UKIDSS and VISTA:
Surveying the sky in the near-IR

Eduardo Gonzalez-Solares
(Institute of Astronomy, Cambridge Astronomy Survey Unit, UK)

Equipped with his five senses, man explores the universe around him
and calls the adventure Science

E.P. Hubble, 1954
I. Data processing activities at CASU
A bit of history

Automate Plate Measurement machine, IoA, Cambridge
The APM photographic sky survey

- ~10GB/day
- ~1000 plates/year
- UKST, AAT, KPNO, CFHT, CTIO
- Object extraction and parameterization
- ~4h/plate scanning and processing (UKST)

Irwin 1985
McMahon & Irwin 1992
Irwin 1994
McMahon et al 2001
Modern day technology

1st light CCD on 1m telescope in KPNO (1979)

one of the four WFCAM infrared detectors

Omegacam@VST
Optical processing at CASU

• APM Photographic Sky Survey Catalogue

• WFC @ INT (4 2k x 4k)

• Mosaic1 @ KPNO, Mosaic2 @ CTIO (8 2k x 4k)

• MegaCam @ CFHT (36 2k x 4.5k)

• SuprimeCam @ Subaru (10 2k x 4k)

• WFI @ 2.2m ESO (8 2k x 4k)

• OmegaCam @ VST (32 2k x 2k)
Near-IR processing at CASU

- CIRSI @ INT (4 1k x 2k)
- WFCAM @ UKIRT (4 2k x 2k)
- Hawk-I @ VLT (4 2k x 2k)
- VIRCAM @ VISTA (16 2k x 2k)
Data processing steps

- Reset/Bias correction
- Linearity correction
- Dark and reset anomaly
- Flatfield
- Destripe
- Cross talk removal
- Persistence
- Background sky/Defringing
- Dithering
- Catalogue generation
- Astrometric calibration
- Photometric calibration
- Stacking
Data processing steps

- Reset/Bias correction
- Linearity correction
- **Dark and reset anomaly**
- Flatfield
- Destripe
- Cross talk removal
- Persistence
- Background sky/Defringing
- Dithering
- Catalogue generation
- Astrometric calibration
- Photometric calibration
- Stacking
Data processing steps

- Reset/Bias correction
- Linearity correction
- Dark and reset anomaly
- Flatfield
- Destripe
- **Cross talk removal**
- Persistence
- Background sky/Defringing
- Dithering
- Catalogue generation
- Astrometric calibration
- Photometric calibration
- Stacking
Data processing steps

- Reset/Bias correction
- Linearity correction
- Dark and reset anomaly
- Flatfield
- Destripe
- Cross talk removal
- Persistence
- **Background sky**/Defringing
- Dithering
- Catalogue generation
- Astrometric calibration
- Photometric calibration
- Stacking
Data processing steps

- Reset/Bias correction
- Linearity correction
- Dark and reset anomaly
- Flatfield
- Destripe
- Cross talk removal
- Persistence
- Background sky/Defringing
- Dithering
- Catalogue generation
- Astrometric calibration
- Photometric calibration
- Stacking
Data processing steps

- Reset/Bias correction
- Linearity correction
- Dark and reset anomaly
- Flatfield
- Destripe
- Cross talk removal
- Persistence
- Background sky/Defringing
- Dithering
- Catalogue generation
- Astrometric calibration
- Photometric calibration
- Stacking

% Distortion vs. Degrees on sky
Data processing steps

- Reset/Bias correction
- Linearity correction
- Dark and reset anomaly
- Flatfield
- Destripe
- Cross talk removal
- Persistence
- Background sky/Defringing
- Dithering
- Catalogue generation
- Astrometric calibration
- Photometric calibration
- Stacking
II. Past and present surveys
The IPHAS Survey
The IPHAS Survey

- r, i, $H\alpha$ using the WFC@INT

- ~1800 deg2 in the Northern Galactic Plane

- ~300 million objects

- Early Data Release world public (VO compliant)

Drew et al. 2005
Gonzalez-Solares et al. 2008
The UKIDSS Survey

Observing dates range
20050401 - 20081031

Last updated: 23/11/08 00:29:23 GMT
The UKIDSS Survey

- UKIRT: UK Infrared Telescope
 - 3.8m primary mirror, wide field infrared telescope
 - Located in Mauna Kea, Hawaii
 - Several instruments: UFTI, UIST, Michelle, CGS4, WFCAM
- Photometry good to 0.02 mag
- Astrometry 50 - 100 mas
- Average seeing 0.8 arcsec
The WFCAM camera

- 4 chips 4k x 4k
- A tile (4 pointings) covers 0.8 x 0.8 deg
- ~17000x17000 pixels per tile
- UKIDSS uses WFCAM to observe ~7000 sq. deg. of sky in the near-IR
- Raw data travels from Hawaii to CASU (100 - 200GB per night)
- Pipeline processing done at CASU producing fully astrometrically and photometrically calibrated science products.
Pretty pics

NGC891

Orion

M17

M104

M104
The UKIDSS Survey

Observing dates range
20050401 - 20081031

(C) 2008 CASU

Last updated: 23/11/08 00:29:23 GMT
The UKIDSS Survey

<table>
<thead>
<tr>
<th>Survey</th>
<th>Area (sq. deg.)</th>
<th>Depth*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Area (LAS)</td>
<td>4000</td>
<td>18.4</td>
</tr>
<tr>
<td>Galactic Plane (GPS)</td>
<td>1800</td>
<td>19.0</td>
</tr>
<tr>
<td>Galactic Clusters (GCS)</td>
<td>1400</td>
<td>18.7</td>
</tr>
<tr>
<td>Deep Extragalactic (DXS)</td>
<td>35</td>
<td>21.0</td>
</tr>
<tr>
<td>Ultra Deep (UDS)</td>
<td>0.77</td>
<td>23.0</td>
</tr>
</tbody>
</table>

(*) K band, Vega, 5 sigma
The UKIDSS-LAS Survey

LAS DR4: 25m objects, 13m galaxies (~11000 deg$^{-2}$) in YJHK
The UKIDSS-DXS and UDS
The UKIDSS Survey - Comparison with 2MASS
The UKIDSS Survey - Comparison with 2MASS

(*) Comparison w.r.t. DXS (subtract ~2 mag for LAS)
The UKIDSS Survey: Scientific Results

• Too many to describe. See www.ukidss.org

• Evolution of red and blue galaxies to z~2 (Cirasuolo et al 2007)

• Superclusters at z~1 (Swinbank et al 2007)

• IR properties of SDSS quasars (Chiu et al 2007)

• High (z~6) QSOs (Venemans et al 2007, Mortlock et al 2008)
20pc Brown Dwarf

- ULASJ0034-00
- Coolest known dwarf (T8.5)
- T~600K
- M~15-36 MJup

Warren et al 2007
Lodieu et al 2008
First z~6 QSO from UKIDSS

- ULASJ0203+0012
- z=5.86
- VLT/FORS2
- 1 QSO in 110 deg² DR1 (consistent with SDSS - Fan et al 2004)
First $z \sim 6$ QSOs from UKIDSS

$z > 6.5$ QSOs detection requires IR wavelengths
Multi-wavelength approach

- Surveys powerful when combined across spectrum range
 - FIRST/APM
 - SDSS/2MASS
 - SDSS/UKIDSS
- Many areas with radio, optical, near-, mid- and far-IR, sub-mm, X-ray
III. (Near) future surveys
ESO Public Surveys

- ESO program for large surveys in the optical and near-IR

- Optical: VST (VLT Survey Telescope) 2.6m telescope fitted with OmegaCam (32 CCDs) and a f.o.v. of 1 sq. deg. u’ g’ r’ i’ z’ and Ha

- Near-IR: VISTA 4m telescope equipped with a 16 detector camera covering a f.o.v of 1.5 sq. deg. per tile. Z Y J H K
VST public surveys
VISTA public surveys
VST and VISTA surveys

VST survey observing strategies

<table>
<thead>
<tr>
<th>Survey</th>
<th>Area (deg2)</th>
<th>Filters and Depth (mag, 10σ, AB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIDS</td>
<td>1500</td>
<td>$u'=24.8$ $g'=25.4$ $r'=25.2$ $i'=24.2$</td>
</tr>
<tr>
<td>ATLAS</td>
<td>4500</td>
<td>$u'=22.0$ $g'=22.2$ $r'=22.2$ $i'=21.3$ $z'=20.5$</td>
</tr>
<tr>
<td>VPHAS+</td>
<td>1800</td>
<td>$u'=21.8$ $g'=22.5$ $Hα=21.6$ $r'=22.5$ $i'=21.8$</td>
</tr>
</tbody>
</table>

VISTA survey observing strategies

<table>
<thead>
<tr>
<th>Survey</th>
<th>Area (deg2)</th>
<th>Filters and Depth Measure (mag, 10σ, AB)</th>
<th>Depth (mag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra-VISTA</td>
<td>0.73 (ultra-deep)</td>
<td>5α, AB</td>
<td>Y=26.7 J=26.6 H=26.1 $K_s=25.6$ NB=24.1</td>
</tr>
<tr>
<td>VIKING</td>
<td>1500</td>
<td>5α, AB</td>
<td>Z=23.1 Y=22.3 J=22.1 H=21.5 $K_s=21.2$</td>
</tr>
<tr>
<td>VMC</td>
<td>184</td>
<td>10α, Vega</td>
<td>Y=21.9 J=21.4 $K_s=20.3$</td>
</tr>
<tr>
<td>VVV</td>
<td>520</td>
<td>5α, Vega</td>
<td>Z=21.9 Y=21.2 J=20.2 H=18.2 $K_s=18.1$</td>
</tr>
<tr>
<td>VHS</td>
<td>20 000</td>
<td>5α, AB</td>
<td>Y=21.2 Y=21.2 J=21.2 H=20.6 $K_s=20.0$</td>
</tr>
<tr>
<td>VIDEO</td>
<td>15</td>
<td>5α, AB</td>
<td>Z=25.7 Y=24.6 J=24.5 H=24.0 $K_s=23.5$</td>
</tr>
</tbody>
</table>
Visible and Infrared Survey Telescope for Astronomy (VISTA)

- 4.1m primary mirror, wide field survey telescope
- 1.5 deg diameter f.o.v
- Designed for both optical and infrared
- Located in Paranal near the VLT site
- Now IR camera only [16 detectors 2k x 2k]
- >75% of time dedicated to large scale public surveys
VHS Limiting Magnitudes

[AB system; 5σ]

<table>
<thead>
<tr>
<th>VHS Component</th>
<th>deg²</th>
<th>Y</th>
<th>J</th>
<th>H</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHS-ATLAS</td>
<td>5000</td>
<td>20.9</td>
<td>20.9</td>
<td>20.3</td>
<td>19.8</td>
</tr>
<tr>
<td>VHS-DES</td>
<td>5000</td>
<td>22.3</td>
<td>21.2</td>
<td>20.8</td>
<td>20.2</td>
</tr>
<tr>
<td>VHS-GP</td>
<td>8200</td>
<td>20.9</td>
<td></td>
<td></td>
<td>19.8</td>
</tr>
<tr>
<td>UKIDSS-LAS</td>
<td>2000</td>
<td>20.8</td>
<td>20.5</td>
<td>20.2</td>
<td>20.1</td>
</tr>
</tbody>
</table>
VHS Science Goals

- Nearest and lowest mass stars
- Evolution of LSS in the Universe
- Nature and evolution of Dark Energy
- Physics of the epoch of reionization; the discovery of the first $z>7$ quasar(s)
 - 100 times the volume of 2MASS
 - 10 times the volume of UKIDSS
- Support for ESA missions: XMM-Newton, Herschel, Planck, GAIA
Summary

- Photometric surveys are the base for spectroscopic followup

- WFCAM now and VST and VISTA soon providing large amounts of scientific data to be exploited both in the Galactic and extragalactic domain

- Multiwavelength data available in many fields allowing a detailed study of objects and sample selection for spectroscopic followup observations e.g. ELAIS/SWIRE areas