
M. Pettini: Introduction to Cosmology — Lecture 9

RECOMBINATION AND
THE COSMIC MICROWAVE BACKGROUND

Once Big Bang Nucleosynthesis is over, at time t ∼ 300 s and tempera-
ture T ∼ 8 × 108 K, the Universe is a thermal bath of photons, protons,
helium nuclei, traces of other light elements, and electrons, in addition to
neutrinos and the unknown dark matter particle(s). The energy density
is dominated by the relativistic component, photons and neutrinos. With
the exception of neutrinos and the dark matter which by this time have
decoupled from the plasma, all particle species have the same temperature
which is established by interactions of charged particles with the photons.

Photons interacted primarily with electrons through Thomson scattering:

γ + e− → γ + e−

i.e. the elastic scattering of electromagnetic radiation by a free charged
particle. Thomson scattering is the low-energy limit of Compton scattering
and is a valid description in the regime where the photon energy is much
less than the rest-mass energy of the electron. In this process, the electron
can be thought of as being made to oscillate in the electromagnetic field of
the photon causing it, in turn, to emit radiation at the same frequency as
the incident wave, and thus the wave is scattered. An important feature of
Thomson scattering is that it introduces polarization along the direction
of motion of the electron (see Figure 9.1). The cross-section for Thomson
scattering is tiny:

σT =
1

6πε20

(
e2

mec2

)2

= 6.6× 10−25 cm2 (9.1)

and therefore Thomson scattering is most important when the density of
free electrons is high, as in the early Universe or in the dense interiors of
stars.1

1Photons are also scattered by free protons, but σT for proton scattering is smaller by a factor
(me/mp)2 (eq. 9.1), so it can be neglected. It is the Coulomb interaction with the electrons that keeps
the protons in thermal equilibrium with the electrons and photons.
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Figure 9.1: Schematic diagram of Thomson scattering with the electron being illuminated
from a single direction. The two cases correspond to the incident light being either (a)
linearly polarized or (b) unpolarized. For clarity, only the electric field of the radiation
propagating along the coordinate axes is illustrated.

The scattering rate per photon, ΓT,e, can be estimated as follows. The mean
free path for photons (the mean distance travelled between scatterings) is

λ =
1

neσT
(9.2)

where ne is the electron density, and the rate at which a photon undergoes
scattering is therefore:

ΓT,e =
c

λ
= neσTc . (9.3)

The optical depth to Thomson scattering is the integral over time of the
scattering rate:

τ =

∫
ΓT,e(t) dt . (9.4)

When the Universe is fully ionised, ne ' nb = nb,0 (1 + z)3 (neglecting the
neutrons bound within atomic nuclei), from which we deduce:

ΓT,e ' 2.5× 10−7 · 6.6× 10−25 · 3× 1010 (1 + z)3 s−1

' 5× 10−21 (1 + z)3 s−1 (9.5)

where we have used nb,0 = 2.5× 10−7 cm−3 from eq. 7.5.

9.1 Matter Domination

The next important milestone in the Universe history is the transition
from a radiation-dominated to a matter-dominated regime. Recalling the
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full expression for H(z):

H(z)

H0
=
√

Ωm,0(1 + z)3 + Ωrad,0(1 + z)4 + Ωk,0(1 + z)2 + ΩΛ,0 , (9.6)

it can be seen immediately that

zeq =
Ωm,0

Ωrad,0
− 1 ' 3380 (9.7)

(with Ωrad,0 ' 9 × 10−5 which includes the contribution from neutrinos),
when the temperature was Teq = 2.7255×3381 = 9215 K. After this epoch,
the expansion rate is driven by pressureless matter (i.e what we called dust
in Lecture 1), until either the curvature or, if Ωk,0 = 0, the Λ term starts
to dominate.

9.2 Recombination

As the Universe cools further, a time comes when it is thermodynamically
favourable for ions (protons and He2+ nuclei) and electrons to combine and
form neutral atoms. This is the epoch of recombination, the next impor-
tant transition in the history of our Universe. With the rapidly diminishing
density of free electrons, the photon scattering rate, ΓT,e, drops below the
expansion rate H, the photons decouple from the electrons and can stream
freely (their mean free path becomes very much longer): the Universe is
now transparent to radiation. Thus, as we look back in time with even
our most powerful photon-collecting telescopes, the epoch of recombina-
tion is the ultimate frontier, the furthest location and the earliest time
we can reach with electromagnetic radiation. Once photon and baryons
have decoupled, the latter are no longer compelled to have the the same
temperature as the photons.

The temperature at which recombination takes place depends on the baryon-
to-photon ratio, η, and on the ionisation potential of the species involved.
For simplicity, we shall limit ourselves to H with ionisation potential Q =
13.6 eV from the ground state, and ignore He with ionisation potentials of
24.6 eV and 54.4 eV to form He+ and He2+ respectively.

Before recombination, the reaction in question:

H + γ ⇀↽ p + e−
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is in statistical equilibrium, with the photoionization rate balancing the
radiative recombination rate. In statistical equilibrium at temperature T ,
the number density nx of particles with mass mx is given by the Maxwell-
Boltzmann equation:

nx = gx

(
mx kT

2πh̄2

)3/2

exp

[
−mxc

2

kT

]
, (9.8)

where gx is the statistical weight of particle x. This expression applies in
the non-relativistic regime, i.e. when kT � mxc

2.

Writing eq. 9.8 for H atoms, protons and free electrons, we can construct
an equation that relates the number densities of these particles:

nH

npne
=

gH

gpge

(
mH

mpme

)3/2 (
kT

2πh̄2

)−3/2

exp

[
(mp +me −mH)c2

kT

]
(9.9)

Eq. 9.9 can be simplified further considering that: (i) the ratio of the
statistical weights is 1; (ii) mH ' mp; and (iii) the term in the numerator
of the exponential factor is the binding energy of the H atom, i.e. the
ionisation potential Q. With these simplifications, we obtain the Saha
equation:

nH

npne
=

(
me kT

2πh̄2

)−3/2

exp

[
Q

kT

]
. (9.10)

What we want to do now is to use the Saha equation to deduce the ioni-
sation fraction:

X ≡ np

np + nH
=
np

nb
=
ne

nb
(9.11)

as a function of T and η. With the above definition (which implicitly
assumes charge neutrality in the Universe), X = 1 when the baryons are
fully ionised, X = 0.5 when half of the baryons are ionised, and X = 0
when the baryons are all in neutral atoms.

With the substitutions:

nH =
1−X
X

np, ne = np ,

we can re-write eq. 9.10 as:

1−X
X

= np

(
me kT

2πh̄2

)−3/2

exp

[
Q

kT

]
(9.12)
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We can express np in terms of η:

η =
np

Xnγ

where for a blackbody spectrum:

nγ =
2.404

π2

(
kT

h̄c

)3

= 0.244

(
kT

h̄c

)3

so that:

np = 0.244Xη

(
kT

h̄c

)3

which we can now substitute into eq. 9.12 to give

1−X
X2

= 3.84η

(
kT

mec2

)3/2

exp

[
Q

kT

]
. (9.13)

Solving the quadratic equation in X, we find that the positive root is

X =
−1 +

√
1 + 4S

2S
(9.14)

where

S(T, η) = 3.84η

(
kT

mec2

)3/2

exp

[
Q

kT

]
. (9.15)

Note that when kT � Q, X ' 1 and the gas is close to being fully ionised.
Once kT falls below Q, X → 0; however, both η and the term (kT/mec

2)3/2

are small numbers, and their product is overcome by the exponential term
only once the temperature has fallen well below the binding energy.

We can solve eq. 9.15 numerically to find the value of T when X = 0.5
which we define to be the epoch of recombination (half of the baryons
ionised and half of them neutral). With η = 6.1× 10−10, we have:

kTrec = 0.323 eV =
Q

42
. (9.16)

Scaling back TCMB,0 = 2.7255 K to Trec = 0.323 eV ≡ 3750 K, we find
(1 + zrec) = 1375, which corresponds to time trec = 251 000 yr.
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Figure 9.2: Energy levels of the H atom.

9.3 Photon Decoupling

Recombination was not an instantaneous process but proceeded relatively
quickly nevertheless, with the fractional ionisation decreasing from X = 0.9
to X = 0.1 over a time interval ∆t ∼ 70 000 yr. With the number density
of free electrons dropping rapidly, the time when photons and baryons
decoupled follows soon, once the rate for Thomson scattering ΓT,e falls
below the expansion rate H.

The exact calculation of zdec is complicated by the fact that the Saha
equation used to derive X(T ) assumes that the reaction H + γ ⇀↽ p + e−

is in equilibrium, but this is no longer the case when ΓT,e drops below H.
In reality, the photon-baryon fluid remains overionised for its temperature
compared to the equilibrium condition under which the Saha equation
applies (see Figure 9.3), as can be appreciated by considering the following.

If the recombination p + e− → H + γ takes place directly to the ground
state (n = 1) of hydrogen, the emitted photon with E = hν = 13.6 eV
can readily ionise a H atom, with no net effect (see Figure 9.2). Radiative
recombination to a higher energy level with subsequent decay to the ground
state does not help either towards a lower ionisation fraction, for similar
reasons: the emitted photons will quickly be reabsorbed by H atoms, which
are then promptly reionised given the high density of photons with E <
13.6 eV.2

2This is a common problem in astrophysics, whereby Lyman α photons are resonantly scattered.
In ionised regions around hot stars (H ii regions), such photons eventually either escape the nebula at
different frequencies from the resonant frequency (after many resonant scatterings), or are converted into
infrared photons by heating interstellar dust grains.
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Figure 9.3: A full treatment that includes the energy levels of the H atom and the trapping
of Lyman photons within the plasma shows that the baryons remain overionised relative
to the equilibrium conditions implicit in the Saha equation. As a result, photon-baryon
decoupling is delayed and more protracted.

Ultimately, the process that drivesX to lower values is two-photon emission
from the 2S to the 1S ground state. This transition is highly forbidden,
with a transition probability ∼ 108 lower than the Lyman α line from
2P to 1S. In order to conserve energy and angular momentum, a pair of
photons is emitted, neither of which is energetic enough to excite an atom
from the ground state. This breaks the bottleneck and provides a net sink
of energetic photons. Taking into account all the relevant processes, it is
found that zdec = 1090, when Tdec = 2971 K and tdec = 372 000 yr.

After their last scattering off an electron, photons were able to travel unim-
peded through the Universe.3 These are the Cosmic Microwave Back-
ground photons we receive today, still with their blackbody distribution,
now redshifted by a factor of 1091. They constitute a last scattering sur-
face, or more appropriately a last scattering layer, since (obviously) not all
photons underwent their last scattering simultaneously: just as we can see
in little distance into a fog bank on Earth, we can penetrate a little way
into the ‘electron fog’ that hides earlier times from our direct view (see
Figure 9.4).

Of course, there is nothing special about this particular surface, other than
it happens to be at the right distance for the photons to have reached us

3With the exception of photons with energies greater than 10.2 eV (with wavelengths λ ≤ 1215.67 Å)
which are absorbed efficiently by neutral hydrogen. However, such photons are comparatively small in
number, being far out in the Wien tail of the blackbody distribution for Tdec = 2971 K = 0.256 eV.
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Figure 9.4: The last scattering layer.

today. There are photons originating at every point, and observers in
different parts of the Universe will see photons originating from different
large spheres, of the same radius, centred on their location.

What is important is that the existence of an isotropic photon background
with a blackbody spectrum is a natural consequence of an earlier, denser
and hotter phase in the Universe history, when photons and baryons existed
in a highly interacting thermal state. The existence of this radiation is one
of the pillars on which the model of a hot Big Bang rests. Any other
interpretation of the CMB has to invoke rather contrived scenarios.

The table below summarises the cosmic epochs discussed in this lecture.

Table 9.1 Cosmic epochs considered in this lecture

Event Redshift T (K) t (Myr)
Radiation-Matter Equality 3380 9215 0.047
Recombination 1375 3750 0.251
Photon Decoupling 1090 2971 0.372
Last Scattering 1090 2971 0.372
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9.4 The Cosmic Microwave Background

The Cosmic Microwave Background radiation was discovered serendipi-
tously in 1965 by two American radio astronomers, Arno Penzias and
Robert Wilson, while trying to identify sources of noise in microwave satel-
lite communications at Bell Laboratories in New Jersey.4 Their discovery
was announced alongside the interpretation of the CMB as relic thermal
radiation from the Big Bang by Robert Dicke and collaborators working at
the nearby Princeton University. Interestingly, the possibility of a cosmic
thermal background were first entertained by Gamow, Alpher and Herman
in 1948 as a consequence of Big Bang nucleosynthesis, but the idea was so
beyond the experimental capabilities of the time that it fell into obscurity
in the intervening two decades.

The average energy of a CMB photon today, 〈hν〉 = 6.3× 10−4 eV, is tiny
compared to the energies required to break up atomic nuclei (∼ 1 MeV), or
excite atomic energy levels (∼ 10 eV), but comparable to the energy differ-
ences between vibrational and rotational levels of some molecules, includ-
ing H2O. Thus, after their 13.8 Gyr journey through the cosmos, from the
surface of last scattering to us, CMB photons are absorbed a microsecond
away from the Earth’s surface by a water molecule in the atmosphere of our
planet. The original detection by Penzias and Wilson was at a wavelength
of 73.5 mm, this being the wavelength of the telecommunication signals
they were working with; this wavelength is two orders of magnitude longer
than λpeak = 1.1 mm of a T = 2.7255 K blackbody.

For this reason, observations of the CMB over the last 50 years have been
conducted primarily from satellites, but also from high altitude balloons
and from Antarctica, where the water content of the atmosphere is very
low. The successive space missions COBE, WMAP and Planck have built
an increasingly accurate map of the CMB radiation over the entire sky.
Encoded in this map is a comprehensive description of the cosmological
parameters that define our Universe—a topic that we will explore in detail
in the next lecture. It is a fitting measure of the importance of the CMB,
that not only its discoverers (Penzias and Wilson), but also the principal

4Researchers working at Bell Labs are credited with the development of radio astronomy, the transistor,
the laser, the charge-coupled device (CCD), information theory, the UNIX operating system, the C
programming language, S programming language and the C++ programming language. Eight Nobel
Prizes have been awarded for work completed at Bell Laboratories (from Wikipedia).
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investigators of the COBE and WMAP missions have been awarded some
of the most prestigious prizes in Physics and Astronomy.

Incidentally, the CMB provides the solution to Olbers’ paradox: The sky
at night (or during the day for that matter!) is indeed bright everywhere,
but at the mm wavelengths of CMB photons, rather than the optical wave-
lengths of starlight.

Table 9.2 summarises the most important properties of the CMB.

Table 9.2 CMB parameters

Property Value
Temperature, TCMB 2.7255 K
Peak Wavelength, λpeak 0.106 cm
Number density of CMB photons, nγ,0 411 cm−3

Energy density of CMB photons, uγ,0 0.26 eV cm−3

Average photon energy, 〈hνCMB〉 6.34× 10−4 eV
Photon/Baryon ratio, 1/η 1.64× 109

9.4.1 Isotropy of the CMB

At any angular position (θ, φ) on the sky, the spectrum of the CMB is a
near-perfect blackbody (see Figure 9.5). The CMB is in fact the closest
approximation we have to an ideal blackbody, much closer than, for ex-
ample, the spectral distribution of stars, and closer than any blackbody

Figure 9.5: The spectral shape of the Cosmic Microwave Background measured by the
COBE satellite is that of a blackbody with temperature T = 2.7255 K.
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emitter we have been able to build in a laboratory on Earth.

With T (θ, φ) denoting the temperature at a given point on the sky, the
mean temperature averaged over the whole sky is:

〈T 〉 =
1

4π

∫
T (θ, φ) sin θ dθ dφ = 2.7255± 0.0006 K . (9.17)

The deviations from this mean temperature from point to point on the sky
are tiny. Defining the dimensionless T fluctuations:

δT

T
(θ, φ) =

T (θ, φ)− 〈T 〉
〈T 〉

, (9.18)

it is found that: 〈(
δT

T

)2
〉1/2

= 1.1× 10−5 . (9.19)

Such deviations were first reported in 1992 by the COBE team. Subsequent
CMB missions (WMAP and Planck) have significantly improved the angu-
lar resolution and precision in the mapping of the CMB sky, as illustrated
in Figure 9.6.

The finding that the temperature of the CMB varies by only 30µK across
the whole sky is strong evidence for an isotropic (and therefore presumably
homogeneous) Universe. However, it also presents us with a significant

Figure 9.6: Tiny anisotropies (at the level of δT/T ∼ 10−5) in the temperature of the
Cosmic Microwave Background, as recorded by the WMAP and Planck satellites.
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puzzle: how can we explain such a high degree of isotropy? To understand
what motivates this question, consider the following.

Naively, one may expect the size of the region over which isotropy pertains
to be the horizon scale at the time of photon decoupling. Regions further
apart than the light-travel distance at zdec wouldn’t know about each other,
that is they are not causally connected. Put in a different way, heat transfer
could equalise the temperature between regions slightly hotter and slightly
colder than the mean only up to a maximum distance, given by ctdec.

Recalling our discussion of horizons in section 5.3.2, we can re-write eq. 5.24
as the comoving horizon distance at time t:

shor,com(t) =

t∫
0

c dt

a(t)
. (9.20)

We want shor at redshift z. Using ȧ = da/dt, dt = da/ȧ = da/aH, we
have:

shor,com(a) =

a∫
0

c da

a2H(a)
. (9.21)

Our usual expression for the Hubble parameter as a function of
a ≡ (1 + z)−1:

H(a)

H0
=
(
Ωrad,0 a

−4 + Ωm,0 a
−3 + Ωk,0 a

−2 + ΩΛ,0

)1/2
(9.22)

reduces to:
H(a) ' H0

√
Ωm,0 a

−3/2 (9.23)

at zdec = 1090, when the expansion has been dominated by the energy
density of matter for most of the age of the Universe (see Table 9.1). With
(9.23), we can re-write (9.21) as:

shor,com(a) ' c

H0
Ω
−1/2
m,0

a∫
0

1

a1/2
da . (9.24)

Performing the simple integration and now changing to redshift, we have:

shor,com(z) ' 2
c

H0
Ω
−1/2
m,0 (1 + z)−1/2 , (9.25)
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or
shor,prop(zdec) ' 2

c

H0
Ω
−1/2
m,0 (1 + zdec)

−3/2 . (9.26)

where shor,prop = a shor,com is the physical (proper) horizon distance at de-
coupling.

The angle on the sky subtended by a length shor,prop is:

θhor,dec =
shor,prop(zdec)

dA(zdec)
(9.27)

where dA is the angular diameter distance. In Lecture 5.3.3 we saw that
in a flat universe (Ωk,0 = 0) the expression for dA is simplified to:

dA(z) =
c

H0

1

(1 + z)

z∫
0

dz[
Ωm,0 (1 + z)3 + ΩΛ,0

]1/2
(9.28)

The elliptical integral is not of straightforward solution. However, in an
open universe with ΩΛ,0 = 0, Ωk,0 6= 0, the so-called Mattig relation applies:

dA(z) = 2
c

H0

1

Ω2
m,0 (1 + z)2

×
[
Ωm,0z + (Ωm,0 − 2)

(√
1 + Ωm,0z − 1

)]
(9.29)

which, for z � 1 reduces to:

dA(z) ≈ 2
c

H0

1

Ωm,0 z
. (9.30)

Substituting 9.30 and 9.26 into 9.27 we find:

θhor,dec ≈
(

Ωm,0

zdec

)1/2

=

(
0.312

1090

)1/2

= 0.017 radians ∼ 1◦ (9.31)

In models with a cosmological constant (Ωm,0 + ΩΛ,0 = 1, Ωk,0 = 0)

θhor,dec ≈ 1.8◦

with a very weak dependence on Ωm,0 (∝ Ω−0.1
m,0 ).

What this means is that CMB photons coming to us from two directions
separated by more than ∼ 2◦ originated from regions which were not in
causal contact at zdec. The fact that the CMB is uniform over much larger
angular scales constitutes what is referred to as the horizon problem.
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Figure 9.7: During an inflationary phase, the Universe expands exponentially. In this sce-
nario, the whole Universe visible today was in causal contact prior to inflation, explaining
the near-perfect isotropy of the CMB radiation (as well as other cosmological puzzles).
(Figure credit: Charles Lineweaver).

A ‘solution’ to the horizon problem was formulated in 1980s. The horizon
problem (and other cosmological puzzles) could be resolved if the entire
Universe within our horizon had in fact been in causal contact at very
early times, and had been inflated by a huge factor (> 1030) during a brief
period of exponential expansion (see Figure 9.7). This is the inflationary
scenario, originally proposed by Alan Guth and now considered seriously
by most cosmologists, being supported by several lines of evidence.

Inflation is suspected to be an event associated with the GUT transi-
tion at t ∼ 10−35 s, T ∼ 1027 K' 1014 GeV, when the Electroweak and
Strong forces separate (see Lecture 7.1.3). Quantum fluctuations during
the inflationary era grew to the temperature fluctuations at the level of
δT/T ' 1 × 10−5 we see in the CMB photons emitted 372 000 years later
from the surface of last scattering.

After photon decoupling, the photon-baryon fluid became a pair of gases,
one of photons and the other of neutral hydrogen. Although the two gases
coexisted spatially, they were no longer coupled together. The baryons, no
longer tied to the photons, are from this point on free to collapse gravi-
tationally, under their own gravity and that supplied by the dark matter.
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Over the following 13.8 Gyr, gravity turned the tiny temperature fluctua-
tions present at zdec into the large structure in the distribution of galaxies
we see around us today. We will return to this topic in Lecture 14. In
the next lecture we will consider in more detail the wealth of information
that can be deduced from the analysis of the temperature anisotropy of
the CMB.

Figure 9.8: The large scale distribution of galaxies in today’s (t = 13.8 Gyr) Universe
can be traced back to the tiny temperature fluctuations present in the surface of last
scattering at t = 372 000 yr. (Figure credit: Chris Blake).
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