PDAAS: Exoplanet Analysis Feedback from the parallel session

Nicholas Walton (PLATO PDAAS Assessment Study Team) Institute of Astronomy University of Cambridge

L2 exoplanet analysis work breakdown structure

- Starting point: Wp12/Wp16 tasks in previous report
 Considered Corot and Kepler experience
- Refined analysis of next level of tasks
 - Focussed on processing steps and points of interface to GB followup
 - Use of models and fitting in transit detection
- Developed an outline of the development and processing strategies: with dumps to MDB at each
- Concept of iterative processing and self calibration of data (thus minimising need for external data)

od

Key challenges in meeting science goals

- Identified some major sources of noise
 - PSF, confusion, pixellation, centroiding, background, crowding
 - Need for ancillary data both internal (PLATO) and external (input catalogue and to be obtained)
- Many unknowns in processing chain to be handled in L1

Algorithms

- Data flow rates and processing implications
 - Sample sizes considered
 - Possible requirement for independent processing chains on the NT and FT
 - Assessment required as to special needs for the faint and bright samples
- Assessment and definition of key transit detection s/w required (how many, development of new techniques).
 - Science group should recommend options
 - PDC to develop operational s/w
 - In general most L2 s/w techniques known

Requirements on input data from L0/L1

- Assessment of requirements on simulation data
 - Seen as required at an early stage in the development process
- Need for use of test data from other missions (e.g. Corot/Kepler) in the validation of algorithms
- Recommendation to maximise processing on the ground
 - Tradeoffs in images vs cadence
- Complexity in L1 especially de-trending, accounting for red/ white noise

Integration of Ground Based data/ Gaia data

- Interface to followup identified at an early stage
- Use of GB data to provide priors in the initial transit search/fitting stage
- Output to GB with list of high value candidates
- Integration of GB data into analysis chain
 Identification of planet systems
- Iterations with increasing data volumes
 - Over mission lifetime

Outputs to Archive

- Limited time for discussion, but ...
- Iterative nature of the analysis requires main data base updating
- Issue of release schedules for the MDB to the archive

Actions

See slides from Laurent

