

Weimin Yuan

X.B. Dong, H.Y. Zhou, T.G. Wang (USTC, @Hefei)

Credit L.C. Ho

→almost every large galaxy harbors a SMBH.

Question: how about small galaxies (dwarf galaxies)?

Intermediate mass black holes (IMBH)

Search for IMBH in AGN

$$M_{BH} = f \quad v^2 R_{BLR} / G$$
$$v^2 L_{opt}^{0.5}$$

Virial mass

• • • IMBH in AGN: three secured cases

NGC4395

Host M_B =-17.5 BH mass=3.6 x10⁵ Msun

Filippenko & Ho (2003) Peterson et al. (2005)

POX 52

Host $M_B = -16.8$ 1.6 x10⁵ Msun

Barth et al. (2004)

SDSSJ1605+1748

Host M_B =-16.4 0.7-1.6 x10⁵ Msun

Dong, Wang, Yuan, et al. (2007)

• • • SDSSJ1605+1748

D=134.2 Mpc

HST image 2-D decomposition

 $M_{R} = -16.4$

Dwarf disk galaxy

Dong, Wang, Yuan, et al. (2007)

roughly consistent with BH mass -- bulge relation

Finding IMBH AGN accreting at low Eddington rates

- Q: more IMBH in small galaxies?
- yes! SDSS DR1 (Green & Ho 2004) but rare.....while small/dwarf galaxies are numerous
- The original GH04 sample of IMBH AGN (19) all have high L/Ledd Eddington ratio = L_{bol} / L_{Edd} mass accretion rate represented by
 - → Question: Do IMBH AGN accreting at low rates exist?
- if YES, then a large population of under-luminous IMBH AGN are missing (too dim to be easily observed)
- prototype: NGC4395 M_{BH}=3.6x10⁵ Msun, Eddington ratio 1.2x10-3 (Perterson et al. 2005)
- Is NGC4395 unique? More objects?

- A new sample of AGN with intermediate black hole
- some have low L/Ledd

Confirmation needed in X-ray

→ 4 observed with Chandra

Some also found in the updated sample of Green & Ho (2007)

Example discovering SDSS spectrum

$$M_{BH} = f \quad v^2 R_{BLR} / G$$

$$V^2L_{opt}^{0.5}$$

Proper subtraction of host galaxy starlight is crucial

SDSS & Chandra images of low Eddington ratio IMBH AGN

Low Eddington ratios

Bolometric correction assuming $L_{bol} = 20 \text{ x Lx}(2-10\text{keV})$ (Vasudevan & Fabian'07)

A few more IMBH AGN accreting at low rates do exist (in add. to NGC4395)! There is a population of under-luminous IMBH AGN yet to be discovered! And so are IMBH

Optical -- X-ray SED

• • Chandra X-ray spectra

J1304+3955

An abnormally flat X-ray spectrum

$$=1.06(+/-0.2)$$
?

• • conclusion

- o We found a few more intermediate-mass BH AGN with several times 10⁵ Msun BH masses accreting at low rates (around or lower than the critical rate) in dwarf galaxies
- o They do exist. And we expect the existence of a population of dwarf galaxies harbouring IMBH in their centers, which are difficult to be detected due to their faintness of the

An ultra-luminous X-ray (ULX) source in a dwarf galaxy?

J074345.47+480813.5

Lx(2-10keV)=2.1E40erg/s ~200Msun BH, if accreting at Eddington rate? (two IMBH merging?)