The line is called the Hayashi line from the Japanese as-
trophysicist who worked on stellar evolution during the pre-main sequence
stages in the early 1960s. A protostar of a given mass moves along its
Hayashi line as it approaches the main sequence (see Figure 11.3).
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Figure 11.3: Theoretical pre-main sequence evolutionary tracks computed for stars of
various masses for two different metallicities, as indicated. A pre-main sequence star
evolves along its track from right to left. The black square on each track indicates the
onset of D burning. (Reproduced from Bernasconi & Maeder 1996, A&A, 307, 829).

The Hayashi track is actually a boundary. It represents the minimum
effective temperature for a star in hydrostatic equilibrium. The right of
the Hayashi track, there is no mechanism that can adequately transport
the luminosity out of the star at such low effective temperatures; hence
no stable star can exist there and this region is sometimes referred to as
the forbidden region of the H-R diagram. On the other hand, stars to the
left of the Hayashi line (at higher Teff) cannot be fully convective but must
have some portion of their interior in radiative equilibrium.

As a newly formed star emerges from the dynamical collapse phase, it set-
tles on the Hayashi line appropriate for its mass, with a radius roughly
given by eq. 11.35. From this moment on we speak of the pre-main se-
quence phase of evolution. The pre-main sequence (PMS) star radiates at
a luminosity determined by its radius on the Hayashi line. Since it is still
too cool for nuclear burning, the energy source for its luminosity is grav-
itational contraction. As dictated by the virial theorem, this leads to an
increase of its internal temperature. As long as the opacity remains high
and the PMS star remains fully convective, it contracts along its Hayashi
line and thus its luminosity decreases. One such evolutionary track is given
approximately by:

logL = 10 logM − 7.24 log Teff + C (11.37)
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This track is steeply descending, and shifts upwards with increasing initial
mass.

As the central temperature rises, we move beyond the peak in the opac-
ity curves shown in Figure 5.5, into a region where the opacity follows a
Kramers law, 〈κ〉 ∝ T−3.5 (Lecture 5.5). A radiative core develops, grow-
ing with time to encompass more and more of the star’s mass. The point
of minimum luminosity in the evolutionary tracks shown in Figure 11.3
corresponds to the development of a radiative core which allows energy to
escape more readily into the convective envelope, causing the luminosity of
the star to increase. The effective temperature continues to increase since
the star is still shrinking.

Contraction continues, as dictated by the virial theorem, until the cen-
tral temperature becomes sufficiently high to ignite nuclear fusion. Once
the energy generated by H fusion compensates for the energy loss at the
surface, the star stops contracting and settles on the zero-age main se-
quence (ZAMS), if its mass is above the hydrogen burning limit of 0.08M�
(Lecture 10.4).

Before thermal equilibrium on the ZAMS is reached, however, several nu-
clear reactions have already set in. In particular, a small quantity of deu-
terium (D≡ 2

1H) is present in the interstellar gas out of which stars form,
with mass fraction of order 10−5. D is a very fragile nucleus that reacts
easily with atomic hydrogen. What little is left over from Big-Bang nucle-
osynthesis [(D/H)prim = 2.5× 10−5 by number] is destroyed by the second
reaction in the p-p chain (see Figure 7.5):

2
1H +1

1 H→3
2 He + γ (11.38)

which destroys all D present in a star at T ∼ 1×106 K, while the protostar
is still on the Hayashi line (see Figure 11.3).3

The reaction (11.38) is exothermic and produces 5.5 MeV of energy, suf-
ficient to halt the contraction of the PMS star for ∼ 105 yr. (A similar,
but much smaller effect, occurs somewhat later when lithium is burned at
a higher T ). Furthermore, the 12C(p, γ)13N reaction is already activated

3This process is known as the astration of deuterium, and makes the calculation of the abundance of
deuterium as star formation progresses in a galaxy particularly simple. For the same reason, the D/H
ratio measured in the present-day interstellar medium is a lower limit to the primordial abundance of
deuterium.
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at a temperature below that of the full CNO cycle, due to the relatively
large initial abundance of 12C compared to the equilibrium CNO abun-
dances. Thus almost all 12C is converted into 14N before the ZAMS is
reached. The energy produced in this way also halts the contraction tem-
porarily and gives rise to the wiggles in the evolutionary tracks just above
the ZAMS location visible in Figure 11.3. Note that this occurs even in
low mass stars, with M < 1M�, even though the p-p chain is their main
energy generation mechanism.

Finally, the time taken for a protostar to reach the ZAMS depends on its
mass. This time is essentially the Kelvin-Helmholtz contraction timescale
which we considered in Lecture 7.1. Since contraction is slowest when both
R and L are small (recall from Lecture 7.1 that τKH = ∆Eg/L and ∆Eg ∝
1/R for a given mass M), the pre-main sequence lifetime is dominated
by the final stages of contraction, when the star is already close to the
ZAMS. For stars with M ≥ 1M�, we find τKH ' 5 × 107(M/M�)−2.5 yr,
while for lower mass stars the mass dependence is somewhat shallower
(see Figure 11.4). Thus, massive protostars reach the ZAMS much earlier
than lower-mass stars (and the term zero-age main sequence is somewhat
misleading in this context, although it hardly makes a difference to the
total lifetime of a star).

Figure 11.4: Pre-main sequence contraction times as a function of stellar mass, from the
evolutionary tracks calculated by D’Antona & Mazzitelli and by Iben, as indicated.

17



11.8 Nomenclature of Objects Associated with Star

Formation

Before concluding the topic of star formation, we briefly mention some of
the objects which are associated with this process.

T Tauri stars (named after the first star of their class to be identified as
an object of special interest) are an important class of low-mass, pre-main
sequence objects. As can be seen from Figure 11.5, many of them lie on
the Hayashi tracks. Some of their characteristics [many of them common
to Young Stellar Objects (YSO) in general] are:

1. Variability in the light output with timescales of the order of days, as
material falls down onto the surface of the star from a residual disk;
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Figure 11.5: Positions of T Tauri stars on the H-R diagram. The sizes of the circles are
proportional to the rate of rotation. Filled circles indicate stars with strong emission
lines. Theoretical pre-main sequence evolutionary tracks are also shown. (Reproduced
from Bertout 1989, ARA&A, 27, 351).
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2. Emission lines from both permitted and forbidden transitions, from
the disk, or the bipolar outflow, or both. Some emission lines have a
characteristic P-Cygni profile, which is a combination of emission and
absorption indicative of mass loss.

3. Higher infrared luminosity than main sequence stars of the same mass,
because there is more dust in their immediate vicinity.

4. A high level of what is called activity is seen, meaning flares, star spots
and emission from a hot corona (including X-ray emission). There
seem to be two reasons for this: many T Tauri stars are rapid rotators,
with rotation periods from hours to days, as opposed to a month
for the Sun.4 Second, as we have seen, the convection zone extends
deeper into the star when it is on the Hayashi track than when it
reaches the main sequence. The combination of rapid rotation and
deep convection results in a strong dipole magnetic field which, in
turn, drives the activity.

Herbig-Haro objects are apparently associated with the jets produced
by T Tauri stars. As the jets expand supersonically into the ambient
interstellar medium, collisions excite the gas resulting in bright nebulosities
with emission line spectra. Continuous emission is also observed in some
protostellar objects as the central star, which is hidden from direct view
behind dust in the accretion disk, illuminates the surfaces of the disk.
These accretion disks seem to be responsible for many of the characteristics
of YSOs, including emission lines, mass loss, jets, variability, and ultimately
planet formation.

OB associations are groups of stars dominated by O and B-type main
sequence stars (lower mass stars are of course also present, but they are
less conspicuous being less luminous). Since the lifetimes of O stars are
< 107 yr, OB associations mark the sites of recent star formation (see
Figure 11.6), and indeed they are usually found close to molecular clouds
(although not necessarily the parent cloud from which they formed, which
is rapidly dispersed following the formation of massive stars—see later).
Studies of the kinematics of individual stars in OB associations generally

4Stars are born with high rotational velocities which subsequently decline with age. The braking is
thought to result from the interaction of the star’s magnetic field and the stellar wind emitted from the
photosphere causing a steady transfer of angular momentum away from the star.

19



1
9
9
3
A
&
A
S
.
.
.
9
8
.
.
4
7
7
M

Figure 11.6: Isochrone fitting to the upper main sequence of the open cluster NGC 6231
indicates an age of ∼ 5.6 × 106 yr. (Reproduced from Meynet et al. 1993, A&A Supp.,
98, 477).

lead to the conclusion that they are not gravitationally bound and they
they will eventually dissolve into the field stellar population.

On the other hand, super star clusters, most commonly found in regions
undergoing very intense episodes of star formation—or starbursts, consist
of 104 to 106 stars concentrated within a few pc. Given the high density of
stars, they may remain bound even after their massive stars have exploded
as Type II supernovae and may also survive other disruptive processes later
on. If so, after several billion years, they would evolve into objects similar
to the old globular clusters in the halo of the Milky Way. Thus, super star
clusters may simply be young globular clusters.

11.8.1 H ii Regions

Whether isolated or in a cluster, massive stars of spectral type O and
B have a profound effect on their surroundings once they arrive on the
main sequence. With effective temperatures Teff > 30 000 K, the peak
of their blackbody curve is at ultraviolet wavelengths. Photons with λ <
912 Å are sufficiently energetic to ionise ground-state hydrogen atoms (with
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ionisation potential IP = 13.6 eV) in the surrounding interstellar medium,
producing an H ii region around the star(s).

We can calculate the size of an H ii region provided we know the number of
ionising photons emitted by the star and the ambient density. In a steady
state, the ionisation rate (number of ionisations per unit time) must balance
the recombination rate (the inverse process). If such an equilibrium did
not develop, the size of the H ii region would continue to grow until Lyman
continuum photons are diluted enough for equilibrium to be established.

The recombination rate per unit volume is given by:

Rrec = α(T )nH ne

where nH and ne are the volume densities of H+ ions and electrons respec-
tively, and α(T ) is the temperature dependent radiative recombination
coefficient.5 Since hydrogen is the most abundant element and is fully
ionised, nH ' ne Assuming spherical symmetry, we therefore have:

Q∗ = Rrec
4

3
πr3

Hii (11.40)

where Q∗ is the number of ionising photons emitted by the star per unit
time and r is the radius of the H ii region, also called the Strömgren radius
from the Danish astrophysicist who first carried out the analysis in the late
1930s. Solving for the Strömgren radius, we have:

rHii =

(
3Q∗
4πα

)1/3

n
−2/3
H . (11.41)

The Strömgren sphere of a star marks the sharp transition between fully
ionised circumstellar gas and mainly neutral interstellar gas. Within the
H ii region, hydrogen is continuously being ionised and recombining with
electrons. In general, recombination takes place to a high energy level,
followed by cascading of the electron through intermediate levels to the
ground state. Each step in the process is accompanied by the emission
of a photon with energy lower than the original 13.6 eV responsible for

5A useful formulation of α(T ) is a power-law dependence on temperature:

α(T ) ≈ 3.1× 10−13 cm−3 s−1

(
T

8000 K

)−0.82

. (11.39)
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ionising H from the ground state. The dominant visible wavelength photon
produced in this way results from the transition between the n = 3 and
n = 2 levels, corresponding to the Hα line of the Balmer series, at a
wavelength of 6563 Å, in the red region of the optical spectrum. It is this
process that causes H ii regions to fluoresce in red light.

11.8.2 Coeval Star Formation in Clusters?

The effect of massive stars on their environment goes far beyond ionising
the gas within the Strömgren sphere. All stars more massive than ∼ 20M�
experience mass loss driven by radiation pressure while still on the main
sequence. For the most massive stars, the energy deposited into their
surroundings via strong stellar winds is comparable to that associated with
the explosion of a Type II supernova, ∼ 1051 ergs.

The ‘double-whammy’ of stellar winds and supernova explosions can dis-
perse the remainder of the parent molecular cloud on a timescale of only
a few million years, depending on the richness of the newly formed cluster
of OB stars, effectively shutting down any further star formation. This
timescale is shorter than the contraction times of lower mass stars, and
yet many clusters are known to contain both early-type and late-type
stars. This apparent contradiction, first noted by the American astronomer
George Herbig in the 1960s, has led to the view that, when stars in a clus-
ter form, the low- and intermediate-mass stars form first, with the process
continuing gradually until the high-mass stars form and quickly halt all
subsequent star formation. It may also be the case that the most massive
stars form by mergers of smaller stars in dense protostellar environments.

11.9 The Initial Mass Function

The end product of an episode of star formation is a cluster of stars of
different masses. Observationally, it is clear that low mass stars are much
more common than high mass stars. The distribution of stellar masses
immediately after a population of stars arrives on the main sequence is
described by the Initial Mass Function (IMF). For a young cluster, the
IMF can be deduced from the observed Present-day Mass Function, after

22



o o o o oo
o o o
o o o o o
o o o

o o o
o o

o o o o
o

THE STELLAR INITIAL MASS FUNCTION 123

Figure 1. Initial mass functi n f r field stars in the s lar neighb rh d taken
fr m a variety f recent studies. These results have been n rmalized at 1 M .
F r the IMFs f Miller and Scal (1979) (MS79) and f Scal (1986), we have
ad pted 15 Gyr as the age f the Milky Way. Current w rk suggests that the
upper end f the IMF ( 5 M ) is best represented by a p wer law similar t
that f Salpeter (1955) (curve S55), whereas the l w-mass end ( 1 M ) is
flatter (Kr upa et al. 1993) (curve KTG93). The shape f the IMF fr m 1 t
5 M is highly uncertain. See the references listed f r details.
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imp rtance w uld be the clear dem nstrati n f a peak in the IMF at the
l w-mass end. C nsiderable bservati nal eff rt has been f cused n es-
tablishing whether r n t such a peak exists and, if s , characterizing its
l cati n and width (see Fig. 1).

In additi n, it is extremely imp rtant t kn w whether r n t the
time- and space-averaged distributi n f masses characterizing the s -
lar neighb rh d is universal. D all star-f rming events give rise t
the same distributi n f stellar masses? If star f rmati n is essentially a
self-regulating pr cess, then ne might expect the IMF t be strictly uni-
versal. Alternatively, if stellar masses are determined nly by the physical
structure f the interstellar medium (e.g., fragmentati n), then ne might
expect differences in the IMF that depend n l cal c nditi ns, such as

Figure 11.7: Different realisations of the stellar Initial Mass Function. S55 is for Salpeter
(1955), and KTG93 is for Kroupa, Tout & Gilmore (1993). (Figure reproduced from
Meyer et al. 1999, astro-ph/9902198).

correcting for the fact that the most massive stars have evolved off the main
sequence in clusters older than a few million years. In the field, we need
to combine the PDMF with a knowledge (or model) of the past history of
star formation to reconstruct the IMF. In both cases, models are required
to convert the measured stellar luminosities to stellar masses.

The simplest form of the IMF is a single power law of the form:

N(M) dM ∝M−α dM (11.42)

where N(M) dM is the number of stars per unit volume with mass between
M and M + dM .

Edwin Salpeter suggested in 1955 that, in the solar neighbourhood, the
frequency distribution of stars more massive than the Sun follows eq. 11.42
with α = 2.35. Other formulations have been proposed, usually consisting
of a combination of different power laws in different mass intervals (see
Figure 11.7). Thus, for example, the Kroupa, Tout & Gilmore (1993) IMF
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Figure 2 The initial mass function slopes ! are shown for OB associations and clusters

analyzed in a uniformmanner; the data are fromTable 3 ofMassey (1998a) updated to include

R136 (Massey & Hunter 1998) and h and χ Persei (Slesnick et al. 2002). The solid line at

! = −1.35 indicates a Salpeter (1955) slope.

upon what is assumed for the effective temperature scale for the hottest stars. Yet

in fact the number of these very massive stars is just what one would expect from

extrapolating the IMF slopes from that of the intermediate-mass stars (Massey &

Hunter 1998). The “upper mass limits” observed in these more sparsely populated

OB associations are also consistent with the extrapolation of the IMF to higher

masses—these limits turn out to have been statistical, rather than physical, and

just what happens when the IMF peters down to a single star. Whatever it is that

limits the ultimate mass of a star, we have yet to encounter it in nature.1

1Theory offers us onlymodest guidance inwhat themaximum stellarmass allowed by nature

is and what the limiting factor may be. An excellent review may be found in Appenzeller

(1987), who notes that Eddington (1926) was the first to propose that stars more massive

than some amount would be pulsationally unstable, and should blow off their outer layers,

thus limiting their mass. Early estimates of this limit were as low as 60M" (Schwarzschild

& Harm 1959). Modern estimates, however, place this limit as high as 440M" (Klapp

et al. 1987), although this is still based upon the same classical perturbation linearization

methods used by Eddington. Recent “nonlinear” analysis suggests that the mass loss from

such instabilities would only be comparable to the mass loss of radiatively driven stellar

winds (Appenzeller 1987). Similarly, it was once thought that radiation pressure acting on

grains would limit how large a star could form, but we now understand that disks play an

important role in the formation of stars, and there may be sufficient shielding by the inner

part of the disk to mitigate the effects of radiation pressure.
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Figure 11.8: The slope of the IMF (in its integral, rather than differential, formulation)
measured in OB associations and clusters in the Milky Way and our companion galaxies,
the Large and Small Magellanic Clouds, is consistent with a Salpeter slope of α + 1 =
−1.35. (Figure reproduced from Massey 2003, ARA&A, 41, 15).

is a combination of three power laws:

N(M) dM ∝


M−2.7 dM if M > 1M�

M−2.2 dM if 1 ≥M ≥ 0.5M�

M−(0.70 to 1.85) dM if 0.5 ≥M ≥ 0.08M�

(11.43)

The faintness of low mass stars, the rarity and short lives of high mass stars,
and the frequency of binaries are all issues affecting the determination of
the IMF.

A much debated question is whether the IMF is ‘universal’, or whether it
varies with local conditions, such as metallicity, or with redshift. Opinions
are divided as to the reality of claimed IMF variations, although it seems
to be well established that the same IMF applies to stars in the Milky
Way and Large and Small Magellanic Clouds (our companion galaxies—
see Figure 11.8). Most astronomers consider it likely that the IMF of the
First Stars that formed in the Universe was ‘top-heavy’, i.e. lacking in low
mass stars.

The stellar initial mass function is a crucial factor in many astrophysi-
cal problems. Examples are the determination of the star formation rate
(SFR) in galaxies and studies of the chemical evolution of galaxies. In
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the former case, the SFR is usually determined from a tracer—such as the
Hα emission line—which is produced by stars in a limited mass range (for
Hα the most massive stars dominate), and then the result is extrapolated
to all stellar masses. In the latter, the relative proportions of different
chemical elements depend on the slope and mass range of the IMF because
stars of different masses synthesise different elements in different propor-
tions. Typical examples are Oxygen which is produced and ejected into
the ISM mainly by massive stars, and Iron which is due mostly to low- and
intermediate-mass stars. Thus, altering the IMF would affect the resultant
(O/Fe) ratio following an episode of star formation. The determination of
the mass-to-light ratio in galaxies is another example of a problem where
the slope and mass range of the IMF are crucial: how much mass is ‘hid-
den’ in very low mass stars and ‘brown dwarfs’ depends sensitively on the
poorly known IMF in the subsolar regime.
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