
M. Pettini: Structure and Evolution of Stars — Lecture 4

BASIC PROPERTIES OF STARS. III: MASS

4.1 Introduction

It was stated earlier that the most important property of a star is its mass.
Stellar masses can be determined directly by studying their gravitational
interaction with other objects. As at least half of all (nearby) stars are
thought to be in multiple systems, there are many opportunities to mon-
itor the motions of binary stars to deduce their masses. Considering for
simplicity only binary stars (as opposed to triple and quadruple systems),
we distinguish three main classes: visual binaries, eclipsing binaries and
spectroscopic binaries. We now consider them in turn.

4.2 Visual Binaries

Visual binaries tend to be systems that are relatively close to us so that the
individual stars can be resolved. They are systems in which the component
stars are also physically widely separated, tens to a few hundred AUs.
The stars in such systems are gravitationally bound to each other but
otherwise do not ‘interact’ as do other close binaries where one star may
draw material off the surface of the other. The brightest component in the
system has the suffix ”A”, the next ”B” and so on. Systems with three
or four components have been identified. Less than 1,000 visual binary
systems have been detected. Two out of the three brightest stars in the
sky, αCMa and αCen, are binaries.

Referring to Figure 4.1, with the two stars orbiting about the common
centre of mass, we have straightforwardly:

m1

m2
=
r2

r1
=
a2

a1
(4.1)

where m is the stellar mass, r is the star’s distance from the centre of
mass and a is the semi-major axis of the elliptical orbit. By monitoring
over the years (provided the period is not too long compared to human
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Figure 4.1: Schematic of a binary star system viewed face-on. In this example, m1 = 2m2.

timescales!) the relative positions on the sky of the two stars, it is possible
to determine the orientation of the orbits and the system’s centre of mass
(see Figure 4.2). The distances r1, r2 from the common centre of mass
subtend angles θ1 = r1/d and θ2 = r2/d at the star’s distance d. It is
therefore possible to deduce the mass ratio immediately from observations
of the orbits:

m1

m2
=
θ2

θ1
(4.2)

If we know d, for example from parallax measurements, we can deduce the

Figure 4.2: Sky projection of the orbit of αCen B relative to αCen A. The predicted
positions of B relative to A for the current orbit are shown by year.
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individual masses using Kepler’s third law:

P 2 =
4π2

G (m1 +m2)
a3 (4.3)

where P is the period (the same for both orbits) and a = a1 + a2 is the
semimajor axis of the orbit of the reduced mass µ,

µ =
m1 ·m2

m1 +m2
.

Recall that, in general, a two-body problem may be treated as an equivalent
one-body problem with the reduced mass µ moving about a fixed mass
M = m1 +m2 at a distance r = |r2 − r1|.

In order to deduce m1 and m2 from observations of θ1, θ2 and P it is
necessary to correct for: (i) the parallax of the whole system, (ii) the
proper motion of the centre of mass, and (iii) the inclination of the plane
of the orbit relative to the plane of the sky. (i) is easy: just observe a
binary system for more than one year cycle. (ii) is also relatively simple,
since the centre of mass must move at constant velocity. (iii) is trickier.

Figure 4.3: The projection of an elliptical orbit inclined by the angle i to the plane of the
sky is also an elliptical orbit. However, the real foci of the ellipse do not project to the
foci of the observed ellipese. (Reproduced from Carroll & Ostlie’s Modern Astrophysics).
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Consider the special case where the orbital plane is inclined at angle i to
the plane of the sky (that is, it is inclined by an angle 90◦ − i to the line
of sight) and the two planes intersect along a line parallel to the minor
axis of the stellar orbit, forming a line of nodes, as in Figure 4.3. What
we observe in this case are angles θ′1 = θ1 cos i and θ′2 = θ2 cos i. The
unknown inclination doesn’t affect the estimate of the mass ratio, since
the cos i factors cancel out in eq. 4.2. However, they can make a significant
difference in the estimate of a in eq. 4.3, which now becomes (solving for
the sum of the masses):

m1 +m2 =
4π2

G

(θd)3

P 2
=

4π2

G

(
d

cos i

)3 θ′3

P 2
(4.4)

where θ is in radians and θ′ = θ′1 + θ′2.

Thus, in order to evaluate the sum of the masses properly, we need to know
the angle of inclination i. This can be deduced by careful observation of
the centre of mass which, as shown in Figure 4.3, will not coincide with the
the focus of the projected ellipse. The geometry of the true ellipse may be
determined by comparing the observed stellar positions with mathematical
projections of various ellipses onto the plane of the sky. The real situation
is of course more complicated because in general the orbital plane may be
inclined about both the minor and major axes.

In cases where the distance to a visual binary is not known, it may still be
possible to deduce a1 and a2 and solve for m1 and m2 using radial velocity
measurements, which give the projections of the velocity vectors along the
line of sight.

Several hundred visual pairs are known, but in most cases it has not yet
been determined whether they are bound binary systems or chance super-
positions. Many visual binaries have long orbital periods of several cen-
turies or millennia and therefore have orbits which are uncertain or poorly
known. For this reason, they only sample rather sparsely the HR diagram,
with a strong bias towards the more common (and therefore more likely
to occur in the solar vicinity) low mass stars. Fortunately, other types of
binary stars help us expand the range of reliable stellar mass determina-
tions.

4



4.3 Spectroscopic Binaries

When two stars in a binary system are too far away to be resolved even
with the largest telescopes on Earth, the binarity of the system can still
be inferred from consideration of the spectrum, which will be the superpo-
sition of two sets of spectral features (which may be different if the stars
are of different spectral types). In double-lined spectroscopic binaries, the
absorption lines in the composite spectrum will be seen to move in wave-
length, as each star moves in its orbit towards us and away from us (see
Figure 4.4). The maximum blueshift and redshift we measure within an
orbit are lower limits to the true velocities because of the unknown in-
clination i of the orbital plane to the line of sight: v1rmax = v1 sin i and
v2rmax = v2 sin i.

Many spectroscopic binaries have nearly circular orbits because the timescales
of tidal interactions which tend to circularise the orbits are short compared
to the stellar lifetimes. When the eccentricities are small (ε � 1), the or-
bital speed is essentially constant: v = 2πa/P and where P is the period

Figure 4.4: Schematic diagram of a double-lined spectroscopic binary, showing the orbits
and the resultant composite spectrum produced at different orbital phases. Note that the
centre of mass of the system has a radial velocity vr ' +15 km s−1 .
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and the semi-major axis a is now the radius. Substituting into eq. 4.1, we
now have:

m1

m2
=
v2

v1
(4.5)

or, in terms of the observables:

m1

m2
=
v2r/ sin i

v1r/ sin i
=
v2r

v1r
. (4.6)

Thus, as in the case of visual binaries, the mass ratio can be deduced
independently of the unknown inclination angle i.

However, the sum of the masses does require knowledge of sin i. Replacing
a with:

a = a1 + a2 =
P

2π
(v1 + v2) , (4.7)

substituting into eq. 4.3 and solving for the sum of the masses, we obtain:

m1 +m2 =
P

2πG
(v1 + v2)

3 , (4.8)

or, in terms of the observables:

m1 +m2 =
P

2πG

(v1r + v2r)
3

sin3 i
. (4.9)

Since the inclination angle is generally unknown, eq. 4.9 is usually solved
statistically. That is, we assume that the orbits are randomly inclined
relative to our line of sight and use the integral average of sin3 i between
0 and 90◦, (〈sin3 i〉) = 3π/16 ' 0.589, to deduce the average mass of stars
in a given luminosity or Teff class. A selection effect correction is usually
applied to account for the fact that when the orbits are nearly face-on (i
less than a few degrees, sin i� 0.1), it is much more difficult to recognise
that a star is a spectroscopic binary. Thus the larger value (〈sin3 i〉) ' 2/3
is usually taken to be representative in this statistical approach.
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Figure 4.5: RS Cha belongs to an enigmatic group of pre-main sequence (PMS) stars
of intermediate mass, between 2 and 8M�, referred to as Herbig Ae/Be stars from the
American astronomer who first identified them in 1960. At a parallactic distance of
93 ± 2 pc, RS Cha is a bright spectroscopic eclipsing binary star, with both components
being Herbig Ae PMS stars of similar mass (∼ 1.9M�). Their age is 6+2

−1 Myr; other
physical parameters are collected in Table 4.1. This Figure, reproduced from Böhm et
al. (2009), shows the radial velocities of the two stars measured with near-continuous
observations during 14 nights at the 1 m Mt John (New Zealand) telescope using a high
resolution spectrograph. Note the sinusoidal velocity curves, indicative of nearly circular
orbits. The orbital plane lies close to our line of sight (i = 83.4); thus, the measured
values of v1r and v2r are very close to the real velocities v1 and v2 (sin i = 0.99).

2 T. Böhm et al.: Discovery of non-radial pulsations in the spectroscopic binary Herbig Ae star RS Cha

tive phenomena. Even if the presence of complex fields can not
be ruled out it is of major importance to investigate other pos-
sible external or internal origins of this tremendous amount of
dissipated energy, as witnessed by chromospheres and coronae,
but also variable spectral lines, winds and bipolar jets.

The only way of studying in detail the internal stellar
structure is the analysis and the modelling of stellar pulsa-
tions, if observed. As an example, PMS stars gain their en-
ergy from gravitational contraction and therefore differ signi-
cantly from post-main-sequence stars having already processed
nuclear material - stellar pulsations are sensitive to these dif-
ferences of internal stellar structure (see e.g. Suran et al., 2001).
As of today, the internal stellar structure of PMS stars is not
yet well constrained. Since few years the existence of pul-
sating intermediate mass PMS stars is known (Breger, 1972;
Kurtz & Marang, 1995; Donati et al., 1997). This observational
result motivatedMarconi & Palla (Marconi & Palla, 1998) to in-
vestigate the pulsation characteristics of HR5999 theoretically,
which enabled them to predict the existence of a pre-main-
sequence instability strip, which is being crossed by most of
the intermediate mass PMS objects for a significant fraction of
their evolution to the main sequence. This strip covers approxi-
mately the same area in the HR diagram as the δ Scuti variables.
Zwintz (Zwintz, 2008) compared, based on photometry, the ob-
servational instability regions for pulsating pre-main sequence
and classical δ Scuti stars and concluded that the hot and cool
boundaries of both HR diagram instability regions seem to co-
incide. This preliminary result deserves further study by aim of
full asteroseismological approach based on spectroscopy.

As of today, more than 30 intermediate-mass PMS stars
have revealed to be pulsating at time-scales typical of δ Scuti
stars (see e.g. Kurtz & Marang, 1995; Kurtz & Catala, 2001;
Donati et al., 1997; Böhm et al., 2004; Marconi et al., 2002;
Ripepi & Marconi, 2003; Zwintz & Weiss, 2003; Catala, 2003
and references therein).

RS Chamaeleontis is a bright spectroscopic eclipsing binary
star. Both components are Herbig Ae PMS stars of similar mass
(close to 1.9 M!). Recently the age of RSCha has been de-
termined to 6+2

−1
Myr (Luhman & Steeghs, 2004), which verifies

it’s PMS nature. Andersen, 1975 already reported small ampli-
tude radial velocity variations on top of the binary radial ve-
locity curve for both components of RS Cha, suggesting the
possible presence of stellar pulsations. Photometric observations
by McInally & Austin, 1977 revealed short-term variations in at
least one of the two components, possibly linked to stellar pulsa-
tions. Very recently, Alecian et al. (Alecian et al., 2005) reported
radial velocity variations in the residual velocity frame (cleaned
for orbital velocity) with amplitudes up to a few km s−1 and pe-
riods of the order of 1h, indicative of δ Scuti type pulsations.

The aim of our study of the two components of RS Cha is to
provide a first set of asteroseismic constraints for forthcoming
non-radial pulsation models by determining unambiguously a
higher number of periodicities and identifying, in a second step,
the corresponding pulsation modes with their respective degree
" and azimuthal number m.

To achieve this goal, we decided to perform high resolution
spectroscopic observations on a large time basis and with opti-
mized time coverage.

Section 2 reviews previous related work, Sect. 3 describes
the observations and data reduction, Sect. 4 summarizes results
of the orbit determination, Sect. 5 reveals the detection of non-
radial pulsations in both components of RS Cha, Sect. 6 and 7
present frequency analysis and moment identification in the pri-

Table 1. Parameters of RSCha. References: [1]
Alecian et al., 2005, [2] Ribas et al., 2000, [3]
Clausen & Nordstrom, 1980.

Parameter Primary Secondary References

M/M! 1.89±0.01 1.87±0.01 [1]
R/R! 2.15±0.06 1.87±0.01 [1]
Teff [K] 7638±76 7228±72 [2]

log(L/L!) 1.15±0.09 1.13±0.09 L = 4πR2σT 4
eff

log(g) [cm s−2] 4.05±0.06 3.96±0.06 g = MG/R2

v sin i [km s−1] 64±6 70±6 [1]
Porb [d] 1.67 [1]
i [deg] 83.4±0.3 [3]
[Fe/H] 0.17±0.01 [1]

Table 2. Log of the observations at Mt John Observatory,
NZ, in Jan 2006. (1) and (2) Julian date (mean observation)
(2,450,000+); (3) Number of high resolution RS Cha spectra;
(4) typical range of S/N (pixel−1) at 550 nm (centre of V band)

Date JDfirst JDlast Nspec S/NRange
(1) (2) (3) (4) (5)

Jan 09 3745.0101 1 120
Jan 10 3745.9544 3745.9733 2 80-100
Jan 12 3747.9537 3748.1779 28 70-90
Jan 13 3749.0013 3749.1930 23 100-120
Jan 14 3749.8911 3749.9911 12 70-90
Jan 15 3750.8921 3751.1919 31 150
Jan 16 3751.8958 3752.1970 29 90-120
Jan 19 3754.9015 3755.2006 33 100-130
Jan 20 3755.9245 3756.1993 25 90-120
Jan 21 3756.9068 3757.0386 14 60-150
Jan 22 3757.9004 3758.1621 32 120-170

mary and secondary component, respectively. A discussion is
proposed and a conclusion is drawn in Section 8.

2. Previous related work

The pre-main sequence spectroscopic eclipsing binary RS
Cha has been studied extensively throughout the last years.
Thanks to its eclipsing nature and the known inclination an-
gle the system has fully been calibrated (Alecian et al., 2005,
Alecian et al., 2007a, Alecian et al., 2007b). Table 1 summa-
rizes the main results.

3. Observations

The analysis presented in this paper is based on a 14 nights
observing run in January 2006 at the 1m Mt John telescope
equipped with the Hercules echelle spectrograph. We obtained
quasi-continuous single-site observations of the target star dur-
ing these 2 weeks and obtained a total of 255 individual stel-
lar echelle spectra, each spectrum having an individual exposure
time of 10min. The star was observed in high resolution spec-
troscopy at R ≈ 45000 and covering the wavelength area from
457 to 704 nm, spread over 44 orders. The detector was a 1kx1k
Site CCD. The highest S/N (pixel−1) values we obtained reached
210 on Jan 16th, corresponding to almost 300 per resolved ele-
ment (2 pixels); typical values of S/N (pixel−1) ranged around
80-150 in this run. Table 2 summarizes the log of the observa-
tions.

The general observing strategy was to obtain as many 10
minute observations of the target star during the night as pos-

4.
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Of much interest in astronomy are single-lined spectroscopic binaries. These
are cases where only the spectrum of one of the pair is observed, but the
periodic variations in its radial velocity indicate the presence of an un-
seen companion. This could be the case if: (a) the second star is very
much fainter than the first—Sirius A and B are a good example; (b) the
companion is a dark object, such as a neutron star or a black hole—such
systems provide some of the most compelling evidence for the existence of
stellar-mass black holes; and (c) if the secondary is a planet. In this case,
the radial velocity amplitudes are only m s−1, rather than km s−1.

In single-lined binaries, where we cannot measure v2r, we can substitute
the relation v2r = v1rm1/m2 (eq. 4.6) into eq. 4.9 to obtain:

m1 +m2 =
P

2πG

v3
1r

sin3 i

(
1 +

m1

m2

)3

(4.10)

which can be rearranged in a form which groups together all the observables
on the right-hand side of the equation:

m3
2

(m1 +m2)2
sin3 i =

P

2πG
v3

1r. (4.11)

The left-hand side of this equation is known as the mass function. Even
if m1 is not known, the mass function can still provide interesting lower
limits to the mass of the unseen companion, since m1 > 0 and sin i ≤ 1,
and therefore:

P

2πG
v3

1r < m2 (4.12)

If the condition m2 � m1 is satisfied, which is the case of the secondary
component of the binary system is a planet, then m1 + m2 ≈ m1. Substi-
tuting into 4.11, we now have:

m3
2 sin3 i ≈ P

2πG
v3

1rm
2
1 (4.13)

While there is still an inclination uncertainty for any particular system,
statistical results can be obtained for large sample of stars with measured
oscillations attributable to planet-mass companions.
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4.4 Eclipsing Binaries

The ambiguities associated with the unknown orientation can be removed
in cases where we see occultations of one of the stars by the other. Provided
that the separation between the two stars is much greater than the sum
of their radii (a condition which is not satisfied in contact binaries), then
it must be the case that the inclination of the orbital plane to the sky is
close to 90◦ (see Figure 4.6). Note also that for i > 75◦, sin i > 0.9, so that
the error in the masses deduced with the assumption that i = 90◦ is less
than 10%.

Comparing the light curves for the cases of complete (Figure 4.6) and
partial (Figure 4.7) eclipse, it can be appreciated that it is possible to
recognise the cases where i < 90◦.

When the eclipse is total, we can deduce the radii of both stars from
accurate timing of the phases of the eclipse. With the assumption that
the smaller star is moving perpendicularly to our line of sight during the
duration of the eclipse, its radius can be straightforwardly derived from

rs =
v

2
(tb − ta) (4.14)

where ta and tb are the times of first contact and minimum light respectively
(see Figure 4.6) and v = vs + vl is the relative velocity of the two stars.

Figure 4.6: Schematic diagram of an eclipsing binary. The smaller star is assumed to be
hotter than the larger one. (Reproduced from Carroll & Ostlie’s Modern Astrophysics).
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Figure 4.7: Schematic diagram of a partial eclipsing binary. The smaller star is assumed to
be hotter than the larger one. (Reproduced from Carroll & Ostlie’s Modern Astrophysics).

Similarly:

rl =
v

2
(tc − ta) = rs +

v

2
(tc − tb) (4.15)

The light curve of eclipsing binaries gives information not only on the radii
of the two stars but also on the ratio of their effective temperatures. This
follows directly from eq. 2.13, L = 4πR2σT 4; as when an area πR2 is
eclipsed from the system, the drop in flux will be different depending on
whether the hotter star of the two is in front or behind the cooler one (see
Figure 4.6). Assuming for simplicity a uniform flux across the stellar disk,
we have:

F0 = A
(
πR2

lF
′
l + πR2

sF
′
s

)
(4.16)

where F ′ is the radiative surface flux, F0 is the measured flux when there is
no eclipse, and A is a proportionality constant to account for the fact that
we register only a fraction of the flux emitted (due to distance, intervening
absorption and limited efficiency of the instrumentation). The deeper, or
primary, minimum in the light curve occurs when the hotter star is eclipsed
by the cooler one. In the example shown in Figure 4.6, this is the smaller
star. Then, during the primary minimum we have:

F1 = AπR2
lF
′
l , (4.17)

while during the secondary minimum:

F2 = A
(
πR2

l − πR2
s

)
F ′l + AπR2

sF
′
s . (4.18)
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Figure 4.8: The empirical stellar mass-luminosity relation constructed from observations
of different types of binary stars (from Smith 1983).

To circumvent uncertainties in the constant A, we concern ourselves with
the ratio of the two fluxes:

F0 − F1

F0 − F2
=
F ′s
F ′l

=

(
Ts
Tl

)4

(4.19)

What eq. 4.19 tells us is that the ratio of the measured fluxes during the
primary and secondary eclipses gives a direct measure of the ratio of the
effective temperatures of the two stars in the eclipsing binary system.

4.5 The Stellar Mass-Luminosity Relation

When we bring together the best determinations of stellar masses from
different types of binary stars, we find a well defined mass-luminosity re-
lation for hydrogen burning dwarfs. Figure 4.8 shows the empirical mass-
luminosity relation constructed from data available in the late 1970s-early
1980s. Thirty years later, the number of stars with direct measurements of
mass and radius has increased considerably, thanks in part to the advent
of long-baseline optical interferometry which can resolve the stellar disks.
Figure 4.9, reproduced from the review by Torres et al. 2010 (A&ARv,
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L ∝M3.5

Figure 4.9: The empirical stellar mass-luminosity relation from observations of 190 stars
in 95 detached binary systems, all with masses and radii known with an accuracy of 3%
or better (data from Torres et al. 2010).

18, 67), is a compilation of measurements for 95 detached binary systems
containing 190 stars satisfying the criterion that the mass and radius of
both stars be known with an accuracy of 3% or better.

Any theory of stellar structure must be able to reproduce such a relation in
order to be deemed valid; we shall return to this point in Lecture 10. Here
we limit ourselves to some preliminary considerations. First of all, such a
clear-cut M − L relation provides a natural explanation for the existence
of a prominent main sequence in the HR diagram. After forming within
a collapsing interstellar cloud, stars begin their hydrogen-burning lives on
the main sequence, at a location on the MV –(B − V ) plane determined by
their mass. Stars do not evolve along the main sequence, they evolve off
the main sequence.

A rough approximation to the slope of the mass-luminosiy relation over
the full range of stellar masses is L ∝M∼3.5. If stars shine through nuclear
fusion, we can write:

dM

dt
= k L

where L is the luminosity and k is a constant of proportionality. Integrat-
ing, we have:

t ∝ M

L
∝ M

M 3.5
∝M−2.5 .
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Figure 4.10: Stellar lifetimes as a function of mass from the stellar evolution models of
Bertelli et al. (2009). Stars more massive than 8M� (with lifetimes t < 4× 107 years) are
thought to end their lives as Type II supernovae.

In other words, the steep slope of the stellar mass-luminosity relation im-
plies a very strong dependence of the stellar lifetimes on their mass. While
a 1M� star will burn hydrogen for 1010 years before evolving off the main
sequence, a 20M� star has sufficient fuel to last for only 107 years (see
Figure 4.10).
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