
M. Pettini: Structure and Evolution of Stars — Lecture 8

ENERGY TRANSPORT WITHIN A STAR

8.1 Introduction

Up to now, we have considered how energy is generated within the interior
of stars by the processes of gravitational contraction and nuclear fusion.
However, for a star to shine, the heat and photons generated deep in the
interior of the star have to be transferred to the surface, where they are
radiated away as electromagnetic radiation. This is the subject of this
lecture.

Three different energy transport mechanisms can operate within the inte-
rior of a star. Radiation can transfer energy from the core to the surface,
as photons are continuously absorbed and re-emitted as they interact with
the plasma. Conduction, whereby heat is transferred at the microscopic
level by collisions between particles. Convection is the bulk motion of
cells, with hot, buoyant mass elements rising towards the surface, while
cooler ones sink.

The efficiency of the first two processes depends on the mean free path of,
respectively, photons and particles (i.e. electrons); since the photon mean
free path is normally greater than that of electrons, radiative diffusion nor-
mally dominates over conduction, although the latter becomes dominant
in special physical conditions, such as those prevailing in white dwarfs.

8.2 Radiative Transport

The diffusion of energy from the star’s core to the surface via radiation is
described by the Eddington equation for radiative equilibrium:

dT

dr
= −3

4
· 1

ac
· κρ
T 3
· Lr

4πr2
(8.1)

where a is the radiation constant, a = 4σ/c, σ is Stefan-Botltzmann con-
stant, κ is the opacity and the other symbols have their usual meanings.
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This equation can be derived in different ways; here we are going to use a
simple physical argument.

Consider a small cell within the interior of a star, say with volume 1 cm3

(see Figure 8.1). In LTE, the flux from below is F2 ∼ σT 4
2 (blackbody

emission). The flux from above is F1 ∼ σT 4
1 . Hence, the net flux through

the element is F ∼ σ(T 4
2 − T 4

1 ). Generalising, we have:

F ∼ − d

dr
σT 4 . (8.2)

The flux through the volume element has to be multiplied by ‘the trans-
parency’ of the layer, which is approximately (for small volume elements)
1/κρ, that is the photon mean free path (as we saw in Lecture 5). Thus
the total flux through the volume element is:

F ∼ − 1

κρ
· d
dr
σT 4 . (8.3)

The third step in the derivation just equates the flux through a spherical
surface of radius r to the total luminosity:

F =
Lr

4πr2
(8.4)

1 cm

T1

T2

T1 < T2

To the surface

To the core

Figure 8.1: Blackbody emission at different distances r from the core of a star.
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Combining these three equations we have:

Lr ∼ −
1

κρ
· 4πr2 · d

dr
σT 4 = − 1

κρ
· 4πr2 · ac

4
· 4T 3 · dT

dr
(8.5)

which can be rearranged in the form:

dT

dr
∼ − 1

ac
· κρ
T 3
· Lr

4πr2
. (8.6)

Eqs. 8.1 and 8.6 differ only in the factor of 3/4 which comes from a proper
integration over all angles.

In its 8.5 form (with a 4/3 factor on the right-hand side), the Eddington
equation for radiative equilibrium gives the luminosity of star in terms of
its radius, temperature, and temperature gradient when energy transport
is primarily by radiative diffusion.

In its 8.1 form, the equation gives the temperature gradient required to
carry the entire star’s luminosity by radiation. A star, or a region within
a star, in which this holds is said to be in radiative equilibrium, or simply
radiative.

The Eddington equation is a valid description as long as the condition
of LTE holds. This is clearly not the case at the stellar surface, or the
photosphere, since this is the where the photons escape (and therefore
the photon mean free path is no longer small compared to the distance
over which dT/dr is small—recall our discussion at 5.2). Thus, near the
stellar surface the diffusion approximation is no longer justified and one
needs to solve the much more complicated equations of radiative transfer.
Fortunately, the LTE and diffusion approximations are valid over almost
the entire stellar interior.

Sometimes eq. 8.1 is written in terms of the mass. Recalling (Figure 7.1)
that dm = 4πr2ρ dr, we have:

dT

dm
= −3

4
· 1

ac
· κ
T 3
· Lr

(4πr2)2 (8.7)
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8.2.1 The Luminosity of the Sun

We can use the Eddington equation in the eq 8.5 form:

Lr = −4

3

1

κρ
· 4πr2 · ac · T 3 · dT

dr

to estimate the luminosity of the Sun. Integrating the above equation and
using the mean temperature of the Sun (as derived in lecture 7.1) as an
approximation, we have:

L� '
1

3
µ · 4πr� · ac · 〈T�〉4 .

L� '
4

3
·0.1·3×7×1010·3×1010·7.6×10−15 ·

(
5× 106

)4
cm3 s−1 erg cm−3 K−4 K4

where µ ∼ 0.1 cm.

L� ' 6.4× 10 · 1× 105 · 625× 1024 erg s−1

L� ' 4× 1033 erg s−1

For comparison, L� = 3.8× 1033 erg s−1 – not bad!

8.3 Convection

Convection is a familiar phenomenon in our everyday lives: for example,
our daily weather is caused by convection in the Earth’s atmosphere. The
surface of the Sun (Figure 8.2) is not smooth; instead we see bright granules
separated by darker intergranular lanes. We know from Doppler velocity
measurements that the motion of the bright regions is mostly outwards,
while in the dark intergranular regions the gas is moving downwards. The
motions and temperature inhomogeneities seen in the granulation pattern
are attributed to the hydrogen convection zone just below the solar pho-
tosphere. The bulk motions of the gas and associated magnetic fields are
thought to be the source of the mechanical energy flux that heats the solar
chromosphere and corona.

Referring back to eq. 8.1, it can be readily appreciated that an increase in
opacity κ in a stellar atmosphere will lead to a larger temperature gradient
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Figure 8.2: High resolution image of the solar photosphere, showing granulation and
sunspots.

dT/dr (if the same luminosity is to be maintained). We also saw (Figure
5.5) that as the temperature decreases from T ∼ 107 K, the opacity rises
steeply with a Kramer’s law 〈κ〉 ∝ T−3.5. Thus, as we move from the core
to the outer regions within a stellar interior, the temperature gradient is
expected to become increasingly steep. A very steep temperature gradient
is unstable, whether in a star or the Earth’s atmosphere.

This can be appreciated by considering the consequences of displacing a
volume element of gas, at equilibrium radius r inside a star—where T , P
and ρ are the temperature, pressure and density, to a radius r+ dr, where
the ambient parameters are T + dT , P + dP and ρ+ dρ (Figure 8.3).

T
P
ρ

ρ + dρ

P + dP

T + dT

dr

T
P
ρ

T + δT
P + δP
ρ + δρ

Figure 8.3: Illustration of the onset of convection. If ρ+ δρ > ρ+dρ the element will sink
back to its former equilibrium position at radius r. But if ρ + δρ < ρ + dρ, the element
will be buoyant and convection will ensue.
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In the following treatment, we make two assumptions:

1. Pressure equilibrium: the element maintains the same pressure as its
surroundings, and

2. The process is adiabatic, that is there no heat exchange between the
volume element and its surroundings.

This is the same as saying that the timescale for removing pressure imbal-
ance is short compared to the timescale for the establishment of thermal
equilibrium. The ideal gas law:

P =
ρkT

µmH
(8.8)

where µ is the mean molecular weight, mH is the mass of the hydrogen
atom, and the product µmH is the mean mass of the gas particles, can be
written as:

P = Kργ (8.9)

where K is a constant and γ is the ratio of the specific heats:

γ =
CP
CV

CP ≡
∂Q

∂T

∣∣∣
P
, CV ≡

∂Q

∂T

∣∣∣
V

(8.10)

which measure the amount of heat required to raise the temperature of a
unit mass of material by a unit temperature interval at constant pressure
and at constant volume respectively. Note that CP > CV (and therefore
γ > 1), because at constant pressure some of the energy input goes into
increasing the volume of the gas and hence more energy is required to raise
the temperature by 1 K.

What happens next depends on the difference ∆ρ ≡ (ρ + δρ) − (ρ + dρ).
In the gravitational field g of the star, our rising volume element will ex-
perience a force f = −g∆ρ. Thus, if ∆ρ is +ve, the element will sink back
to its equilibrium position at radius r but, if ∆ρ is −ve, the element will
be buoyant and will rise further. This is the onset of convection.

Thus, the condition for convective instability is set by the density gradient
within the star: if the gradient is less than that experienced by the volume
element rising adiabatically, the star will be unstable against convection.
Since we have assumed pressure equilibrium with its surrounding, we could
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also state the same instability criterion in terms of the temperature gradient
(see eq. 8.8) as: ∣∣∣dT

dr

∣∣∣
rad

>
∣∣∣dT
dr

∣∣∣
ad
. (8.11)

Eq. 8.11 is known as the Schwarzschild criterion for convective instability
(see Figure 8.4). It tells us that if the temperature profile within a star is
super-adiabatic, the star is unstable against convection.

T

r

(
dT

dr

)

ad

(
dT

dr

)

rad

= Unstable

(
dT

dr

)

rad

= Stable

T

(
dT

dr

)

ad

Figure 8.4: The Schwarzschild criterion for convective instability.

It is also instructive to express the convective instability criterion in terms
of the parameter γ. We can do this as follows. From eq. 8.11 we have:∣∣∣d lnT

dr

∣∣∣
rad

>
∣∣∣d lnT

dr

∣∣∣
ad
, (8.12)

diving through by d lnP/dr,∣∣∣d lnT

d lnP

∣∣∣
rad

>
∣∣∣d lnT

d lnP

∣∣∣
ad

(8.13)

or ∣∣∣d lnP

d lnT

∣∣∣
rad

<
∣∣∣d lnP

d lnT

∣∣∣
ad
. (8.14)

Eqs. 8.8 and 8.9 can be combined to give the adiabatic relation between
pressure and temperature:

P T
γ

1−γ = K ′ , (8.15)
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so that
dP

P
=

γ

γ − 1

dT

T
(8.16)

or ∣∣∣d lnP

d lnT

∣∣∣
ad

=
γ

γ − 1
, (8.17)

The Schwarzschild instability criterion then becomes:∣∣∣d lnP

d lnT

∣∣∣
star

<
γ

γ − 1
. (8.18)

Sometimes, this condition is also given as:∣∣∣dT
dr

∣∣∣ > γ − 1

γ

T

P

∣∣∣dP
dr

∣∣∣ (8.19)

obtained from 8.16 by dividing both sides by dr and rearranging.

The above treatment emphasises the importance of the ratio of the specific
heats in determining the stability of a star against convection. Recall that
CP > CV . Their difference is given by:

CP − CV =
k

µmH

so that:
γ

γ − 1
= CP

µmH

k
.

Thus, the higher the specific heats, the closer their ratio is to 1; the closer
γ is to 1, the higher is the value of the adiabatic |d lnP/d lnT | gradient
(eq. 8.17), leading to instability (eq. 8.18). Under what conditions are CP
and CV high? One example is partially ionised gas, where some of the
heat supplied to the system may go into further ionizing atoms instead of
increasing their kinetic energy. Similarly, the presence of molecules in the
mix, would increase the specific heats since some of energy supplied would
go into breaking the molecular bonds.

8.3.1 Which Stars Are Convective?

From the discussion above we can develop some physical understanding of
when a star will develop a convective layer in its core. From eq. 8.1 we saw
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that the temperature gradient is proportional to the opacity κ; thus, we
expect that in layers where the opacity is very high, the temperature gra-
dient required for radiative energy transport becomes unachievably steep.
We also saw from Figure 5.5 that stellar opacities increase dramatically as
T decreases from 106 to 105 K; at T ∼ 105 K the gas is only partly ionised
(at typical stellar densities); the rise in κ is produced by the availability of
many bound-bound and bound-free transitions.

Hand in hand with this is the increase in the specific heats; consequently
their ratio γ tends to 1 as the gas becomes partly, as opposed to fully,
ionised. As we have discussed, this will increase the adiabatic |d lnP/d lnT |
gradient, leading to convection. For both reasons, convection will occur in
the outer layers of cool stars. In a G0 V star the convective layer is thin,
while main sequence M stars are almost fully convective. Red giants and
supergiants are also convective over most of their interiors. Figure 8.5
shows the onset of convection in the Sun at a radius r ' 0.7R�.

Convection is also important in stellar layers where the ratio L/4πr2 is high
(cfr. eqs. 8.1 and 8.11), that is where large luminosities are generated over
small volumes. This is the situation in the cores of massive stars, given

γ =
5
3

γ

γ − 1
=

5
2

Figure 8.5: Plots of d lnP/d ln ρ (top) and d lnP/d lnT for the Standard Solar Model.
For a monoatomic gas γ = 5/3.
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the steep temperature dependencies of the CNO cycle and the triple-alpha
process (Lecture 7.4.2 and 7.4.3).

Figure 8.6 summarises pictorially the points made in this section.

Figure 8.6: Zones of convection and radiation in main-sequence stars of various masses.
The lowest mass stars are completely convective. A radiative core develops atM ' 0.4M�,
and a star is fully radiative at M ' 1.5M�. The core region is again convective for masses
M >∼ 2M�. The relative sizes of the stars shown here are approximately correct, while on
the main sequence. (Figure reproduced from Bradt, H., Astrophysics Processes, CUP).

8.4 Hydrostatic Equilibrium

Having established the conditions under which convection will occur, it
may be of interest to estimate the convective flux Fc, that is the energy
transported by convective cells per unit time through a unit surface area
of the star. In order to do so, we need to first consider the concepts of
hydrostatic equilibrium and pressure scale height.
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8.4.1 Hydrostatic Equilibrium

What stops a star from collapsing under its own gravity? The inward force
of gravity must be balanced by an equal force of opposite sign; this force
is provided by pressure. Considering a small cylindrical element of mass
dm and height dr located at a distance r from the centre of a spherically
symmetric star (Figure 8.7), we have:

FP,b To the centre of the star

rdr dm

FP,tFg

A

Figure 8.7: In hydrostatic equilibrium |Fg + FP,t| = |FP,b|.

AdP = −GMr dm

r2
(8.20)

where: (i) Mr is the mass enclosed within radius r; (ii) A is the area of
the base of the cylinder; and (iii) dP is the difference in pressure (defined
as force per unit area, i.e. P ≡ Fp/A) between the top and bottom faces
of the cylinder. Since we are considering an infinitesimally small cylinder,
we can assume that the density is constant within the cylinder and express
the mass in terms of the density: dm = ρAdr:

AdP = −GMr ρAdr

r2
. (8.21)

11



Dividing both sides by the volume of the cylinder dV = Adr, we obtain
the equation of hydrostatic equilibrium:

dP

dr
= −GMr ρ

r2
(8.22)

Since GMr/r
2 ≡ g, the local acceleration of gravity at radius r, we can

also write:
dP

dr
= −ρ g . (8.23)

In order for a star to be in hydrostatic equilibrium, a negative pressure
gradient must exist within the star, with the pressure being larger in the
interior than near the surface.

8.4.2 Dynamical Timescale

What would happen if pressure suddenly vanished and the only force acting
on a star were gravity? The star would collapse on a free-fall timescale
given by:

tff =

√
2R

g
(8.24)

where R is the star radius (recall r = 1
2at

2 for a body experiencing accel-
eration a). With the above definition of g, and expressing MR in terms of
the mean density 〈ρ〉, MR = 4

3πR
3 〈ρ〉, we have:

tff =

√
2RR2

GMR
=

√
2RR2 3

G 4πR3 〈ρ〉
=

√
3

2π

√
1

G 〈ρ〉
(8.25)

The last term in the equation is often referred to as the dynamical timescale:

tdyn ∼
√

1

Gρ
(8.26)

Although we have derived it by using the unrealistic example of the free-
fall time in a star, the dynamical timescale is an important concept often
used in dimensional treatment of astrophysical situations. It describes the
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time taken for changes in one part of a body to be communicated to the
rest of that body (and thus tdyn ≈ tsc where tsc is the sound crossing time).
Another way to think about the dynamical timescale is as the time required
for a system to move from one equilibrium state to another after a sudden
change. Thus, for example, an interstellar cloud cannot collapse to form
stars over a timescale shorter than tdyn; similarly, a sudden burst of star
formation in a galaxy cannot take place over a timescale shorter than tdyn.

8.4.3 Pressure Scale Height

Returning to the equation of hydrostatic equilibrium, we define the pressure
scale height Hp as:

1

Hp
≡ − 1

P

dP

dr
, (8.27)

so that we can express the variation in pressure with radius as:

P = P0 e
−r/Hp . (8.28)

In other words, Hp is the radial distance over which the pressure drops by
a factor of e. Recalling eq. 8.23, it can be seen that:

HP =
P

ρg
. (8.29)

8.5 Mixing Length Theory

Let us now return to the question of the energy transport by convection.
A buoyant bubble will rise until the temperature inside gradually adjusts
to the (lower) temperature of its surroundings. The distance that a hot
cell rises, or a cold one sinks, is referred to as the mixing length, and is
normally expressed in terms of the pressure scale height:

` = αHP

where α ∼ 1 is a free parameter (meaning simply that we do not have a
physical theory to relate ` to HP ). In other words, the mixing length is of
the order of the pressure scale height.
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As the cell travels towards the stellar surface by one mixing length, the
excess heat flow per unit volume from the bubble into its surroundings can
be written as:

δq = (CP δT )ρ , (8.30)

where CP is the specific heat at constant pressure and

δT = δ

(
dT

dr

)
dr (8.31)

is the temperature difference between the surroundings and the rising bub-
ble. The convective flux is simply:

Fc = δq 〈vc〉 (8.32)

where 〈vc〉 is the average speed of the convective bubble. We can obtain
an expression for 〈vc〉 by equating the kinetic energy of the rising bubble
to some fraction β (0 < β < 1) of the work per unit volume done by the
buoyant force over the distance `:

1

2
ρ〈vc〉2 = β 〈fnet〉 ` (8.33)

so that:

〈vc〉 =

(
2β〈fnet〉 `

ρ

)1/2

. (8.34)

where β is another free parameter.

The net force on the bubble is just

fnet = −g δρ (8.35)

We can express δρ in terms of δT using the the ideal gas law

δP

P
=
δρ

ρ
+
δT

T
(8.36)

or, since we have pressure equilibrium between the bubble and its sur-
roundings (i.e. δP = 0),

δρ = − ρ
T
δT . (8.37)

Thus,

fnet =
ρg

T
δT (8.38)
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and

〈fnet〉 =
1

2

ρg

T
δT (8.39)

taking the average of fnet over the distance ` travelled by the convective
cell. Substituting 8.39 into 8.34, we have:

〈vc〉2 = β
ρg

ρT
` δT (8.40)

〈vc〉2 = β
g

T
αHp δT (8.41)

〈vc〉2 = β
g

T
α
P

ρg
δT (8.42)

Using the ideal gas law: P = (ρkT )/(µmH), we have:

〈vc〉2 = β α
k

µmH
δT (8.43)

Using 8.31 with dr = ` = αHp = αP/ρg and proceeding as before for P ,
we have:

〈vc〉2 = β α
k

µmH
δ

(
dt

dr

)
α
kT

µmH

1

g
(8.44)

〈vc〉2 = β α2

(
k

µmH

)2
T

g
δ

(
dt

dr

)
(8.45)

Substituting 8.45 into 8.32 and using again 8.30 and 8.31, we finally obtain
an expression for the convective flux:

Fc = ρCP

(
k

µmH

)2 (
T

g

)3/2

β1/2

[
δ

(
dT

dr

)]3/2

α2 (8.46)

What we have described here is an example of mixing-length theory. The
unsatisfactory aspects of it are the ‘fudge-factors’ α and β which are gen-
erally adjusted to fit observations. However, it is a significantly simpler
treatment than the full 3-D (magneto-)1hydrodynamical calculations of
convective flows (see Figure 8.8).

In closing, convection is a complicated topic and remains an active area of
research, in particular because it can have considerable impact on a wide

1Yes, we have not mentioned them yet, but magnetic fields are clearly important when we are dealing
with bulk motions of ionised gas!
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Figure 8.8: Computer simulation of convection.

range of stellar properties and on stellar evolution. The lack of a good
theory of convection, and of the amount of energy that can be transferred
by convection, is at present an important limitation in our understanding
of stellar structure.

However, convection remains an important phenomenon in the interiors of
stars, and not only as a way of transporting energy to the surface where
it is radiated away. Convection is also important as a means of mixing
between different layers of the star. Mixing happens because of convective
overshooting : at the top and bottom boundaries of the convection zone,
even though there is no net force, a rising or falling cell will arrive with
a finite velocity and will overshoot. This was first realised in the 1980s
from observations of the nuclear products at the surface of massive stars,
indicative of some degree of mixing to layers above the convective core
boundary. Stellar rotation also greatly facilitates mixing between different
stellar layers (see Figure 8.9). The mixing of freshly synthesised elements
into the outer layers of stars has important consequences for their evolution.
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562 G. Meynet and A. Maeder: Stellar evolution with rotation. VIII.

Fig. 1. Stream lines of meridional circulation in a rotating 20 M! model with solar metallicity and vini = 300 km s−1 at the beginning of
the H–burning phase (see text). The streamlines are in the meridian plane. In the upper hemisphere on the right section, matter is turning
counterclockwise along the outer stream line and clockwise along the inner one. The outer sphere is the star surface and has a radius equal to
5.2 R!. The inner sphere is the outer boundary of the convective core. It has a radius of 1.7 R!.

The evolution of surface abundances are examined in Sect. 7.
In Sect. 8, we discuss the problem of the origin of primary ni-
trogen and we show how rotation can solve it. The chemical
yields in He, CNO and heavy elements are discussed in Sect. 9.

2. Physics of the models

The initial composition is given in Table 1. The composition
is enhanced in α–elements. As in Paper VII, the opaci-
ties are from Iglesias & Rogers (1996), complemented at

low temperatures with the molecular opacities of Alexander
(http://web.physics.twsu.edu/alex/wwwdra.htm).The
nuclear reaction rates are also the same as in Paper VII and are
based on the new NACRE data basis (Angulo et al. 1999).

The physics of the present models at Z = 10−5 is the same
as for models at Z = 0.004 (Maeder & Meynet 2001). For ro-
tation, the hydrostatic effects and the surface distortion are in-
cluded (Meynet & Maeder 1997), so that the Teff given here
corresponds to an average orientation angle. The diffusion by
shears, which is the main effect for the mixing of chemical

Figure 8.9: Stream lines of meridional circulation in a rotating 20M� model with solar
metallicity and vrot = 300 km s−1 at the beginning of the H-burning phase. The stream-
lines are in the meridian plane. In the upper hemisphere on the right section, matter is
turning counterclockwise along the outer stream line and clockwise along the inner one.
The outer sphere is the star surface and has a radius equal to 5.2R�. The inner sphere is
the outer boundary of the convective core. It has a radius of 1.7R�. (Figure reproduced
from Meynet & Maeder 2002, A&A, 390, 561).
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