M. Pettini: Structure and Evolution of Stars — Lecture 4

BASIC PROPERTIES OF STARS. III: MASS

4.1 Introduction

It was stated earlier that the most important property of a star is its mass.
Stellar masses can be determined directly by studying their gravitational
interaction with other objects. As at least half of all (nearby) stars are
thought to be in multiple systems, there are many opportunities to mon-
itor the motions of binary stars to deduce their masses. Considering for
simplicity only binary stars (as opposed to triple and quadruple systems),
we distinguish three main classes: visual binaries, eclipsing binaries and
spectroscopic binaries. We now consider them in turn.

4.2 Visual Binaries

Visual binaries tend to be systems that are relatively close to us so that the
individual stars can be resolved. They are systems in which the component
stars are also physically widely separated, tens to a few hundred AUs.
The stars in such systems are gravitationally bound to each other but
otherwise do not ‘interact’ as do other close binaries where one star may
draw material off the surface of the other. The brightest component in the
system has the suffix ”A”, the next "B” and so on. Systems with three
or four components have been identified. Less than 1,000 visual binary
systems have been detected. Two out of the three brightest stars in the
sky, « CMa and « Cen, are binaries.

Referring to Figure 4.1, with the two stars orbiting about the common
centre of mass, we have straightforwardly:

m r a
o2 72 (4.1)
ma 1 aq
where m is the stellar mass, r is the star’s distance from the centre of
mass and a is the semi-major axis of the elliptical orbit. By monitoring

over the years (provided the period is not too long compared to human

1



2212

A
A 4

rq s

A
\ 4

2a1

Centre of Mass

Figure 4.1: Schematic of a binary star system viewed face-on. In this example, m; = 2m..

timescales!) the relative positions on the sky of the two stars, it is possible
to determine the orientation of the orbits and the system’s centre of mass
(see Figure 4.2). The distances 7, 79 from the common centre of mass
subtend angles #; = r1/d and 0y = ry/d at the star’s distance d. It is
therefore possible to deduce the mass ratio immediately from observations
of the orbits:
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If we know d, for example from parallax measurements, we can deduce the
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Figure 4.2: Sky projection of the orbit of o Cen B relative to aCen A. The predicted
positions of B relative to A for the current orbit are shown by year.



individual masses using Kepler’s third law:

472
P? = 3 4.3
G (mq + mo) ¢ (4.3)

where P is the period (the same for both orbits) and a = a; + ay is the
semimajor axis of the orbit of the reduced mass u,

_omymg
= my +msy
Recall that, in general, a two-body problem may be treated as an equivalent
one-body problem with the reduced mass g moving about a fixed mass
M = my + my at a distance r = |ry — ry].

In order to deduce m; and ms from observations of 6;, #, and P it is
necessary to correct for: (i) the parallax of the whole system, (ii) the
proper motion of the centre of mass, and (iii) the inclination of the plane
of the orbit relative to the plane of the sky. (i) is easy: just observe a
binary system for more than one year cycle. (ii) is also relatively simple,
since the centre of mass must move at constant velocity. (iii) is trickier.

Focus of observed ellipse

True focus Plane of the sky

Projected focus
Plane of the true orbit

Figure 4.3: The projection of an elliptical orbit inclined by the angle ¢ to the plane of the
sky is also an elliptical orbit. However, the real foci of the ellipse do not project to the
foci of the observed ellipese. (Reproduced from Carroll & Ostlie’s Modern Astrophysics).



Consider the special case where the orbital plane is inclined at angle ¢ to
the plane of the sky (that is, it is inclined by an angle 90° — ¢ to the line
of sight) and the two planes intersect along a line parallel to the minor
axis of the stellar orbit, forming a line of nodes, as in Figure 4.3. What
we observe in this case are angles #) = 6 cosi and 0, = 6ycosi. The
unknown inclination doesn’t affect the estimate of the mass ratio, since
the cost factors cancel out in eq. 4.2. However, they can make a significant
difference in the estimate of a in eq. 4.3, which now becomes (solving for
the sum of the masses):

An? (0d)®  4Ax? ( d )3 0’3 (4.4)

m1+m2:G P2 G \cosi/ P?

where 6 is in radians and ¢’ = 0] + 65,

Thus, in order to evaluate the sum of the masses properly, we need to know
the angle of inclination ¢. This can be deduced by careful observation of
the centre of mass which, as shown in Figure 4.3, will not coincide with the
the focus of the projected ellipse. The geometry of the true ellipse may be
determined by comparing the observed stellar positions with mathematical
projections of various ellipses onto the plane of the sky. The real situation
is of course more complicated because in general the orbital plane may be
inclined about both the minor and major axes.

In cases where the distance to a visual binary is not known, it may still be
possible to deduce a; and as and solve for m; and mo using radial velocity
measurements, which give the projections of the velocity vectors along the
line of sight.

Several hundred visual pairs are known, but in most cases it has not yet
been determined whether they are bound binary systems or chance super-
positions. Many visual binaries have long orbital periods of several cen-
turies or millennia and therefore have orbits which are uncertain or poorly
known. For this reason, they only sample rather sparsely the HR diagram,
with a strong bias towards the more common (and therefore more likely
to occur in the solar vicinity) low mass stars. Fortunately, other types of
binary stars help us expand the range of reliable stellar mass determina-
tions.



4.3 Spectroscopic Binaries

When two stars in a binary system are too far away to be resolved even
with the largest telescopes on Earth, the binarity of the system can still
be inferred from consideration of the spectrum, which will be the superpo-
sition of two sets of spectral features (which may be different if the stars
are of different spectral types). In double-lined spectroscopic binaries, the
absorption lines in the composite spectrum will be seen to move in wave-
length, as each star moves in its orbit towards us and away from us (see
Figure 4.4). The maximum blueshift and redshift we measure within an
orbit are lower limits to the true velocities because of the unknown in-
clination ¢ of the orbital plane to the line of sight: v17rn,.x = v1sint and
V9Tl max = U9 SIN 7.

Many spectroscopic binaries have nearly circular orbits because the timescales
of tidal interactions which tend to circularise the orbits are short compared
to the stellar lifetimes. When the eccentricities are small (e < 1), the or-
bital speed is essentially constant: v = 27wa/P and where P is the period
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Figure 4.4: Schematic diagram of a double-lined spectroscopic binary, showing the orbits
and the resultant composite spectrum produced at different orbital phases. Note that the
centre of mass of the system has a radial velocity v, ~ +15km s~ .



and the semi-major axis a is now the radius. Substituting into eq. 4.1, we

now have:
m_ (4.5)
mz U1 .
or, in terms of the observables:
my Vg / Sin i _ Uy (4.6)

me  wvy/sini vy

Thus, as in the case of visual binaries, the mass ratio can be deduced
independently of the unknown inclination angle 7.

However, the sum of the masses does require knowledge of sinz. Replacing
a with:

P
a=a;+a=— (v +19), (4.7)
2

substituting into eq. 4.3 and solving for the sum of the masses, we obtain:

P
% (Ul + ’U2)3 , (48)

mi + mo =

or, in terms of the observables:

P (Ulr + U2T)3
™+ me = orG  sin?® '

Since the inclination angle is generally unknown, eq. 4.9 is usually solved
statistically. That is, we assume that the orbits are randomly inclined
relative to our line of sight and use the integral average of sin®i between
0 and 90°, ({sin®4)) = 37/16 ~ 0.589, to deduce the average mass of stars
in a given luminosity or Tug class. A selection effect correction is usually
applied to account for the fact that when the orbits are nearly face-on (i
less than a few degrees, sini < 0.1), it is much more difficult to recognise
that a star is a spectroscopic binary. Thus the larger value ({sin®4)) ~ 2/3
is usually taken to be representative in this statistical approach.

(4.9)
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Figure 4.5: RS Cha belongs to an enigmatic group of pre-main sequence (PMS) stars
of intermediate mass, between 2 and 8 M, referred to as Herbig Ae/Be stars from the
American astronomer who first identified them in 1960. At a parallactic distance of
93 + 2pc, RS Cha is a bright spectroscopic eclipsing binary star, with both components
being Herbig Ae PMS stars of similar mass (~ 1.9Mg). Their age is 677 Myr; other
physical parameters are collected in Table 4.1. This Figure, reproduced from Bohm et
al. (2009), shows the radial velocities of the two stars measured with near-continuous
observations during 14 nights at the 1m Mt John (New Zealand) telescope using a high
resolution spectrograph. Note the sinusoidal velocity curves, indicative of nearly circular
orbits. The orbital plane lies close to our line of sight (i = 83.4); thus, the measured
values of vy, and vy, are very close to the real velocities v; and vy (sini = 0.99).

Table 4.1. Parameters of RSCha. References: [1]
Alecian et al., 2005, [2] Ribas et al., 2000, [3]
Clausen & Nordstrom, 1980.

Parameter Primary  Secondary References

M/Mg 1.89+£0.01  1.87+0.01 [1]

R/Rg 2.15+£0.06  1.87+0.01 [1]

T (K] 7638+76 7228+72 [2]

log(L/Le) 1.15+0.09 1.13+0.09 L =4nR’c T;‘ﬂr

log(g) [cms™2]  4.05+0.06  3.96+0.06 g = MG/R?

v sin i [kms™!] 64+6 70+6 [1]

Py [d] 1.67 (1]

i [deg] 83.4+0.3 [3]

[Fe/H] 0.17+0.01 [1]




Of much interest in astronomy are single-lined spectroscopic binaries. These
are cases where only the spectrum of one of the pair is observed, but the
periodic variations in its radial velocity indicate the presence of an un-
seen companion. This could be the case if: (a) the second star is very
much fainter than the first—Sirius A and B are a good example; (b) the
companion is a dark object, such as a neutron star or a black hole—such
systems provide some of the most compelling evidence for the existence of
stellar-mass black holes; and (c) if the secondary is a planet. In this case,

the radial velocity amplitudes are only m s}, rather than km s

In single-lined binaries, where we cannot measure vy, we can substitute
the relation vy, = vy,my/ms (eq. 4.6) into eq. 4.9 to obtain:

P v my\3
= — 1+ — 4.10
M = G st ( * m2> (4.10)
which can be rearranged in a form which groups together all the observables
on the right-hand side of the equation:
m3 3 P

omy s Poos
(mq + mo)? T g

(4.11)
The left-hand side of this equation is known as the mass function. Even
if my is not known, the mass function can still provide interesting lower
limits to the mass of the unseen companion, since m; > 0 and sin: < 1,
and therefore:
LA (4.12)
v m :
oG 2
If the condition ms < m; is satisfied, which is the case of the secondary
component of the binary system is a planet, then m; + msy &~ m;. Substi-
tuting into 4.11, we now have:
P
3. 3.2
1R —— U}, M 4.13
27TG 1r 1 ( )
While there is still an inclination uncertainty for any particular system,
statistical results can be obtained for large sample of stars with measured

oscillations attributable to planet-mass companions.

ms sin



4.4 Eclipsing Binaries

The ambiguities associated with the unknown orientation can be removed
in cases where we see occultations of one of the stars by the other. Provided
that the separation between the two stars is much greater than the sum
of their radii (a condition which is not satisfied in contact binaries), then
it must be the case that the inclination of the orbital plane to the sky is
close to 90° (see Figure 4.6). Note also that for ¢ > 75°, sini > 0.9, so that
the error in the masses deduced with the assumption that ¢ = 90° is less
than 10%.

Comparing the light curves for the cases of complete (Figure 4.6) and
partial (Figure 4.7) eclipse, it can be appreciated that it is possible to
recognise the cases where ¢ < 90°.

When the eclipse is total, we can deduce the radii of both stars from
accurate timing of the phases of the eclipse. With the assumption that
the smaller star is moving perpendicularly to our line of sight during the
duration of the eclipse, its radius can be straightforwardly derived from

ry = ; (ty — ta) (4.14)

where t, and t; are the times of first contact and minimum light respectively
(see Figure 4.6) and v = vs + v; is the relative velocity of the two stars.

Time

Figure 4.6: Schematic diagram of an eclipsing binary. The smaller star is assumed to be
hotter than the larger one. (Reproduced from Carroll & Ostlie’s Modern Astrophysics).



Time

Figure 4.7: Schematic diagram of a partial eclipsing binary. The smaller star is assumed to
be hotter than the larger one. (Reproduced from Carroll & Ostlie’s Modern Astrophysics).

Similarly:

= @a—%)=7g+;(n—¢w (4.15)

(VRIS

The light curve of eclipsing binaries gives information not only on the radii
of the two stars but also on the ratio of their effective temperatures. This
follows directly from eq. 2.13, L = 4rR?>0T* as when an area mR? is
eclipsed from the system, the drop in flux will be different depending on
whether the hotter star of the two is in front or behind the cooler one (see
Figure 4.6). Assuming for simplicity a uniform flux across the stellar disk,
we have:

Fy=A(nR}F/ + TRF)) (4.16)

where I is the radiative surface flux, Fj is the measured flux when there is
no eclipse, and A is a proportionality constant to account for the fact that
we register only a fraction of the flux emitted (due to distance, intervening
absorption and limited efficiency of the instrumentation). The deeper, or
primary, minimum in the light curve occurs when the hotter star is eclipsed
by the cooler one. In the example shown in Figure 4.6, this is the smaller
star. Then, during the primary minimum we have:

Fy = ATRF] (4.17)
while during the secondary minimum:

Fy = A(nR} —nR}) F{ + ATR.F. (4.18)
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Figure 4.8: The empirical stellar mass-luminosity relation constructed from observations
of different types of binary stars (from Smith 1983).

To circumvent uncertainties in the constant A, we concern ourselves with
the ratio of the two fluxes:

K—F F <T3>4

T

—_— = 4.19
FO _ F2 Fvl/ ( )

What eq. 4.19 tells us is that the ratio of the measured fluxes during the
primary and secondary eclipses gives a direct measure of the ratio of the
effective temperatures of the two stars in the eclipsing binary system.

4.5 The Stellar Mass-Luminosity Relation

When we bring together the best determinations of stellar masses from
different types of binary stars, we find a well defined mass-luminosity re-
lation for hydrogen burning dwarfs. Figure 4.8 shows the empirical mass-
luminosity relation constructed from data available in the late 1970s-early
1980s. Thirty years later, the number of stars with direct measurements of
mass and radius has increased considerably, thanks in part to the advent
of long-baseline optical interferometry which can resolve the stellar disks.
Figure 4.9, reproduced from the review by Torres et al. 2010 (A&ARv,
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Figure 4.9: The empirical stellar mass-luminosity relation from observations of 190 stars
in 95 detached binary systems, all with masses and radii known with an accuracy of 3%
or better (data from Torres et al. 2010).

18, 67), is a compilation of measurements for 95 detached binary systems
containing 190 stars satisfying the criterion that the mass and radius of
both stars be known with an accuracy of 3% or better.

Any theory of stellar structure must be able to reproduce such a relation in
order to be deemed valid; we shall return to this point in Lecture 10. Here
we limit ourselves to some preliminary considerations. First of all, such a
clear-cut M — L relation provides a natural explanation for the existence
of a prominent main sequence in the HR diagram. After forming within
a collapsing interstellar cloud, stars begin their hydrogen-burning lives on
the main sequence, at a location on the My—(B — V') plane determined by
their mass. Stars do not evolve along the main sequence, they evolve off
the main sequence.

A rough approximation to the slope of the mass-luminosiy relation over
the full range of stellar masses is L oc M~3. If stars shine through nuclear
fusion, we can write:

dM
= kL
dt

where L is the luminosity and k is a constant of proportionality. Integrat-

ing, we have:

M M
t X —

7 M3.5 x M—2.5.
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Figure 4.10: Stellar lifetimes as a function of mass from the stellar evolution models of
Bertelli et al. (2009). Stars more massive than 8 M, (with lifetimes ¢ < 4 x 107 years) are
thought to end their lives as Type II supernovae.

In other words, the steep slope of the stellar mass-luminosity relation im-
plies a very strong dependence of the stellar lifetimes on their mass. While
a 1My, star will burn hydrogen for 10! years before evolving off the main
sequence, a 20M, star has sufficient fuel to last for only 107 years (see
Figure 4.10).
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