
M. Pettini: Structure and Evolution of Stars — Lecture 2

BASIC PROPERTIES OF STARS

2.1 Introduction

Figure 2.1: Left: Hubble Space Telescope image of the star cluster NGC 265 in the Small
Magellanic Cloud. Right: ESO Very Large Telescope image of the cluster Trumpler 14 in
the Carina nebula. This ground-based image has been sharpened with Adaptive Optics
techniques.

Figure 2.1 shows two examples of star clusters. Star clusters allow us to
appreciate directly some of the physical properties of stars for the simple
reasons that, to a first approximation, all the stars of a cluster: (i) are at
the same distance from the Sun, and (ii) have the same age. NGC 265 (left
panel of Figure 2.1) is approximately 300 million years old and is located
in the Small Magellanic Cloud, one of our two companion galaxies at a
distance of ∼ 60 kpc. Trumpler 14 (right panel of Figure 2.1) is one of the
youngest stellar clusters known, with an age of only 1 million years. It is
associated with the Carina nebula at a distance of 3.2 kpc.

It is immediately obvious from these images that: (a) stars have a range
of colours, and (b) some stars are intrinsically brighter than others. More
generally, we can make a list of what we may consider to be the most
important physical properties of a star:
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1. Mass

2. Temperature

3. Luminosity

4. Gravity

5. Age

6. Chemical Composition

These parameters are all inter-related but, to a first approximation, it is the
first one, the mass of a star, that determines its temperature, luminosity,
surface gravity and lifetime. The chemical composition is only a second
order effect. In this lecture, we’ll consider how some of these properties are
determined. However, before we can measure the intrinsic characteristics
of a star, we need to establish its distance.

2.2 Stellar Distances

We have already encountered the stellar parallax in Lecture 1. Referring
to Figure 1.3, with R = 1 AU, we have:

R

d
= tan θ ' sin θ ' θ (2.1)

for small angles θ, and therefore

d =
R

θ
. (2.2)

By definition, d = 1 pc when θ = 1 arcsec.

Note that the nearest star, Proxima Centauri, is at a distance d = 1.3 pc,
corresponding to θ = 0.764 arcsec, comparable to the size of a stellar
image as measured from the ground through the turbulence introduced
by the Earth’s atmosphere. For this and other complicating reasons,
θ >∼ 0.01 arcsec, d <∼ 100 pc is the limit of parallax measurements from the
ground.
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The Hipparcos satellite, a European Space Agency (ESA) Space Astrome-
try Mission launched in 1989, successfully observed the celestial sphere for
3.5 years and measured the positions (Right Ascension and Declination)
and parallax of over 100 000 stars within d <∼ 1000 pc (θ >∼ 0.001 arcsec).

The whole field of astrometry has been revolutionised by the ESA mis-
sion Gaia, which was launched in 2013 and concluded its operations in
2025. During this 12 year period, Gaia provided unprecedented positional
measurements for ∼ 1.5 × 109 stars (∼ 2 per cent of the Galactic stellar
population) in our Milky Way Galaxy and in nearby galaxies of the Local
Group, together with radial velocity measurements for the brightest 150
million stars.1

Note 1: By combining the parallactic distance with the angular position
on the sky (RA and Declination), we have the location of a star in 3-D.

Note 2: Parallactic stellar distances are the first rung of the ‘cosmic dis-
tance ladder’. Consider two stars, with observed magnitudes m1 and m2

respectively, such that m2 > m1 (i.e. star 2 is fainter than star 1). Con-
sider the case where star 1 has a parallactic distance, but star 2 is too far
away to give a measurable parallax. If we have reasons to believe that the
two stars have the same absolute magnitude, we can derive a photometric
distance for star 2 using the inverse square behaviour of stellar fluxes, F :

F2

F1
= 100.4×(m1−m2) =

(
d1

d2

)2

(2.3)

using the relation between stellar fluxes and magnitudes given in Lecture 1,
so that

d2 = d1 × 10−0.4×(m1−m2)/2 (2.4)

The above equations assume that the dimming of star 2 relative to star 1
is due entirely to its greater distance and neglects other possible sources of
dimming, such as interstellar extinction by dust. This is the method used

1Gaia’s scientific products are not limited to stars. Other important outcomes of the mission are: (i)
the detection and orbital classification of thousands of extra-solar planetary systems, (ii) a comprehensive
survey of objects ranging from huge numbers of minor bodies in our Solar System, through galaxies in
the nearby Universe, to some hundreds of thousands of distant quasars. Gaia is also providing a number
of stringent new tests of general relativity and cosmology.
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to derive distances on cosmological scales; it relies on establishing a series
of ‘standard candles’, by which astronomers mean astronomical sources of
known absolute magnitude, at increasing distances to build a cosmological
distance ladder.

2.2.1 Proper Motion

Figure 2.2: Proper motion of Barnard’s star. This low-mass red dwarf is the fourth closest
star to the Sun after the three components of the α Cen system, at a distance of 1.83 pc
(θ = 0.545 arcsec), and has the highest measured proper motion, µ = 10.4 arcsec yr−1.

If we measure the celestial coordinates (RA and Dec) of a nearby star
at the same time each year (or in practice if we correct for the effects of
the Earth’s orbit around the Sun), we find that its position in a reference
frame based on very distant objects such as quasars is not the same from
year to year (see Figure 2.2). This is proper motion, reflecting the fact
that the positions of stars within the Galaxy are not fixed. For example,
the whole Galactic disk rotates with a circular velocity vrot = 220 km s−1

at the Sun’s position. Superposed on this regular rotation pattern is a
random velocity of individual stars with dispersion σdisk ' 20 km s−1 in
the direction perpendicular to the Galactic plane. Stars in the Milky Way
halo have much higher random motions: σhalo ' 100 km s−1; when one of
these stars intersects the Galactic plane near the Sun’s location its proper
motion can substantial.
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Note 1: Proper motions are measured in arcsec yr−1; values for all but the
nearest stars are µ� 1 arcsec yr−1.

Note 2: What we measure as proper motion is the component of the star’s
motion perpendicular to the line of sight from the Sun to the star. Proper
motions are generally quoted separately in RA and Dec.

Note 3: If we know the distance to a star, then we can deduce its transverse
velocity (in km s−1) from its proper motion.

2.2.2 Doppler Shift and Space Motion

By now you should be familiar with the concept of redshift, the shift to
longer wavelengths (perceived as red by the human eye) of light waves as a
result of the relative motions (apart) of emitter and receiver. A few points
of note:

• In astronomy, in order to measure redshifts, we need to record the
spectra of astronomical sources and measure the wavelength(s) of
well-defined spectral feature(s), such as emission or absorption lines.
Colours are not sufficient because stars and galaxies can appear red
because they are cool, or because their light is reddened by interstellar
dust.

• When we are dealing with nearby objects, we measure a Doppler (kine-
matic) redshift or blueshift:

z =
λobs − λ0

λ0
(2.5)

where λobs is the observed wavelength of a given spectral line, and λ0 is
the rest-frame wavelength of the same atomic transition, as measured
in the laboratory.

• With the Doppler redshift/blueshift is associated a radial velocity

v = c · z (2.6)

where v is positive for objects moving away from us and negative for
objects approaching us.
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• Eq. 2.6 is the limiting case (for v � c) of the special relativity result

1 + z =

√√√√√1 + v/c

1− v/c
(2.7)

For stars with measured parallaxes and proper motions, the combination
of transverse and radial velocity measurements gives the full space velocity
of the stars in 3D (see Figure 2.3).

Figure 2.3: By combining proper motion with radial velocity measurements, it is possible
to deduce the true space motion of a celestial object.

The velocities and positions of such stars within the Galaxy are fully spec-
ified by the six parameters:

l = Galactic longitude (degrees),
b = Galactic latitude (degrees),
d = distance (kpc) from the Galactic Centre,
U = radial velocity relative to the Galactic centre (+ve towards the Galac-
tic centre) ,
V = velocity around the axis of Galactic rotation (+ve in the direction of
Galactic rotation), and
W = velocity parallel to the axis of Galactic rotation (+ve in the direction
of North Galactic pole).
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This is where Gaia has really improved our knowledge of the structure of
the Milky Way and its stellar populations.

2.3 Magnitudes and Luminosities

We have already introduced these concepts in Lecture 1. Magnitudes and
luminosities are normally measured through a given filter; Figures 2.4 and
2.5 show the transmission curves of some of the most commonly used op-
tical and near-infrared filters. Note that the near-IR filters are designed to
approximately match the transmission windows of the atmosphere at these
wavelengths.

It can be appreciated from the Figures that this is hardly a desirable state
of affairs. Ideally, we would like the filter transmission curves to be rect-
angular: 100% transmission over the desired range of wavelengths and 0%
everywhere else. Instead, there are ripples and broad tails. There are also
pronounced differences between different filter sets, with the potential for
error when converting from one set of magnitudes to another.

To circumvent some of these problems, the monochromatic AB magnitude
system was defined as:

AB = −2.5 log10 fν − 48.60 (2.8)

Figure 2.4: Left: Transmission curves of the most commonly used optical broad-band
filters. The red curves are for filters in the Johnson-Cousins system, while the blue curves
are for the Gunn filters used by the Sloan Digital Sky Survey (SDSS). Right: Transmission
curves for commonly used near-IR filters. The narrow-band filters isolate spectral features
of particular interest.
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Figure 2.5: Near-IR atmospheric transmission curves and filters.

where fν is the flux density measured in ergs s−1 cm−2 Hz−1. AB magni-
tudes are used mostly in extragalactic astronomy.

The star α Lyrae provides the zero point of broad-band magnitude sys-
tems, since by definition it has m = 0.00 in all bands. Again, this is not
ideal when one considers that the flux emitted by α Lyrae per unit wave-
length (or frequency) interval is far from constant with wavelength (see
Figure 2.6).

Some illustrative magnitudes:

Table 2.1 Apparent and absolute magnitudes of selected astronomical sources

Object Apparent mag mV Absolute mag MV

Sun −26.7 +4.8
α Canis Majoris (Sirius, brightest star) −1.4 +1.42
α Lyrae (Vega) 0.0 +0.58
ζ Orionis (in Orion’s belt) +2.0 −5.3
Faintest star visible from Cambridge street +3.5
Faintest star visible from dark site, dark adapted +6.0
R136 (brightest stellar cluster in LMC) +9.5 −8.9
Type II Supernova in nearby galaxy ∼ +14 −15.3
QSO 3C273 (first known quasar) +12.9 −26.5
Faintest galaxy in the Hubble Ultra-Deep Field ∼ +30

Magnitudes can be measured very precisely (to ∼ 0.1 millimags from space
with the Kepler mission), to the extent that it is now possible to infer the
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Figure 2.6: The spectrum of α Lyrae, from the near-UV to the near-IR.

existence of Earth-size exoplanets from the shadowing of the stellar disk
caused by the planet transiting in front of a solar-type star.

2.3.1 Bolometric Magnitudes and Bolometric Correction

The magnitude of a star measured through a given filter does not measure
its total luminosity because some of the stellar radiation is emitted at
wavelengths where the filter in question does not transmit light. Even
if we were to use no filter to register the light from a star, the Earth’s
atmosphere and the wavelength-dependent efficiency of our instruments
would act as filters.

Astronomers use the term bolometric magnitude (mbol and Mbol, depending
on whether we are dealing with observed or absolute magnitudes) to denote
the total of all radiation emitted at all wavelengths by a star. Converting
stellar magnitudes measured through a filter, for example the V filter, to
a bolometric magnitude involves applying a bolometric correction, defined
as BC = Mbol −MV (here we have used absolute magnitudes).

The bolometric correction is small for stars like the Sun that radiate most of
their energy in the visual band, but is large (and negative – remember that
the magnitude scale goes backwards!) for stars that are much hotter than
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Figure 2.7: Left: The light output from the Sun at visible wavelengths can be approxi-
mated by a blackbody spectrum with T = 5777 K . Right: Blackbody curves for different
temperatures.

the Sun and emit most of their photons at ultraviolet wavelengths, and
for stars that are much cooler than the Sun and are brightest at infrared
wavelengths.

2.4 Effective Temperatures of Stars

The temperature in the interior of stars can reach several 108 K. However,
of interest here is the effective temperature, Teff , of the visible outer lay-
ers which radiate the light we see and record with our telescopes. The
term effective temperature refers to the temperature of a blackbody that
most closely approximates the emergent spectrum of a star (see Figure 2.7
left). The continuum spectrum of a blackbody is described by the Planck
function (see Figure 2.7 right):

Bλ(T ) [erg s−1 cm−2 Å−1 sr−1] =
2hc2/λ5

ehc/λkT − 1
(2.9)

Bν(T ) [erg s−1 cm−2 Hz−1 sr−1] =
2hν3/c2

ehν/kT − 1
(2.10)

Note two important properties of the spectrum described by eq. 2.9:
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(1) By considering dBλ/d λ = 0 to determine the maximum of the function
Bλ, we find that

λmax T = 0.290 cm K (2.11)

which is known as Wien’s displacement law. For a star like the Sun, with
Teff = 5770 K, λmax = 5020 Å.

(2) Figure 2.7 (right) also shows that as its temperature increases, a black-
body emits more energy per second at all wavelengths. Integrating eq. 2.9
we find: ∫

Bλ(T )dλ =
σ

π
T 4 (2.12)

where σ is the Stefan-Boltzmann constant (σ = 5.67×10−5 erg s−1 cm−2 K−4).

To obtain the total luminosity of a blackbody, we multiply by its surface
area and integrate over the solid angle:

L = 4πR2 ×
∫
Bλ(T )dλ ·

∫
dΩ (2.13)

L = 4πR2 ×
∫
Bλ(T )dλ ·

∫ 2π

0
dφ

∫ π/2
0

cos θ sin θdθ (2.14)

L = 4πR2 σ

π
T 4 π = 4πR2σT 4 (2.15)

Eq. 2.15 is known as the Stefan-Boltzmann law. Eqs. 2.11 and 2.15 are
very powerful. Eq. 2.11 tells us that, if we measure the magnitude of a
star through two filters (see Figure 2.4), we can immediately deduce its
Teff since, for example:

mB = −2.5 logFB + const

mV = −2.5 logFV + const

so that:
B − V = −2.5 log(FB/FV )

where F is the flux through the appropriate filter. Comparison of the
measured B−V colour with those of blackbodies of different temperatures
then yields a photometric estimate of Teff .

We now have an interpretation for the different colours of stars (e.g. Fig-
ure 2.1): they reflect the fact that stars have different temperatures. Here
are some examples:

11



Table 2.2 B − V colours and effective temperatures
of some nearby stars

Object B − V † (mag) Teff (K)
HD 14434 −0.33 47 000
ζ Oph −0.31 34 000
τ Sco −0.30 30 000
α Lyr 0.00 9790
51 Aql +0.30 7300
Sun +0.63 5777
31 Ori +1.50 4050
19 Ari +1.56 3690
α Ori +1.71 3370
Wolf 359 +2.03 2800

† Corrected for interstellar reddening

Astronomers use the term ‘colour’ or ‘colour index’ to refer to the dif-
ference in magnitude between any two filters (see Figure 2.4). Conven-
tionally, colours are specified in the sense (shorter wavelength)−(longer
wavelength). Thus we have U −B, B − V , V −R, V −K, and so on.

Returning to eq. 2.15, we can see that a star’s luminosity depends on both
its temperature and size. With a knowledge of a star’s Teff (from its colour)
and luminosity (from its measured magnitude and distance), we can obtain
an estimate of its radius.2

For stars at known distances (or for stars all at the same distance within a
cluster), we can construct a diagram plotting their luminosity as a function
of colour, as in Figure 2.8. This is undoubtedly the most import diagram
in stellar astronomy and we shall explore it in detail during the course of
these lectures. It is referred to as the Hertzsprung–Russell diagram (HRD)
from the names of the astronomers who first constructed it in the 1910s,
or more generally as a colour-magnitude diagram.

We can immediately make the following observations:

• Most of the stars are found in relatively narrow strip on the MV −
(B − V ) plane. This strip is the Main Sequence.

• Stars of the same (B−V ) colour, or equivalently of the same Teff , can

2The radii of the nearest stars have been measured directly via optical interferometry; these measure
generally agree with the values deduced assuming that the stars radiate as blackbodies.
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Figure 2.8: H-R diagram for nearby stars with measured parallaxes from the Hipparcos
mission.

have widely different luminosities. For example, stars with (B−V ) '
1.0 in Figure 2.8 have values of MV which span 10 magnitudes, or a
factor of 10 000! From eq. 2.15 we understand this to be a consequence
of their different sizes; evidently, the radii of such stars span a range
of two orders of magnitude. For this reason, stars above the main
sequence are termed giants and supergiants, while stars below the
main sequence are sub-dwarfs.

• Although the stars collected in Figure 2.8 do not constitute a volume-
limited sample (that is, Hipparcos did not measure all the stars within
a given distance from the Sun), it is still evident that only a few stars
are located away from the Main Sequence. The most straightforward
interpretation of this observation is that stars must spend most of
their life on the Main Sequence. Thus, the H-R diagram charts stellar
evolution: stars move onto the Main Sequence when they are born and
evolve off the Main Sequence during the late stages in their evolution.
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Figure 2.9: Locations of some bright stars on the H-R diagram.
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